
Collision-resistant No More:
Hash-and-sign Paradigm Revisited

Ilya Mironov

mironov@microsoft.com

Microsoft Research (Silicon Valley Campus)

Abstract. A signature scheme constructed according to the hash-and-
sign paradigm—hash the message and then sign the hash, symbolically
σ(H(M))—is no more secure than the hash function H against a collision-
finding attack. Recent attacks on standard hash functions call the para-
digm into question. It is well known that a simple modification of the
hash-and-sign paradigm may replace the collision-resistant hash with a
weaker primitive—a target-collision resistant hash function (also known
as a universal one-way hash, UOWHF). The signer generates a random
key k and outputs the pair (k, σ(k||Hk(M))) as a signature on M . The
apparent problem with this approach is the increase in the signature size.
In this paper we demonstrate that for three concrete signature schemes,
DSA, PSS-RSA, and Cramer-Shoup, the message can be hashed simul-
taneously with computing the signature, using one of the signature’s
components as the key for the hash function. We prove that our con-
structions are as secure as the originals for DSA and PSS-RSA in the
random oracle model and for the Cramer-Shoup signature scheme in the
standard model.

Keywords: TCR, UOWHF, collision-resistance, signatures, Cramer-Shoup,
DSA, PSS-RSA

1 Introduction

History of relation between cryptographically secure hash functions and
digital signature schemes is one of co-evolution and divergence. Early
constructions of dedicated hash functions were motivated by their appli-
cations to signature schemes [Riv91,NIS95]; by now the hash functions
have extended their application domain to include MACs [BCK96] and
public-key encryption [Sho00b]. In turn, unforgeability of many signature
schemes crucially depends on security of the underlying hash function.
This paper is concerned with divesting signature schemes of their reliance
on collision-resistant hash functions by replacing them with a strictly
weaker primitive. The general approach is well known; the novelty is in
doing so without increasing the signature length.
Hash functions often play a dual role of a domain extender and a random
oracle in constructions of signature schemes.
The first role, that of a domain extender, is due to the fact that it is much
easier to design a scheme secure for signing messages of a fixed length

than of unrestricted length. Consider, for example, the RSA signature
defined as σRSA(M) = Md mod N . If the message domain were unre-
stricted, a forgery would be trivial since σRSA(M) = σRSA(M +N). Vir-
tually all practical signature schemes follow the hash-and-sign paradigm:
apply a hash function to the message and sign the result, which we rep-
resent symbolically as σ(H(M)). The natural security requirement for
H is that the hash function must be collision-resistant. Otherwise, if two
messages have identical hashes H(M1) = H(M2) a signature on one of
them is a signature on the other. In light of recent attacks on standard
hash functions, such as [WY05,WYY05a], feasibility of constructing ef-
ficient collision-resistant hash functions appears problematic; bypassing
the requirement would make signatures more robust and may potentially
increase their efficiency.

The following simple attack on the RSA function, whose domain is
restricted to 1 ≤ M < N , motivates the second role of hash func-
tions: σRSA(M2 mod N) = σRSA(M)2 mod N . Coincidentally, hashing
the message before applying the RSA function thwarts this attack, at
least in practice. Many practical signature schemes are vulnerable to
similar attacks, which are remedied by a judicious application of a hash
function. Thus, the Fiat-Shamir heuristic [FS87], which gives a generic
way of transforming an identification scheme into a signature, and the
full-domain hash [BR93], which is suitable for signatures based on a trap-
door permutation such as RSA or Rabin functions, elevated the status
of the hash function from a technical prop to an indispensable element
of the construction, in the same time upping the ante for design of the
hash function. Not only must the hash be collision-resistant, it should
be a real-world implementation of a certain idealized abstraction, called
the random oracle. This methodology is adopted by many practical sig-
natures, although there is evidence that it may never be proved secure
in the standard model [DOP05,PV05].

By explicitly decoupling the two roles of the hash function we can have
more transparent security proofs and more efficient designs of signature
schemes. In this paper we relax the collision-resistant requirement, with-
out addressing the need for a random oracle. For the basic Cramer-Shoup
signature scheme [CS00], provable in the standard model, this means
a strictly better signature scheme (computationally equivalent scheme
which relies on a weaker assumption). For discussion of our result as
applied to two signature schemes provably secure in the random oracle
model, DSA and PSS-RSA, see Section 6.

The primitive, which we prefer to collision-resistant hash functions, is due
to Naor and Yung [NY89]. Simultaneous with development of practical
signature schemes offering only heuristic security, a series of seminal pa-
pers [GMR88,NY89,Rom90] established that provably secure signature
schemes can be constructed from one-way functions. An intermediate
step of this construction is a family of universal one-way hash functions,
also called target-collision resistant (TCR) hashes. TCR hashes is a class
of keyed hash functions formally defined in Section 2. Further validat-
ing this approach, Simon [Sim98] demonstrated that a collision-resistant
hash is a fundamentally stronger primitive (and hence more difficult to

construct) than a TCR function by proving impossibility of a black-box
construction of a collision-resistant hash from a one-way function.
Moreover, a TCR hash may replace a collision-resistant function as the
first step of the hash-and-sign signature scheme. Most importantly, it
can be done via a little tweak of the hash-and-sign paradigm rather than
by going through the theoretically secure but inefficient construction
of [NY89]. Informally, if σ(·) is secure for signing fixed-length messages
and Hk(·) is TCR, the hybrid scheme (k, σ(k||Hk(M))), where key k is
chosen uniformly at random by the signer, is secure as well. The obvious
problem with the scheme is the increase in the signature length, since
the key k becomes part of the signature (discussion of the length of the
key is deferred to Section 6).
We observe that for many signature schemes, such as Cramer-Shoup,
those based on Fiat-Shamir heuristic and probabilistic full-domain hash,
the signature already includes some randomly generated data, which is
independent of the message. We demonstrate that this data can double as
the key of the TCR hash, thus eliminating the need for extra key material.
The resulting schemes retain the signature length of the originals and are
at least as secure.
Some schemes and results of this paper were independently discovered
and presented by Halevi and Krawczyk [HK05a,HK05b].

2 Definitions

Our definitions of signature schemes and TCRs follow [GMR88] and
[NY89] except that we recast the definitions in the language of exact
security.
Signature scheme. A signature scheme S consists of a triple of algo-
rithms:

– Key generation algorithm KeyGen(1k) = (PK, SK), a randomized
algorithm producing a public-private key pair for a given security
parameter.

– Verification algorithm VerifyPK(M, σ) ∈ {accept, reject}. We say
that σ is a valid signature on M if VerifyPK(M, σ) = accept.

– Signing algorithm SignSK(M) = σ ∈ {0, 1}n. The signing algorithm
outputs a valid signature on M with an overwhelming probability
taken over its own coin tosses.

A signature scheme S is (t, ε, qS)-secure against existential forgery under
adaptive chosen-message attack if the attacker running in time less than t
and making no more than qS signing queries cannot succeed with proba-
bility more than ε in producing a valid signature on a message M , which
has not been previously signed by the signing oracle. In other words,
the adversary obtains at most qS valid signatures on adaptively chosen
(queries may depend on the answers to the previous queries) messages.
The adversary wins if he can compute a valid signature on a message not
in the list of queries.
TCR. A (t, ε)-target collision-resistant hash function (TCR), also known
as a universal one-way hash function (UWOHF) is a keyed hash function
H : {0, 1}k × {0, 1}∗ 7→ {0, 1}n such that no adversary running in time
less than t can win the following game with probability more than ε:

Step 1. Output X ∈ {0, 1}∗.
Step 2. Receive K randomly chosen from {0, 1}k.

Step 3. Produce Y so that HK(X) = HK(Y).

As a warm-up exercise, we sketch a proof that combining a TCR hash
with a signature scheme secure for signing fixed-length strings results in
a signature scheme secure for messages of unrestricted length.

Proposition 1. Assume a signature scheme S = (KeyGen,Sign,Verify)
is (t, εS , qS)-secure against existential forgery under an adaptive chosen-
message attack where the messages are restricted to length n. Assume
further that H : {0, 1}k × {0, 1}∗ 7→ {0, 1}n−k is a (t, εH)-TCR. Then
there exists a (t, εS + εHqS , qS)-secure signature scheme for arbitrary-
length messages.

Proof. Let the signature scheme S ′ be the following:

Sign ′: Verify ′:

Step 1. Generate K
¢←− {0, 1}k. Step 1. Parse signature as (K, σ).

Step 2. σ ← SignSK(K||HK(M)). Step 2. Run VerifyPK(K||HK(M), σ).
Step 3. Output signature K||σ.

(KeyGen is the same as in S).

Assume that there exists an adversary capable of producing a valid signa-
ture (M, (K, σ)) having queried the signing oracle on messages M1,. . . ,MqS ,
such that M 6= Mi for 1 ≤ i ≤ qS . Let the signatures output by
the oracle be (K1, σ1),. . . ,(KqS , σqS). Two cases are possible. Either
K||HK(M) 6= Ki||HKi(Mi) for all i ∈ [1, qS] or there is i such that
K||HK(M) = Ki||HKi(Mi) and M 6= Mi. In the former case the ad-
versary can be trivially used to forge a signature for the scheme S. In
the latter, draw a random index j ∈ [1, qS] and, when the adversary
makes query Mj , send Mj as the first message of the TCR-game. Upon
receiving key K′, set Kj = K′. With probability 1/qS the adversary out-
puts a message-signature pair so that K||HK(M) = K′||HK′(Mj). Since
the keys have fixed size k bits, it follows that K = K′ and we win the
TCR-game by outputting M , which collides with Mj under key K′.

The probability that a t-time adversary forges a signature is less than the
sum of εS—the probability that he succeeds in breaking the signature
scheme S—and εHqS , where εH is the probability that it breaks H. �

Pseudo-random generator. We say that a function F : A 7→ B is
(t, ε, qF)-pseudo-random generator if no adversary running in time less
than t and making less than qF queries of F can distinguish F (x), where

x
¢←− A, from the uniform distribution on B with probability more

than ε. We relax the standard definition [BM82] by dropping the usual
requirement that the function stretches its input (i.e., that |A| < |B|).
Although compressing pseudo-random generators are trivial to construct,
the assumption that a particular function, such as SHA-1, is a pseudo-
random generator, is substantive.

3 DSA Scheme

We present the original DSA scheme together with our variant, which
we call TCR-DSA, see Figure 1. The new signature scheme uses three
hash functions: H : {0, 1}`2×{0, 1}∗ 7→ {0, 1}`1 , which we assume to be a
(tH , εH)-TCR, and two functions F1 : Zp 7→ {0, 1}`2 and F2 : {0, 1}`1+`2 7→
{0, 1}n, which we model as random oracles.

DSA TCR-DSA
Key selection:

p, q—prime, |p| = n, |q| = m, p|q − 1
g ∈ Zq, ord g = p

a
¢←− Zp; h = ga mod q

public key: p, q, g, h
private key: a

Hash functions:

G : {0, 1}∗ 7→ {0, 1}n H : {0, 1}`2 × {0, 1}∗ 7→ {0, 1}`1—TCR

F2 : {0, 1}`1+`2 7→ {0, 1}n

F1 : Zp 7→ {0, 1}`2

)
random oracles

Signature generation:

k
¢←− Zp k

¢←− Zp

r = (gk mod q) mod p r = (gk mod q) mod p

r1 = F1(r)

s = k−1(G(M) + ra) mod p s = k−1(F2(r1, Hr1(M)) + ra) mod p

σ = (r, s) σ = (r, s)

Signature verification:

r1 = F1(r)

u = g
G(M)

hr mod q u = g
F2(r1,Hr1 (M))

hr mod q

w = us−1 mod p mod q w = us−1 mod p mod q
accept if w mod p = r accept if w mod p = r

Fig. 1. DSA and TCR-DSA (differences are enclosed in boxes).

In this section we tie security of TCR-DSA to that of the DSA instantiated
with any concrete function, which is a good {0, 1}2n 7→ {0, 1}n pseudo-
random generator, and under the δ-min-entropy of r assumption (defined
below) in the random oracle model.
First, we formulate an assumption on uniformity of r (in both schemes),
also discussed in [Bro05].
Assumption of “δ-min-entropy of r”. Define the min-entropy of
distribution D as

H∞(D) = − log max Pr[x ∈ D].

Let R be the distribution of r = (gk mod q) mod p, where k is uniform
in Zp. We assume that H∞(R) > δ.

[NS02, Lemma 10] proves that r has min-entropy O(δ log p) for some δ
that depends on log q/ log p. In practice, we expect r to be distributed
much smoother, having min-entropy of the order of log p− c log log p for
some small c (consider the occupancy problem applied to p balls and 2n

bins).

Theorem 1. Under the assumptions that

– DSA is (t, εDSA, qS)-secure for some G : {0, 1}∗ 7→ {0, 1}n;

– G restricted to inputs of length 2n is (t, εG)-pseudo-random genera-
tor;

– H is (t, εH)-TCR;

– r has (log p− δ)-min-entropy;

– F1, F2 are modeled as random oracles, which together are queried no
more than qF times;

then TCR-DSA is (t, 2εDSA+εG+εHqS +(2−δqSp+qF)2−δqS , qS)-secure.

Proof. We demonstrate how to transform any forgery of TCR-DSA into
either an attack on H as a TCR or a forgery of DSA instantiated with G.
We do so by defining Game 0 that consists of the challenger interacting
with the TCR-DSA adversary A and the DSA signing oracle. A queries F1

and F2, requests signatures, and attempts to forge a TCR-DSA signature.
In the spirit of [Sho04] we describe a sequence of games that transforms
the initial game to one whose success probability we can easily analyze.

Game 0. Obtain the public key for the DSA oracle and pass it on as
the public key of TCR-DSA. We keep two lists L1, L2, initially empty, of
inputs on which F1 and F2 are defined. Queries to F1 are answered ran-
domly; queries to F2 are answered by randomly choosing M ′ ¢←− {0, 1}2n

and returning G(M ′) (M ′ is stored; if M ′ appeared previously, the pro-
cess is repeated). Notice that under the assumption of computational
indistinguishability of G’s output, F2 cannot be distinguished from a
true random oracle with probability more than εG. Upon receiving a
new signing query M do the following:

Step 1. Generate M ′ ¢←− {0, 1}2n. Repeat if M ′ appeared previously.

Step 2. Obtain (r, s) by querying the DSA signing oracle on M ′.

Step 3. Fail if r ∈ L1. Define r1 = F1(r) randomly, appending the result
to L1.

Step 4. Fail if (r1, Hr1(M)) ∈ L2. Otherwise let F2(r1, Hr1(M)) =
G(M ′), add (r1, Hr1(M)) to L2 and store M ′ together with r1, Hr1(M).

Step 5. Output (r, s) as a TCR-DSA signature on M .

Finally, if A outputs M∗, (r∗, s∗) as a forgery of TCR-DSA, do the fol-
lowing:

Step 6. Compute r∗1 = F1(r
∗).

Step 7. Fail if F2 has not been queried on (r∗1 , Hr∗1
(M∗)).

Step 8. Fetch M∗
0 such that F2(r

∗
1 , Hr∗1

(M∗)) = G(M∗
0).

Step 9. Fail if the DSA oracle has been queried on M∗
0 .

Step 10. Output M∗
0 , (r∗, s∗) as a DSA forgery.

Observe that if Game 0 succeeds, the challenger aided by A queried
the DSA oracle no more than qS times and successfully forged a DSA
signature. The probability of this event is no more than εDSA. In order
to complete the proof we shall bound the probability that Game 0 fails
(Steps 3, 4, 7, 9).

To bound the failure probability of Step 3 of Game 0 we need the fol-
lowing lemma.

Lemma 1. Let D be a distribution on set X. Let τ = 2−H∞(D)|X|. We

claim that for any set A ⊂ X and any x1, . . . , xn
¢←−D X (n elements

chosen from X independently at random according to D) the following
holds:

Pr[∃i, j(i 6= j, xi = xj)
_
∃i(xi ∈ A)] < (τ2n2)/|X|+ τ |A|n/|X|.

Proof. Observe that

Pr[∃i, j : i 6= j, xi = xj] ≤ E[#{i < j : xi = xj}] =X
i<j

E[xi = xj] < n2τ2/|X|. (1)

To analyze the probability that xi ∈ A for some i, consider p = Pr[x
¢←−D

X : x ∈ A]. Then, Pr[∃i : xi ∈ A] = 1 − (1 − p)n < pn. Further,

p =
P

a∈A Pr[x
¢←−D X : x = a] < τ |A|/|X|, which, together with (1),

completes the proof. �(Lemma 1)

By applying Lemma 1 to the distribution of r and A defined as the set
of inputs on which F1 is queried directly, we obtain that Step 3 fails with
probability at most 2−2δq2

Sp + 2−δqF qS = (2−δqSp + qF)2−δqS .

Since r1 never repeats, the probability that Step 4 fails is at most q2
F 2−`2/2.

If Step 7 fails, it means that the forger produced a valid signature (r∗, s∗)
without knowing the value of (r∗1 , Hr∗1

(M∗)). Since the value is dis-
tributed randomly, same forger can be used against DSA. The probability
of the failure is thus at most εDSA.

Now we rewrite Step 3 of Game 0, replacing it with the following:

Step 3a′. Submit M as the first move of the TCR game.

Step 3b′. Obtain κ ∈ {0, 1}`2 as the key. Set r1 = F1(r) = κ.

Step 9 fails if the DSA oracle has been previously called on M∗
0 , which

can only happen if (r∗1 , Hr∗1
(M∗)) = (r′1, Hr′1

(M ′)) for some other M ′. It

implies that r∗1 = r′1 and the result is obviously a collision under Hr1(·),
which we output by rewriting Step 9:

Step 9′. If DSA oracle has been queried on M∗
0 , fetch (r′1, Hr′1

(M ′)) =

(r∗1 , Hr∗1
(M∗)). Find the game (started in Step 3a′), where the M ′

was the first move and r′1 was the key. Complete the game by out-
putting M∗. Fail.

The new game fails with exactly the same probability as Game 0. To
complete the proof we notice that Step 9′ fails with probability at most
qSεH . �[Theorem 1]

We proved that TCR-DSA signature scheme is as secure as DSA for arbi-
trary G, which can, in particular, be modeled as a random oracle, or be
extremely slow and provably (under, say, the discrete-logarithm assump-
tion) collision-resistant. Although a direct proof of security of TCR-DSA
under some standard assumptions would be tempting, we are concerned
with the tightness of the reduction. Best known reductions, even in the
random oracle model, tie the forgery probability of DSA variants to the
hardness of discrete logarithm with qF (number of random oracle queries)
factor [BPVY00]. In order to shave off the factor, we may either assume
additionally that the underlying group can be accurately modeled in
the generic group model [Bro05], or make some non-standard assump-
tions [PV05]. Our reduction is tight in respect to the forgery probability
of DSA and loose with respect to the security of H. The latter is hardly
a bottleneck, since neither the key nor the output length of H affects the
length of the signature and therefore boosting security of H should only
be constrained by efficiency considerations.
Our proof does rely on one non-standard assumption, that of δ-min en-
tropy of r. For our result to be meaningful, δ should be sufficiently high
(of the order of log p), which ensures that all values of r are unique
with high probability. Two points are in order. First, for δ ≈ − log ε the
assumption can be derived from (t, ε, 0)-security of DSA, where t is the
time required to do 2δ DSA verifications. Second, the proof of Theorem 1
can be restructured to accommodate δ ≈ − log ε. The proof will appear
in the full version of the paper.

4 RSA-PSS Signature Scheme

RSA-based probabilistic signature scheme (PSS-RSA) was proposed by
Bellare and Rogaway [BR96] as a strengthening of the full domain hash
scheme [BR93]. PSS-RSA enjoys tight security reduction to the underly-
ing hard problem—the RSA assumption—in the random oracle model. In
other words, assuming that certain hash functions are ideal, forging PSS-
RSA is computationally equivalent to inverting the RSA function. Later,
Coron proved an even tighter reduction to the RSA assumption [Cor02],
which we use as a basis for our security claim.
Strictly speaking, PSS-RSA does not follow the hash-and-sign paradigm,
since the message is concatenated with some random salt and only then
is hashed using a hash function, modeled as a random oracle. We propose
to hash the message, whose length is unrestricted, using a conventional
TCR function keyed with the salt, and hash the short TCR function’s
output with a conservatively designed “oracle” (see Section 6).
Security of TCR-PSS-RSA (see Figure 2) relies on the following:
(t, ε)-RSA assumption. No algorithm running in time less than t can
solve xr = y mod N for x with probability more than ε, where N is a
random RSA modulus, y

¢←− Z∗N , and r is fixed.

Theorem 2. If all of the following hold:

– (t, εRSA)-RSA assumption;
– H is (t, εH)-TCR;

RSA-PSS TCR-RSA-PSS
Key selection:

p, q—prime, |p| = |q| = n/2, N = pq
e, d ∈ ZN , ed = 1 (mod N)
public key: N, d
private key: e

Hash functions:

H : {0, 1}k0 × {0, 1}∗ 7→ {0, 1}k1—TCR

h : {0, 1}∗ 7→ {0, 1}k1 h : {0, 1}k0+k2 7→ {0, 1}k1

g1 : {0, 1}k1 7→ {0, 1}k0 g1 : {0, 1}k1 7→ {0, 1}k0

g2 : {0, 1}k1 7→ {0, 1}n−k0−k1−1 g2 : {0, 1}k1 7→ {0, 1}n−k0−k1−1

h, g1, g2—random oracles

Signature generation:

r
¢←− {0, 1}k0 r

¢←− {0, 1}k0

w = h(M ||r) w = h(r||Hr(M))

r∗ = g1(w)⊕ r r∗ = g1(w)⊕ r
y = 0||w||r∗||g2(w) y = 0||w||r∗||g2(w)

σ = yd mod N σ = yd mod N

Signature verification:
y = σe mod N y = σe mod N
check y = b||w||r∗||γ check y = b||w||r∗||γ
r = r∗ ⊕ g1(w) r = r∗ ⊕ g1(w)

accept if

8>><>>:
h(M ||r) = w

g2(w) = γ

b = 0

accept if

8>><>>:
h(r||Hr(M)) = w

g2(w) = γ

b = 0

Fig. 2. PSS-RSA and TCR-PSS-RSA (differences are enclosed in boxes).

– h, g1, g2 are modeled as random oracles and queried no more than qF

times;

then TCR-PSS-RSA is (t, εRSA(1+6qS2−k0 +2(qS +qF)22−k1 +εHqS , qS)-
secure.

Proof.[sketch] Let M1, . . . , MqS be the signing queries made by the ad-
versary, r1, . . . , rqS be the r values from the corresponding signatures
output by the signer, M ′ 6= Mi for 1 ≤ i ≤ qS be the message with
forged signature, and r′ be its r-value. The proof from [Cor02] of PSS-
RSA applies virtually without any changes, where Hr(M) replaces M .
We have to make sure that Coron’s proof also rules out “weak” forgeries
(which corresponds to Hr′(M

′) = Hri(Mi), and r′ 6= ri for some i),
which it does, and bound the probability that Hri(Mi) = Hr′(M

′) and
ri = r′.
To bound the probability of the latter event, consider a simulator that
knows the private key of the signature scheme. Upon receiving a signing

query for Mi, it starts a TCR game, submitting Mi as the first message.
It receives a random key ri, which it uses in computing a signature on
Mi. If the adversary succeeds in creating a collision, the simulator is able
to complete one of the TCR games. �.

5 Cramer-Shoup Signature Scheme

Historically, the Cramer-Shoup signature scheme [CS00] was the first
efficient signature scheme provably secure in the standard model (i.e.,
without random oracles). The scheme relies on the strong RSA assump-
tion, introduced in [BP97].

CS TCR-CS
Key selection:

p, q—strong primes, |p| = |q| = `1, n = pq

h, x
¢←− QRn; e′

¢←− P`+1

k′
¢←− {0, 1}`2

public key: n, h, x, e′, k′

private key: p, q

Hash function

H : {0, 1}`2 × {0, 1}∗ 7→ {0, 1}`—TCR

µ : {0, 1}`+1 7→ {0, 1}`2—projection

Signature generation:
generate e ∈ P`+1, e 6= e′ generate e ∈ P`+1, e 6= e′

y′
¢←− QRn y′

¢←− QRn

k
¢←− {0, 1}`2

x′ = (y′)e′h
− Hk(M)

x′ = (y′)e′h
− Hµ(e)(M)

y =

xh

− Hk′ (k,x′)

!1/e

y =

xh

Hk′ (x
′)

!1/e

σ = (e, y, y′, k) σ = (e, y, y′)

Signature verification:
check e is odd, |e| = ` + 1, e 6= e′ check e is odd, |e| = ` + 1, e 6= e′

check x′ = (y′)e′h
− Hk(M)

check x′ = (y′)e′h
− Hµ(e)(M)

check x = yeh
− Hk′ (k,x′)

check x = yeh
− Hk′ (x

′)

Fig. 3. CS and TCR-CS (differences are enclosed in boxes). P` is the set of prime
numbers of length `; QRn is the set of quadratic residues modulo n. Function µ(·)
returns most significant `2 bits of the input.

The basic Cramer-Shoup signature scheme, which uses a collision-resistant
hash function, was presented in [CS00] together with a variant, where the

hash function is presumed to be a TCR. Our scheme combines the short
signature length of the former and security of the latter. The TCR-based
variant (CS) and our scheme (TCR-CS) are compared in Figure 3.
CS scheme makes use of a TCR by applying the generic transformation,
outlined in the introduction,—the TCR’s key is generated by the signer
and transmitted as part of the signature. We propose to derive the hash
function’s key from the randomly chosen prime number e, which is al-
ready included in the signature.
Our proof follows closely Cramer-Shoup’s original proof [CS00]. The
main technical difficulty in constructing the reduction, which is not
present in the original proof, consists in incorporating the hash func-
tion’s key into a prime with a special structure. We expand on it below.
In addition to standard modular arithmetic, in the CS scheme the signer
generates a fresh (l+1)-bit prime e with each signature (following [CS00]
we assume ` = 160). The prime numbers need not be uniformly dis-
tributed; the only requirement is that the probability that the same
prime number is generated twice be negligible. Efficiency of the scheme
(especially relative to [GHR99], which is otherwise comparable in terms
of security and signature length) critically depends on the signer’s ability
to generate primes quickly. To this end, [CS00] proposes to use primes of
special structure, namely e = 2PR+1, where P is a 53-bit prime, which
can be tested for primality much faster than the average (` + 1)-bit in-
teger. For TCR-CS to be as efficient, we would prefer to use the same
procedure. On the other hand, our reduction technique prescribes taking
a random key obtained as part of the TCR game and using it in the sig-
nature. If e were a random 161-bit prime, doing so would be trivial—a
random 161-bit number is prime with probability approximately 1/112,
hence the reduction would only suffer a factor of 112. Primes of the
special structure 2PR + 1, where |P | = 53, are more rare (a random
161-bit number has this structure with probability no more than 2−13),
and testing for it is prohibitively expensive.
Instead of using e as a key, we solve the problem by taking µ(e), where
µ : {0, 1}161 7→ {0, 1}106 is a projection function, which simply drops 55
least significant bytes of its input. To reverse the procedure, which is
what the reduction is to do, we adapt the prime generation algorithm
from [CS00]. For a given key k ∈ {0, 1}106, generate a random prime P
in the range (252, 253), take a random number R in the range ((k255 −
1)/2P, (k + 1)255 − 2)/2P), and accept e = 2PR + 1 if e is prime. If
the procedure completes, µ(e) = k trivially holds. [CS00] shows that the
expected number of trials until P is prime is 64 (for the purpose of the
reduction, a pool of 53-bit long primes can be precomputed), and for any
fixed P the expected probability that e is prime is at least 1/128.
Before can sketch the proof of the following theorem, whose exact security
claim is based on [SS00], we introduce the strong RSA assumption.
(t, ε)-strong RSA assumption. No algorithm running in time less than
t can solve xr = y mod N for x and r > 1 with probability more than ε
given random RSA modulus N , and random y ∈ Z∗N .

Theorem 3. Fix ` = 160. Let Te is the time required to do 161-bit
exponentiation. If the following holds:

– (t + TeqS log qS , εRSA)-RSA assumption;
– (t + TeqS log qS , εSRSA)-strong RSA assumption;
– A concrete pseudo-random number generator used for generating e

and y′ is (t, εG)-secure;
– H is (t, εH)-TCR;

then TCR-CS is (t, qS , εRSA(qS + 1) + εSRSA · 1.01 + εHqS128 + εG +
q2

S2−145 + 2−80)-secure.

Proof.[sketch] For a detailed proof we refer the reader to [CS00,SS00].
Consider an adversary that makes qS signing queries Mi, obtains signa-
tures σi = (ei, yi, y

′
i), and then forges a signature σ = (e, y, y′) on M 6=

Mi for 1 ≤ i ≤ qS . Let x′i = (y′i)
e′h−Hµ(ei)

(Mi) and x′ = (y′)e′h−Hµ(e)(M
′).

We distinguish between three kinds of forgeries:
Type I. There is 1 ≤ i ≤ qS , such that e = ei and x′ = x′i.
Type II. There is 1 ≤ i ≤ qS , such that e = ei and x′ 6= x′i.
Type III. For all 1 ≤ i ≤ qS , e 6= ei.
Proof from [CS00,SS00] applies without change for Type II and III forg-
eries (it suffices to check that nowhere in the proof does the choice of e
depend on the hash of the message). To invoke the original proof for Type
I forgery we have to bound the probability that Hµ(e)(M) = Hµ(e)(M

′).
We argue that such a forgery cannot happen with probability more than
εHqS128, where εH is the security parameter of H. The proof is analo-
gous to Theorem 2, with the only difference being the embedding process,
described earlier in the section, that is used to map a random TCR key
to a prime of 2PR + 1 form. �

Finally, we observe that our modification applies to Fischlin’s variant of
the Cramer-Shoup scheme [Fis03], which is optimized for the size of the
signature.

6 Discussion

In this section we address two points often raised in discussions of using
TCR hashes as a building block of signature schemes: the problem of hash
function’s keylength, which is message size-dependent, and the random
oracle assumption, which directly implies existence of collision-resistant
functions.
Keylength of TCR hash. Bellare and Rogaway observed in [BR97]
that adapting the iterative Merkle-Damg̊ard [Mer90,Dam90] paradigm
for TCR construction is not straightforward. Namely, even the second
iteration of a TCR hash may be insecure (in contrast with a composition
of collision-resistant hash functions, which is provably collision-resistant).
They proposed interleaving applications of the compression function with
XORing the chaining variable with independent masking keys, which
increases the key length logarithmically with the size of the message.
Their method was improved by Shoup [Sho00a], whose scheme was shown
to be optimal among a concrete class of algorithms in [Mir01,Sar03]. For
example, the key length required to hash a 1Gb message by going through
the Shoup method applied to a keyed variant of the SHA-1 compression

function is more than 4.8Kb. The proofs of optimality are exact and
hence leave no hope of reducing the keylength if we are to stay within
the existing paradigm.

We emphasize that the proofs of optimality only apply to a specific class
of “masking-based” domain extenders. There are two potential ways to
beat the lower bounds: design a dedicated TCR function, whose security
is not degraded by chaining, or demonstrate a provably secure generic
way of composing TCR hashes without key expansion. Both approaches
are reasonable (see, for instance, [HPL04] which strengthens the defini-
tion of TCR to allow application of the Merkle-Damg̊ard construction),
and we expect that the interest in TCR functions rekindled by recent
attacks on collision-resistant hash functions will spur further research in
this area.

Random oracles and TCR functions. Pondering on the difference
between collision-resistant hash functions and TCRs might appear rather
pointless in the presence of the random oracle paradigm. Indeed, if we
assume that a concrete hash function instantiates a random oracle, it
is implicit that the function is collision-resistant and its domain can be
trivially extended by going through the Merkle-Damg̊ard construction,
hence obliterating the need for TCRs. We claim that although this re-
duction is sound in theory, it may not be practical and may lead to bad
design choices.

Hash functions must work for message lengths ranging from a few bytes
to several hundred megabytes, which forces hash function designers to
make certain trade-offs and defend against new classes of attacks. Design-
ing an “oracle-like” hash function that accepts long inputs is inherently
more challenging than designing a short-input function (for theoretical
analysis of some of the difficulties see [KS05,CDMP05], for practical at-
tacks that span several blocks see [WY05,BCJ+05,WYY05b]). It suffices
to point out that the latest generation of hash functions, such as SHA-
256,512 or Whirlpool, works at a fraction of the speed of MD5 and is
much slower than AES [NES03,NM02].

Constructing an “oracle”—a function that thoroughly but slowly hashes
one block (0.5–1Kb long) is conceivable, but it would be inadequate as
a general-purpose hash function. It is plausible that the trend towards
slower hash functions can be reversed if, instead of designing one-size-
fits-all collision-resistant hash functions, we settle for fast TCR functions
able to handle long messages and relatively slow “oracles” for fixed-length
inputs.

In support of our view we cite the performance characteristics of sig-
nature schemes and hash functions from the NESSIE report [NES03,
Table 50]. For three signature schemes (Cramer-Shoup, ECDSA, and
RSA-PSS) the speed of the sign and verify operations ranged from 1.6M
(RSA-PSS verify) to 62M (RSA-PSS sign) CPU cycles on Pentium IV.
For comparison, one-block SHA-256 evaluation, which takes about 1.5K
CPU cycles [NM02], is faster by approximately three orders of magni-
tude. It means that the hash function (applied to one block!) can be
slowed down by two orders of magnitude without the schemes’ overall
performance taking notice.

Finally, we note that the “oracle” functions may find applications in
practical solutions to the problem raised in the beginning of this section,
namely the keylength of TCR functions. Shoup’s masking-based solution
to domain expansion requires a long key, which can be derived from a
shorter key using an “oracle.” The resulting scheme would be provably
secure in the random oracle world and enjoy efficiency of a cheap TCR
construction.

7 Conclusions

For any hash-and-sign signature scheme a collision-finding attack on
the underlying hash function is devastating. Recent attacks on MD5
and SHA-1 [WY05,WYY05a] suggest that designing efficient collision-
resistant hash functions is harder than it has been commonly thought.
TCR hashes provide a good alternative to collision-resistant hash func-
tions in the context of digital signatures. Traditionally, replacing collision-
resistant hashes with TCRs, which are by definition keyed hash functions,
resulted in an increase in the signature size, which has to additionally
accommodate the hash function’s key. We argue that for specific signa-
ture schemes the key can be derived from the already present part of the
signature. For the Cramer-Shoup signature scheme we prove in the stan-
dard model our variant of the scheme, which provides a shorter signature
while offering the same security.
Security of signature schemes provable in the random oracle model re-
lies on the assumption that some concrete hash functions are real-world
implementations of a certain ideal functionality. We revisit two popular
signature schemes, DSA and PSS-RSA, and propose their TCR-based
variants, whose proofs of security, while still dependent on random or-
acles, only require short-input ones. We argue that a short-input oracle
might be easier to construct, since it can afford to be much slower than
a conventional hash function.

References

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault,
Christophe Lemuet, and William Jalby. Collisions of SHA-0
and reduced SHA-1. In Cramer [Cra05], pages 36–57.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying
hash functions for message authentication. In Neal Koblitz,
editor, Advances in Cryptology—CRYPTO ’96, volume 1109
of Lecture Notes in Computer Science, pages 1–15. Springer,
1996.

[BM82] Manuel Blum and Silvio Micali. How to generate crypto-
graphically strong sequences of pseudo random bits. In 23rd
Annual Symposium on Foundations of Computer Science,
pages 112–117, Chicago, Illinois, 3–5 November 1982. IEEE.

[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumula-
tors and fail-stop signature schemes without trees. In Walter

Fumy, editor, Advances in Cryptology—EUROCRYPT ’97,
volume 1233 of Lecture Notes in Computer Science, pages
480–494. Springer, 1997.

[BPVY00] Ernest F. Brickell, David Pointcheval, Serge Vaudenay, and
Moti Yung. Design validations for discrete logarithm based
signature schemes. In Hideki Imai and Yuliang Zheng, editors,
Public Key Cryptography—PKC 2000, volume 1751 of Lecture
Notes in Computer Science, pages 276–292. Springer, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols. In
ACM Conference on Computer and Communications Secu-
rity, pages 62–73, 1993.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of dig-
ital signatures—how to sign with RSA and Rabin. In Ueli M.
Maurer, editor, Advances in Cryptology—EUROCRYPT ’96,
volume 1070 of Lecture Notes in Computer Science, pages
399–416. Springer, 1996.

[BR97] Mihir Bellare and Phillip Rogaway. Collision-resistant
hashing: Towards making UOWHFs practical. In Burton
S. Kaliski Jr., editor, Advances in Cryptology—CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages
470–484. Springer, 1997.

[Bra90] Gilles Brassard, editor. Advances in Cryptology—CRYPTO
’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20–24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science. Springer,
1990.

[Bro05] Daniel R. L. Brown. Generic groups, collision resistance, and
ECDSA. Designs, Codes and Cryptography, 35(1):119–152,
2005.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and
Prashant Puniya. Merkle-Damg̊ard revisited: How to con-
struct a hash function. In Shoup [Sho05], pages 430–448.

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and
other signature schemes. In Knudsen [Knu02], pages 272–287.

[Cra05] Ronald Cramer, editor. Advances in Cryptology—
EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22–26, 2005, Proceedings, volume
3494 of Lecture Notes in Computer Science. Springer, 2005.

[CS00] Ronald Cramer and Victor Shoup. Signature schemes based
on the strong RSA assumption. ACM Trans. on Information
and System Security (TISSEC), 3(3):161–185, 2000.

[Dam90] Ivan Damg̊ard. A design principle for hash functions. In
Brassard [Bra90], pages 416–427.

[DOP05] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak.
On the generic insecurity of the full domain hash. In Shoup
[Sho05], pages 449–466.

[Fis03] Marc Fischlin. The Cramer-Shoup Strong-RSA signature
scheme revisited. In Yvo Desmedt, editor, Public Key Cryp-

tography, volume 2567 of Lecture Notes in Computer Science,
pages 116–129. Springer, 2003.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practi-
cal solutions to identification and signature problems. In An-
drew M. Odlyzko, editor, Advances in Cryptology—CRYPTO
’86, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer, 1987.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-
and-sign signatures without the random oracle. In Jacques
Stern, editor, Advances in Cryptology—EUROCRYPT ’99,
volume 1592 of Lecture Notes in Computer Science, pages
123–139. Springer, 1999.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A dig-
ital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17:281–308, 1988.

[HK05a] Shai Halevi and Hugo Krawczyk. Strengthening digital signa-
tures via randomized hashing. Internet-Draft, Crypto Forum
Research Group, May 2005.

[HK05b] Shai Halevi and Hugo Krawczyk. Strengthening digital sig-
natures via randomized hashing. Talk at Cryptographic Hash
Workshop (NIST), Oct 31–Nov 1. 2005.

[HPL04] Deukjo Hong, Bart Preneel, and Sangjin Lee. Higher order
universal one-way hash functions. In Pil Joong Lee, editor,
Advances in Cryptology—ASIACRYPT 2004, volume 3329 of
Lecture Notes in Computer Science, pages 201–213. Springer,
2004.

[Knu02] Lars R. Knudsen, editor. Advances in Cryptology—
EUROCRYPT 2002, International Conference on the Theory
and Applications of Cryptographic Techniques, Amsterdam,
The Netherlands, April 28–May 2, 2002, Proceedings, volume
2332 of Lecture Notes in Computer Science. Springer, 2002.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-
bit hash functions for much less than 2n work. In Cramer
[Cra05], pages 474–490.

[Mer90] Ralph C. Merkle. One way hash functions and DES. In
Brassard [Bra90], pages 428–446.

[Mir01] Ilya Mironov. Hash functions: From Merkle-Damg̊ard to
Shoup. In Birgit Pfitzmann, editor, Advances in Cryptology—
EUROCRYPT 2001, volume 2045 of Lecture Notes in Com-
puter Science, pages 166–181. Springer, 2001.

[NES03] NESSIE Consortium. Performance of optimized implemen-
tations of the NESSIE primitives, version 2.0. Deliverable
report D21, February 2003. NES/DOC/TEC/WP6/D21/2.

[NIS95] NIST. Secure hash standard. FIPS PUB 180-1, National
Institute of Standards and Technology, April 1995.

[NM02] Junko Nakajima and Mitsuru Matsui. Performance analysis
and parallel implementation of dedicated hash functions. In
Knudsen [Knu02], pages 165–180.

[NS02] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of
the digital signature algorithm with partially known nonces.
J. Cryptology, 15(3):151–176, 2002.

[NY89] Moni Naor and Moti Yung. Universal one-way hash func-
tions and their cryptographic applications. In Proceedings
of the Twenty First Annual ACM Symposium on Theory of
Computing, pages 33–43, 15–17 May 1989.

[Pre00] Bart Preneel, editor. Advances in Cryptology—
EUROCRYPT 2000, International Conference on the
Theory and Application of Cryptographic Techniques,
Bruges, Belgium, May 14–18, 2000, Proceeding, volume 1807
of Lecture Notes in Computer Science. Springer, 2000.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based sig-
natures may not be equivalent to discrete log. In Bimal Roy,
editor, Advances in Cryptology—ASIACRYPT 2005, Lecture
Notes in Computer Science, pages 1–20. Springer, 2005.

[Riv91] Ronald L. Rivest. The MD4 message digest algorithm. In
Alfred Menezes and Scott A. Vanstone, editors, Advances in
Cryptology—CRYPTO ’90, volume 537 of Lecture Notes in
Computer Science, pages 303–311. Springer, 1991.

[Rom90] John Rompel. One-way functions are necessary and suffi-
cient for secure signatures. In Proceedings of the Twenty Sec-
ond Annual ACM Symposium on Theory of Computing, pages
387–394, 14–16 May 1990.

[Sar03] Palash Sarkar. Masking based domain extenders for
UOWHFs: Bounds and constructions. Cryptology ePrint
Archive, Report 2003/225, 2003. http://eprint.iacr.org/.

[Sho00a] Victor Shoup. A composition theorem for universal one-way
hash functions. In Preneel [Pre00], pages 445–452.

[Sho00b] Victor Shoup. Using hash functions as a hedge against chosen
ciphertext attack. In Preneel [Pre00], pages 275–288.

[Sho04] Victor Shoup. Sequences of games: a tool for taming com-
plexity in security proofs. Cryptology ePrint Archive, Report
2004/332, 2004. http://eprint.iacr.org/.

[Sho05] Victor Shoup, editor. Advances in Cryptology—CRYPTO
2005: 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14–18, 2005, Pro-
ceedings, volume 3621 of Lecture Notes in Computer Science.
Springer, 2005.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street:
Can secure hash functions be based on general assump-
tions? In Kaisa Nyberg, editor, Advances in Cryptology—
EUROCRYPT ’98, volume 1403 of Lecture Notes in Com-
puter Science, pages 334–345. Springer, 1998.

[SS00] Thomas Schweinberger and Victor Shoup. ACE: The
advanced cryptographic engine. Manuscript, 2000.
http://shoup.net/papers/ace.pdf.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other
hash functions. In Cramer [Cra05], pages 19–35.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding
collisions in the full SHA-1. In Shoup [Sho05], pages 17–36.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient
collision search attacks on SHA-0. In Shoup [Sho05], pages
1–16.

