
Security Analysis of KEA Authenticated Key
Exchange Protocol

Kristin Lauter1 and Anton Mityagin2

1 Microsoft Research, One Microsoft Way, Redmond, WA 98052
klauter@microsoft.com

2 Department of Computer Science, University of California San Diego
9500 Gilman Dr., La Jolla, CA 92037

amityagin@cs.ucsd.edu

Abstract. KEA is a Diffie-Hellman based key-exchange protocol devel-
oped by NSA which provides mutual authentication for the parties. It
became publicly available in 1998 and since then it was neither attacked
nor proved to be secure. We analyze the security of KEA and find that
the original protocol is susceptible to a class of attacks. On the positive
side, we present a simple modification of the protocol which makes KEA
secure. We prove that the modified protocol, called KEA+, satisfies the
strongest security requirements for authenticated key-exchange and that
it retains some security even if a secret key of a party is leaked. Our secu-
rity proof is in the random oracle model and uses the Gap Diffie-Hellman
assumption. Finally, we show how to add a key confirmation feature to
KEA+ (we call the version with key confirmation KEA+C) and discuss
the security properties of KEA+C.

1 Introduction

Authenticated Key Exchange. Generally, key exchange protocols al-
low 2 parties who share no secret information to compute a secret key
via public communication. Authenticated key exchange (AKE) not only
allows parties to compute the shared key but also ensures authenticity
of the parties. A party can compute a shared key only if it is the one it
claims to be. AKE protocols operate in a public key infrastructure and
the parties use each other’s public keys to construct a shared secret.

Natural Solution: Signed Diffie-Hellman. One possible solution
for authenticated key exchange is to execute a Diffie-Hellman key ex-
change and to sign all the communication sent between the parties. Such
an AKE protocol is sometimes referred to as Signed Diffie-Hellman. Let
G be a group of prime order and denote by g a generator of G. As-
sume that the parties have secret/public keys for some digital signature
scheme SIG and that parties know each other’s registered public keys.
Denote the signature of a message M under the secret key of a party A
as SIGA(M).
The protocol has 2 passes. First, an initiator A picks an ephemeral secret
key x at random and sends to a responder B a tuple {gx, SIGA(gx, B)}.



The responder B picks an ephemeral secret key y and replies with a
tuple {gy, SIGB(gy, A)}. Parties then verify each other’s signatures and
if accepted, compute a shared session key K = gxy. The protocol is
depicted in Figure 1. This protocol was formally analyzed by Shoup [17]

A B

x gx, SIGA(gx, B) !

gy, SIGB(gy, A)" y

K = gxy K = gxy

Fig. 1. Signed Diffie-Hellman authenticated key-exchange

and it is proven to be secure (we will discuss below in detail what security
means) against an adversary who can reveal session keys of honest key-
exchange sessions but who cannot reveal ephemeral secret keys.
It is worth noting that Signed Diffie-Hellman AKE can be broken if an
adversary can reveal ephemeral secret keys of the parties. Exposure of
ephemeral secret keys can occur in practical implementations of AKE
protocols if ephemeral keys are precomputed or if they are stored in
insecure storage. If an adversary M reveals an ephemeral secret key x
used by A in some session with B, then M can impersonate A to B by
starting a session with B and sending the same tuple {gx, SIGA(gx, B)}.
B will accept this tuple because the signature is valid and then M can
compute a session key using the knowledge of x.

Security of Authenticated Key Exchange. For AKE protocols
there are a surprisingly large number of possible attack scenarios and
there is no single security definition. We sketch 3 security notions which
seem to capture all possible attacks, and give their precise definitions in
Section 2:
1. The main security requirement (we will call it AKE security) as in-
troduced by Bellare and Rogaway [4] and further refined by Bellare,
Pointcheval and Rogaway [3] and by Canetti and Krawczyk [9], considers
a multi-party experiment with unauthenticated communication channels
(called the AKE experiment). The adversary controls all the commu-
nication and can corrupt some of the parties. Moreover, the adversary
selects honest parties to participate in key-exchange sessions. The adver-
sary must select an uncorrupted session called a test session and then
he is given a challenge, which is either the session key of the test session
or a randomly selected key. The goal of the adversary is to distinguish
between these 2 cases.
2. One of the properties not captured by AKE security is Perfect For-
ward Secrecy (PFS). Perfect Forward Secrecy says that an adversary in
the AKE experiment who corrupted one of the parties (that is, revealed



the long-term secret key), should not be able to reveal session keys of
past sessions executed by that party. Krawzcyk [11] shows that no 2-
pass AKE protocol can achieve perfect forward secrecy. Alternatively, he
presents a notion of weak perfect forward secrecy (wPFS). Weak per-
fect forward secrecy guarantees security only for those previous sessions
executed without the adversary’s intrusion.
3. The last security requirement is resistance to key compromise im-
personation (KCI). An adversary who reveals a long-term secret key of
some party A should be unable to impersonate other parties to A (still,
an adversary can impersonate A to anyone else).
All these security notions can involve either a “weak” or a “strong” ad-
versary: a weak adversary can reveal session keys of sessions executed by
honest parties while a strong adversary can reveal both session keys and
ephemeral secret keys. Both adversaries can also do total corruptions,
i.e. take full control over honest parties. We assume that a certificate
authority (CA), upon registering a public key, doesn’t require a party to
prove knowledge of the corresponding secret key. That is, a certificate
authority will register arbitrary public keys presented by parties, even
ones matching existing public keys of other parties. In contrast, proof of
knowledge of the secret key is required by many existing AKE protocols,
but these checks are rarely done in practice.

KEA Protocol. KEA authenticated key exchange [15] was designed by
NSA in 1994 and originally its design was kept secret. It was declassified
and became available to the public in 1998. KEA involves 2 parties,
A and B, with respective secret keys a and b and public keys ga and
gb. We assume that parties know each other’s registered public keys.
The protocol first executes a standard Diffie-Hellman communication:
parties select ephemeral secret keys x and y at random and exchange
ephemeral public keys gx and gy. Then each party computes gay and
gbx and computes a session key K by applying a hash function F to
gay ⊕ gbx. The original description of KEA specifies F to be a certain
function built on the SKIPJACK block cipher [15]. The design of KEA
closely resembles Protocol 4 from Blake-Wilson et al. [5]. They suggest
computing a session key as H(gay, gbx), where H is a cryptographic hash
function. Blake-Wilson et al. conjectured (without proof) the security of
their protocol provided H is modeled by a random oracle.

Attacks on KEA. We observe that AKE security of KEA (even against
a weak adversary) can be violated if an adversary can register arbitrary
public keys. Consider the following adversary M. M registers a public
key ga of some honest party A as M’s own public key. Then M inter-
cepts a key-exchange session between A and some other honest party B
and at the same time starts a session between M and B. Now M for-
wards ephemeral public key gx from A to B and ephemeral public key
gy from B to A. Since M has the same public key as A, both A and
B will compute identical session keys, however they participate in two
different key-exchange sessions. B participates in a session with M while
A participates in a session with B. Finally, M reveals a session key of
one of the sessions and announces the other session as a test session.
Given a challenge key, M compares it to the revealed key. If they are the
same, M decides that the challenge is a correct key for the test session



and if different, M decides that the challenge key was chosen at random.
The demonstrated attack breaks AKE security against a weak adver-
sary (who can only reveal session keys). This attack is often called as
Unknown Key Share (UKS) attack.
One possible counter-measure to the above attack is not to allow 2 parties
to have the same public key, and this check can be done by a certificate
authority. We note that this counter-measure also wouldn’t work. In the
previous attack’s scenario, an adversary can pick any exponent k, register
a public key gak and instead of sending gy as a response to A, send a
value gyk. This way, both A and B will again have the same session key
H(gayk ⊕ gbx).

Security fix: KEA+. We present a modified version of the KEA pro-
tocol, called KEA+, which is resistant to the above attacks. We prove
that no such attacks on KEA+ are possible and that KEA+ satisfies
the strongest known security requirement. The main idea behind KEA+
is to incorporate parties’ identities in the computation of a session key.
Interestingly, this simple feature of the protocol turns out to be crucial
in the security analysis and avoids the proof-of-possession requirement.
The KEA+ protocol proceeds as follows. First, parties A and B randomly
select ephemeral secret keys x and y and exchange ephemeral public keys
gx and gy. Then parties verify that the received ephemeral public keys
are in the group G and compute a session key K as H(gay, gbx, A, B),
where H can be an arbitrary cryptographic hash function. In the secu-
rity analysis we model H by a random oracle. Figure 2 depicts actions
performed by the parties. We note that verifying that the ephemeral
public keys are in the group G is essential for the security of the proto-
col. Otherwise, the protocol is vulnerable to a so-called “small subgroup”
attack.

A : a, ga B : b, gb

x gx
!

ygy
"

K = H(gay, gbx, A, B) K = H(gay, gbx, A, B)

Fig. 2. New KEA+ protocol

We prove that KEA+ protocol satisfies AKE security, weak perfect for-
ward secrecy and security against KCI attacks. All these results involve
a strong adversary who can reveal ephemeral secret keys of the parties
as well as session keys. The results hold under either the standard Gap
Diffie-Hellman (GDH) assumption in a group G, as defined by Okamoto
and Pointcheval [16], or under a stronger Pairing Diffie-Hellman (PDH)
assumption. The latter assumption means hardness of the computational



Diffie-Hellman problem, where a solver is given access to a bilinear pair-
ing oracle. The reason for having two reductions (one to GDH and one
to PDH) lies in the concrete security analysis. The reduction to PDH
achieves better concrete security compared to the reduction to GDH.
We stress that KEA+ does not require parties to prove possession of
secret keys upon key registration. Parties can register arbitrary public
keys, even ones matching somebody else’s keys. Moreover, an adversary
can register keys for corrupted parties at any time in the experiment.
Our security results imply that these powers do not allow the adversary
to break the security of KEA+.

Key Confirmation: KEA+C. The 2-pass KEA+ protocol is optimized
for communication and has exactly the same communication as the orig-
inal Diffie-Hellman protocol. While satisfying the strongest security re-
quirement, it doesn’t provide delivery guarantees which might be de-
sirable for some applications. Namely, KEA+ doesn’t provide assurance
that the other party actually completed the session. To address this issue,
we add one more pass of communication to KEA+ to obtain a protocol
called KEA+C, or KEA+ with key confirmation.
KEA+C involves a message authentication code to construct a confirma-
tion message. KEA+C achieves a key confirmation property [11], namely
it assures that the other party is able to compute the session key. As well,
KEA+C satisfies the full perfect forward secrecy requirement lacking in
KEA+. Finally, results of Canetti and Krawczyk [9] imply that KEA+C
satisfies Universally Composable security defined by [6], which ensures
that KEA+C can be securely executed concurrently with arbitrary other
protocols.

History and Related Work. Defining security of authenticated key
exchange dates back to the work Bellare and Rogaway [4] from 1993.
Following work of Bellare, Pointcheval and Rogaway [3] and Shoup [17],
the current security definition was formulated by Canetti and Krawczyk
[9]. We refer the reader to [7] for a comparison and a discussion of existing
security definitions for authenticated key exchange.
To date, a great number of AKE protocols have been proposed and
many of them were subsequently broken. Currently, there exist a number
of protocols that satisfy AKE security against adversaries who cannot
reveal ephemeral secret keys (weak adversaries), and only a few protocols
which are secure against strong adversaries. AKE protocols proved to be
secure against strong adversaries include SIG-DH from [9], SIGMA [10]
and HMQV [11].
We compare our KEA+ protocol with the recent HMQV protocol [11],
which combines great efficiency with the highest security level. KEA+
and HMQV are both proven to achieve AKE security, security against
KCI and wPFS3. However, the security of HMQV relies on the knowl-
edge of the exponent assumption4 [2] and doesn’t have a concrete security

3 In fact, the wPFS requirement from [11] is stronger than ours. They allow an ad-
versary to reveal long-term keys of both parties, while we only allow revealing the
long-term key of at most one of the parties.

4 We remark that in the analysis of HMQV this assumption is only needed to ensure
security against strong adversaries (who can reveal ephemeral secret keys).



analysis. As noted by Menezes [14], the concrete security reduction of [11]
appears to be inefficient. Our security proof doesn’t employ the knowl-
edge of exponent assumption and provides a tight security reduction
(under the Pairing Diffie-Hellman assumption). Our protocol requires
the same number of exponentiations as HMQV (although one of the
exponentiations in HMQV involves half-size exponents).
After submitting our paper we discovered the parallel independent work
of Kudla and Paterson [13]. They use very similar techniques to prove the
security of a modification of Protocol 4 from Blake-Wilson et al [5], which
can be viewed as the KEA+ protocol where identities of the parties are
excluded from the key computation. We want to highlight some differ-
ences between our work and theirs. First, their protocol is vulnerable to
the UKS attack. This attack is not captured by their security analysis, as
the security model of [13] requires that all parties (even ones controlled
by the adversary) do key-generation properly. Second, they only prove
security against weak adversaries (which cannot reveal ephemeral keys)
and their security proof doesn’t contain a concrete security analysis. Fi-
nally, we discuss a key-confirmation property and analyze the security of
our KEA+C protocol.

2 Definitions

Notation. All protocols in the paper use a mathematical group G of
a known prime order q where the Diffie-Hellman problem is computa-
tionally infeasible. The group G can be implemented either as a multi-
plicative subgroup of a finite field or as a group of points on an elliptic
curve. We denote by g a generator of G and write the group operation
in a multiplicative manner.
Throughout the paper, we will apply hash functions and signature sche-
mes to lists of several arguments. In these cases, we write function ar-
guments separated by commas, for example H(X, Y, Z). Doing that, we
assume that we have a collision-free encoding which maps lists of ar-
guments to binary strings. Also, we assume that parties’ identities are
arbitrary binary strings.

Gap Diffie-Hellman (GDH). A computational Diffie-Hellman (CDH)
problem is, given gx and gy (for randomly chosen x and y) to com-
pute gxy. A Decisional Diffie-Hellman (DDH) Oracle DDH takes input
a triple (gx, gy, Z) ∈ G3 and outputs 1 if Z = gxy and 0 otherwise. The
Gap-Diffie-Hellman [16] problem is the CDH problem, where the solver
algorithm is additionally given access to a DDH oracle. The advantage
of such a solver M, denoted as AdvGDH(M), is M’s winning probabil-
ity in the CDH problem. We say that G satisfies the Gap-Diffie-Hellman
(GDH) assumption if no feasible adversary exists to solve the CDH prob-
lem, even provided with a DDH-oracle. Gap Diffie-Hellman is a standard
cryptographic assumption which was used to establish the security of
several key agreement protocols [1, 18, 12].

Pairing Diffie-Hellman (PDH). Let G′ be another mathematical
group of the same order as G with efficiently computable group opera-
tion. A function e : G×G → G′ is a bilinear pairing if it is non-degenerate



and if for any pair ga, gb ∈ G, e(ga, gb) = e(g, g)ab. A pairing oracle P as-
sociated with the pairing function e and the group G′ takes two elements
X, Y ∈ G and returns e(X, Y ). The Pairing Diffie-Hellman problem is
the CDH problem, where the solver is additionally given access to the
pairing oracle P. The advantage AdvPDH(M) of a PDH solver M is the
probability of M solving the CDH problem. We say that G satisfies the
PDH assumption if no feasible adversary exists to solve the CDH problem
provided with an arbitrary PDH-oracle.
In the groups which have a bilinear pairing, PDH problem is equivalent
to the original CDH problem. As well, one can consider PDH problem
in the groups where no efficient pairing operation is known. We find the
Pairing Diffie-Hellman assumption to be as justified as GDH since the
only known way to compute DDH in groups where CDH is hard is via a
pairing function.

AKE Security. The AKE experiment involves multiple honest parties
and an adversary M connected via an unauthenticated network. The
adversary selects parties to execute key-exchange sessions and selects an
order of the sessions. It can also corrupt some of the parties. An adversary
has full control over the communications and he can delay/cancel/modify
any message.
There is a special party, CA, called the certificate authority, who registers
the public keys of the parties. We model a CA as a trusted directory. The
CA registers arbitrary keys (even those matching keys of other parties)
with the only restriction that no party can have more than one registered
public key. In the beginning of the AKE experiment all honest parties
generate their public keys and register them with the CA. The adversary
can register public keys of adversary-controlled parties at any time in
the experiment, even during the execution of an AKE session. That is,
the adversary is allowed to mount the Unknown Key Share attack and
related attacks.
To start an AKE session, the adversary activates an honest party and
specifies that party’s role in the exchange (initiator or responder) and
the identity of the other participant. We identify an AKE session by a
4-tuple (A, B, role, Comm), where A is the executing party, B is the other
party, role ∈ {initiator, responder} is A’s role in the protocol and Comm
consists of all messages sent and received by A. We stress that an AKE
session is executed by a single party: since all communication is controlled
by an adversary, a party executing a session cannot know for sure whom
it is talking to. We call the session which is supposed to be executed
by the other party as the matching AKE session. For example the ses-
sion (A, B, initiator, Comm) matches (B, A, responder,Comm) and vice
versa. A party completes the session when it receives the last message
from the other party and computes the session key.
An adversary can corrupt honest parties as well as reveal session in-
formation. When an adversary corrupts a party (often referred to as a
Corrupt query), he learns the long-term secret key of that party and
gets full control of that party from that moment on. Revealing session
information (often referred to as a Reveal query) only affects a single
AKE session. We distinguish between 2 reveal scenarios. First, an ad-
versary can learn only a session key of a completed session. We call it a



session key reveal and we call an adversary who only makes session key
reveals (in addition to total corruptions) a “weak” adversary. A second
type of adversary, called a “strong” adversary, is also allowed to reveal
an ephemeral secret key of a party executing a session.
We say that a completed session is “clean” if this session as well as its
matching session (if it exists) is not corrupted (neither session key nor
ephemeral secret key were revealed by M) and if none of the participating
parties is corrupted.
Eventually an adversary should select a clean completed session (A, B,
role, Comm), which is called a test session. A challenger tosses a coin
to obtain b ∈ {0, 1}; if b = 0 he sets KC to be the session key of the
test session and otherwise he sets KC to be a random string of the
same length. A challenger gives the challenge KC to the adversary. After
receiving the challenge, the adversary continues the experiment, but is
not allowed to corrupt the test session nor any of the parties involved
in the test session. The experiment ends when the adversary outputs a
guess bit b′.
The advantage of the adversary M participating in the above AKE ex-
periment against AKE protocol Π is defined as

AdvAKE
Π (M) = Pr[b = b′] − 1

2
.

We say that an AKE protocol is secure if no feasible AKE adversary has
more than a negligible advantage in the AKE experiment.

Perfect Forward Secrecy (PFS). The Perfect Forward Secrecy prop-
erty of an AKE protocol guarantees that an adversary who corrupts a
party cannot gain any information about session keys of previous AKE
sessions. We formally define PFS by modifying the AKE experiment as
follows. Now we allow the adversary to corrupt at most one of the two
participants of the test session after the test session is completed. As in
the original AKE experiment, the adversary must distinguish between
the session key of the test session and a random key.
Krawczyk [11] observed that no 2-pass AKE protocol can achieve full PFS
in a presence of strong adversaries. To address forward secrecy of 2-pass
protocols, he suggests a relaxed notion, called weak PFS (wPFS). Weak
PFS only guarantees security of those AKE sessions executed without
active adversarial intrusion. We define weak PFS by limiting the set of
clean sessions to only those executed without active adversarial intrusion.
That is, the adversary is only allowed to forward communications in the
test session and its matching session and is not allowed to cancel or
modify them.
We remark that our definitions of PFS and wPFS are weaker than the
ones by Krawczyk [11]. Krawczyk’s definitions allow an adversary to
corrupt both participants of the test session, while our definition only
allows corruption of at most one of the participants.

Security against Key Compromise Impersonation (KCI). KCI se-
curity considers a scenario when an adversary reveals a long-term secret
key of some party A without corrupting A (that is, without taking full
control over A). Note that in this case an adversary can impersonate



A to anyone else. KCI security guarantees that an adversary should be
unable to impersonate other parties to A.
We define KCI security by the following modification of the AKE experi-
ment. We allow an adversary to make a new type of corruption: to reveal
a long-term secret key of a party without taking control over it. Now, a
test session is allowed to be a clean session, where the party running the
session had its long-term secret key revealed. Still, an adversary is not
allowed to corrupt or reveal the long-term secret key of the other party.

3 Security of KEA+

AKE security of KEA+. We show that the KEA+ protocol with a
hash function modeled as a random oracle satisfies AKE security against
a strong adversary under the GDH or PDH assumptions in a group G.

Reduction to a Forging Attack. Assume by contradiction that there
exists some efficient adversary M against the KEA+ protocol. Let (A, B,
initiator, X, Y ) be a test session in some AKE experiment. Let A be
the public key of A and B be the public key of B. Denote by CDH(·, ·)
the computational Diffie-Hellman function. We observe that since the
session key of a test session is computed as a hash value of a 4-tuple
{CDH(A, Y ), CDH(B, X), A, B}, the adversary M has only 2 ways to
distinguish K from a random string:
1. Forging attack. At some point M queries H on the tuple

σ = (CDH(A, Y ), CDH(B, X), A, B).

2. Key-replication attack. M succeeds in forcing the establishment of
a session that has the same signature (and subsequently, the same
session key) as the test session. In this case M can learn the test-
session key by simply making a reveal query on the session with the
same key, without having to learn the value of the test signature.

We denote a 4-tuple σ = (gay, gbx, A, B) as the “signature” of a key
exchange session. Recall that the key for the test session is the value of
a random oracle H on the test signature σ. Since H is a truly random
function, an adversary has only 2 ways of learning H(σ): M can either
query σ to H himself or σ can be queried to H by some honest party
and M can reveal H(σ) by corrupting that party. Otherwise, M cannot
distinguish information-theoretically between H(σ) and a random string.
Note that these cases correspond to a forging attack and a key-replication
attack respectively. If M doesn’t mount either of these attacks, then it
cannot win the experiment with probability any better than 1/2.
Let’s see that a key-replication attack is impossible. In that case, if an
adversary finds some session with the same signature σ as the test session,
then this session must be executed by the same 2 parties, A and B. Let
the ephemeral public keys of this session be X ′ and Y ′. Since the session
has the same signature as the test session, CDH(A, Y ′) must be equal
to CDH(A, Y ) and CDH(B, X ′) – equal to CDH(B, X). This implies
that X ′ = X and Y ′ = Y , and thus the sessions must be identical.
We’re left to show impossibility of a forging attack. We are going to
show that given an efficient forging adversary against KEA+, we can



construct an adversary which efficiently solves the GDH problem. We
first establish a reduction to GDH and then show how to modify it to
obtain an improved reduction to PDH.

Security against a Simplistic Adversary. First we show how the re-
duction works in the simplistic case of a certain (very limited) adversary
and then proceed to the general case. Assume that the AKE experiment
only involves 2 honest parties A and B and that the adversary M pas-
sively observes a single AKE session executed by these parties and selects
it as a test session. In this case the reduction to the GDH problem is
natural: given a GDH challenge (X0, Y0) the GDH solver S runs the AKE
experiment with parties A and B and the adversary M. S sets the first
challenge value X0 to be the long-term public key of A and selects keys
for B in the usual way. When A and B execute a test session, A picks
a random x and sends gx to B, while B responds with Y0. Note that a
view of M in this simulated AKE experiment is distributed identically to
a view of M in a true AKE experiment and thus M wins with the same
probability. As we justified earlier, if M wins, he should query H a sig-
nature σ = (CDH(X0, Y0), g

bx, A, B). Note that in this case σ contains
CDH(X0, Y0), which is a solution to the original CDH problem.

Idea of the General-Case Reduction. The idea of the reduction
is very similar to the simple case with the difference that S selects at
random a party A (to put a first challenge value in A’s public key) and
a session executed by A and some other party B (to put a second chal-
lenge value in B’s ephemeral public key). The complication that arises
in the general case is how to handle session-corrupt queries involving the
selected party A. Since S doesn’t know a secret key for A’s public key,
it cannot compute a signature (nor a session key) for such a session. We
handle this case by picking a session key at random without computing
a signature. Then S uses the DDH oracle to test if M queries H with a
signature for such a session and if “yes”, returns the previously selected
session key. We proceed with a formal description and analysis of the
reduction.

Construction of a GDH Solver S. Let M be an AKE adversary
against KEA+. Consider the following GDH adversary S:
S takes input a pair (X0, Y0) ∈ G2. S is also given access to a DDH oracle
DDH. S creates an AKE experiment which includes a number of honest
parties and an adversary M. We assume that the experiment involves
at most n parties and that each party participates in at most k AKE
sessions. S randomly selects one of the honest parties (say, this is a party
A) and sets the public key of A to be X0. All the other parties compute
their keys normally. S picks a number ik at random from {1, . . . , k} and
initializes the counter at i = 1 (i counts sessions that A participates in).
S runs an AKE experiment with adversary M and handles queries made
by M as follows:

1. When M queries a hash function H on a string v, return the value
of Hsim(v). The procedure Hsim(·) which simulates a random oracle
H is described later on.

2. When M starts a session (B, C, role) between parties B and C both
different from a selected party A, S follows the protocol for KEA+.



Denote B’s secret key as b, B’s public key as B = gb and C’s public
key as C. If role = initiator, B picks a random exponent x, returns
X = gx, waits for the reply Y and computes a session key K =
Hsim(Y b, Cx, B, C). If role = responder, B waits for C’s initiating
message X, picks a random exponent y, replies with gy and computes
a session key K = Hsim(Cy , Xb, C, B).

3. When M starts a session (A, C, role) (here A is the special party
whose public key is a GDH challenge X0), S cannot follow the pro-
tocol since it doesn’t know a secret for A’s public key. Denote C’s
public key as C. If A is an initiator, it picks a random exponent x,
sends gx to C and waits for the reply Y . Now it sets a session key to
be Hspec(1, Y, Cx, A, C), see the description of the procedure Hspec
below. If A is the responder, it waits for an initiating message X,
picks a random exponent y, replies with gy and computes a session
key K = Hspec(2, X, Cy , C, A).

4. When M starts a session (B,A, role) for some party B, where the
second party is the selected party A, S first checks if i = ik. If “no”,
S increments the counter i and behaves according to the rule for
Query 2. If the check succeeds, S declares (B, A, role) to be a “special
session”. In a special session, B outputs a message Y0 (which is the
second part of the GDH challenge) and doesn’t compute a session
key.

5. When M makes a session key-reveal or ephemeral secret key-reveal
query against some session (different from the special session), S
returns to M a session key or an ephemeral secret key for this session
(which was computed previously in Queries 2, 3 or 4). If M tries to
reveal a session key or an ephemeral secret key of the special session,
S declares failure and stops the experiment.

6. When M makes a corruption on some party C (different from A and
B), S returns the secret key of C as well as ephemeral secret keys of
all current AKE sessions executed by C and gives M full control over
C. If M tries to corrupt A or B (after a special session is selected), S
declares failure.

When M stops, S goes over all random oracle queries made by M and
checks (using a DDH oracle DDH) if any of them includes the value of
CDH(X0, Y0). If “yes”, return CDH(X0, Y0) to the GDH challenger. If
“no”, S declares failure.

Function Hsim(Z1, Z2, B, C). This function implements a random oracle
on valid signatures of the KEA+ protocol. The function proceeds as
follows:
– If the value of the function on that input has been previously defined,

return it.
– If not defined, go over all the previous calls to Hspec(·) and for each

previous call of the form Hspec(i, Y, Z, B′, C′) = v check if

B = B′, C = C′, Z = Z3−i and DDH(X0, Y, Zi) = 1.

If all these conditions hold, return v.
– If not found, pick a random w from {0, 1}l, define Hsim(Z1, Z2, B,

C) = w and return w.



Function Hspec(i, Y, Z, B, C). Informally, Hspec implements a random
oracle on signatures which are not known to S. Specifically, the input
corresponds to a signature (Z1, Z2, B, C), where Zi = CDH(X0, Y ) (here
X0 is a part of the GDH challenge) and Z3−i = Z. This signature is not
known to S since S cannot compute CDH(X0, Y ). The function proceeds
as follows:
– If the value of the function on that input has been previously defined,

return it.
– If not defined, go over all the previous calls to Hsim(·) and for each

previous call of the form Hsim(Z1, Z2, B′, C′) = v check if

B = B′, C = C′, Z = Z3−i and DDH(X0, Y, Zi) = 1.

If all these conditions hold, return v.
– If the check failed for all the calls, pick a random w from {0, 1}l,

define Hspec(i, Y, Z, B,C) to be w and return w.

Analysis of S. The the running time of S is the time needed to run
an AKE experiment and M plus the time needed to handle H-queries.
Each call to Hsim or Hspec requires S to pass over all the previously
made queries. Thus, time needed to handle H-queries is proportional to
a squared number of queries. Since the number of H-queries is upper-
bounded by the running time of M, we can bound the running time of S
by O(t2), where t is the running time of M.
We are now going to show that if M doesn’t corrupt A and doesn’t reveal
a session key or an ephemeral secret key for the special session, then the
simulation of an AKE experiment is perfect. That is, the view of M in
the experiment run by S is identically distributed to the view of M in
an authentic experiment. To be precise, the view of M consists of public
keys of all the parties, secret keys of the corrupted parties, ephemeral
public keys of all the sessions, ephemeral secret keys and session keys of
the corrupted sessions and of the random oracle’s responses.
We start by observing that secret/public key pairs of all honest parties
except A are distributed correctly. A public key of A is also distributed
correctly, however S doesn’t know the secret key for it. By assumption, M
doesn’t corrupt A and thus M wouldn’t notice that. Similarly, ephemeral
secret/public values of all sessions except the test session are distributed
as in the original protocol. The ephemeral public key Y0 in the test
session is also distributed correctly, although S doesn’t know a secret for
it. Again, we assume that M doesn’t corrupt the test session and so S
wouldn’t have to reveal it.
The adversary can obtain the random oracle’s responses either by query-
ing H directly or by revealing session keys from honest parties. Without
loss of generality, we can assume that the adversary queries a random
oracle only on tuples of the form (Z1, Z2, B1, B2), where Z1, Z2 ∈ G and
B1 and B2 are identities of some parties. To ensure that the simulation
is perfect, we need to verify that i) the oracle responses are selected at
random and ii) if the same argument is queried several times, the same
value is returned.
Recall that S handles two types of queries differently. Queries of the first
type are fully specified 4-tuples and such queries are made both by M and



by honest parties. They are handled by the function Hsim. Queries of the
second type are made only by A and such queries have one of the com-
ponents unspecified. That is, a value Zi (for some i = 1, 2) is unknown
and it is specified by Y ∈ G such that Zi = CDH(X0, Y ). These queries
are handled by Hspec. Note that distinct Hspec arguments correspond
to distinct queries to H .
In our construction of Hsim and Hspec, a new random value of H is
chosen every time the argument wasn’t found in the record of previous
queries. Thus, condition i) is satisfied and we only need to show that by
querying the same argument several times, M always receives the same
answers. If the same query is made for the second time either to Hsim
or to Hspec, the same answer is returned. The only conflicts can arise
if a query previously handled by Hsim is queried again to Hspec or vice
versa. That is, Hsim was called on a tuple (Z1, Z2, B,C) and Hspec —
on (i, Y, Z, B, C) where Zi = CDH(X0, Y ) and Z3−i = Z. Note that one
can check whether these queries correspond to identical signatures by
checking that Z3−i = Z and that DDH(X0, Y, Zi) = 1. Whichever of the
functions was called first, on the second call (to the other function) S will
go over all previous calls to the first function and do such a check. If a
match is found, the previously defined value is returned. This guarantees
that condition ii) is also satisfied.
We showed that, provided M doesn’t corrupt A or the special session, the
simulation of the AKE experiment is perfect. Since the party A and the
special session are chosen at random, a test session selected by M matches
the special session with probability 1/nk (recall that n is the number of
parties in the experiment and k is the maximal number of sessions any
party can participate in). In this case, the simulation is perfect since M
doesn’t corrupt the test session. We know that a successful adversary
must reveal the signature of the test session. Whenever M wins in the
AKE experiment and the test session was guessed correctly, S reveals the
signature of the test session which contains CDH(X0, Y0), and therefore
wins in the GDH experiment. To summarize the lengthy proof, for any
AKE adversary M running in time t we constructed a GDH solver S
which runs in time O(t2) such that

AdvGDH(S) ≥ 1
nk

AdvAKE
KEA+(M).

Improving Concrete Security Reduction. The above reduction trans-
forms a time t AKE adversary to a GDH solver which runs in time O(t2)
and makes O(t2) calls to a DDH oracle, which is fairly inefficient. We ob-
serve that given access to a pairing oracle, we can solve the CDH problem
in time O(t log t) by making O(t) calls to a pairing oracle.
The construction of the solver S remains the same except for the Hsim
and Hspec functions. We create an array T and implement Hsim and
Hspec as follows:

Function Hsim(Z1, Z2, B, C):
– Compute δ = (P(g, Z1), P(g,Z2), B, C).
– Look up δ in T .
– If T contains a record (δ, v), return v.



– If not, pick w at random, add a record (δ, w) to T and return w.
Function Hspec(i, Y, Z, B,C).
– Compute Z′

i = P(X0, Y ), Z′
3−i = P(g,Z) and set δ = (Z′

1, Z
′
2, B,C).

– Look up δ in T .
– If T contains a record (δ, v), return v.
– If not, pick w at random, add a record (δ, w) to T and return w.

First, note that the queries to Hsim and Hspec which correspond to the
same arguments to a random oracle will be mapped to the same values
of δ. Thus a random oracle will be perfectly simulated and S will win the
CDH experiment with the same probability as in the original proof.
Second, each call to Hsim or Hspec requires only one oracle call to P.
Moreover, if T is implemented as a balanced search tree indexed by values
of δ, each search and insert operation in T takes logarithmic time in the
size of T . Thus the processing of each call to Hsim or Hspec takes at
most O(log t) time, where t is the maximal running time of M.
For any AKE adversary M running in time t we have a PDH solver S
which runs in time O(t log t) and makes O(t) oracle queries such that

AdvPDH(S) ≥ 1
nk

AdvAKE
KEA+(M).

Weak PFS. We observe that our proof of AKE security can be modified
to establish wPFS security of KEA+. Consider the same party S who
runs an AKE experiment with an adversary M. Consider the test session
selected by M and its matching session. By the definition of wPFS, M did
not cancel or modify communications sent between the parties involved
in these sessions. The test session (as well as its matching session) must
be clean at the time of completion. After the test session and its matching
session are completed, M can corrupt either one of the involved parties
but not both of them. Now consider that session, (out of the test session
and its matching session), where the executing party can be corrupted
and the other party is not corrupted. We observe that with probabil-
ity 1/nk this session matches the special session (B, A, role), which is
randomly selected by S.
Since S knows the long-term secret key of the party B executing the spe-
cial session, S can handle corruptions of B which are made after the test
session is completed. When M launches a corruption of B, S hands to M
the long-term secret key of B and ephemeral secret keys of all current
sessions being executed by B. Since the test session is already completed,
B will know all the ephemeral secret keys for the current session (pro-
vided that the test session matches the special session). Therefore, the
simulation of an AKE experiment remains perfect and the GDH/PDH
solver S has the same advantage.

KCI Security. The same proof of AKE security can be used to show
that KEA+ also satisfies KCI security. The only difference is that now
S has to handle long-term secret key reveals made by M. Since S knows
the long-term secret keys of all the parties other than A, S can answer all
such long-term secret key reveals anytime. We note that in the event that
the special session matches the test session, M is not allowed to reveal the
long-term secret key of A. Therefore, in this case the simulation remains
perfect and the GDH/PDH solver S has the same advantage in a CDH
experiment.



A : a, ga B : b, gb

x
gx

! y

L = H(0, gay, gbx, A, B)

sigB = MACL(0)
gy, sigB"

L = H(0, gay, gbx, A, B)

sigB
?
= MACL(0)

sigA = MACL(1) sigA ! sigA
?
= MACL(1)

K = H(1, gay, gbx, A, B) K = H(1, gay, gbx, A, B)

Fig. 3. KEA+C protocol

4 Key Confirmation: KEA+C

Protocol Description. We assume that both parties know each other’s
registered public keys. Let H be an arbitrary cryptographic hash function
and MAC be an arbitrary message authentication code.
The KEA+C protocol is illustrated in Figure 3. First, A selects a random
ephemeral secret key x and sends an ephemeral public key gx to B. In
turn, B verifies that gx ∈ G, selects a random ephemeral secret key y
and computes a verification key L = H(0, gay, gbx, A, B). B then sends
back to A an ephemeral public key gy together with a key confirmation
value sigB = MACL(0). On receipt of the tuple (gy, sigB), the party A
first verifies that gy ∈ G and if accepted, computes a verification key
L = H(0, gay, gbx, A, B), checks that sigB is valid, sends to B a key con-
firmation value sigA and computes a session key K = H(1, gay, gbx, A, B).
Finally, B verifies the validity of sigA and if accepted, computes a session
key K = H(1, gay, gbx, A, B). The session key K should be used as a
shared key between the parties while the confirmation key L as well as
all the intermediate information (except possibly ephemeral secret keys)
should be erased immediately after completion of a session. We remark
that despite the visible similarity, the keys K and L are computationally
independent. In a practical implementation, one might alternatively de-
rive them from a 4-tuple (gay, gbx, A, B) by applying 2 independent hash
functions. When a hash function is modeled by a random oracle H(0, ·)
and H(1, ·) are independent random oracles.

Security Analysis. We show that KEA+C has key confirmation, AKE
security against a strong adversary, full PFS, KCI security and is also
secure in the Universally Composable model as defined by Canetti and
Krawczyk [9].
First of all, we observe that repeating the proof of security for KEA+
we obtain the same security guarantees for KEA+C, namely AKE secu-
rity against a strong adversary, weak PFS and KCI security. Universally
Composable security [6, 9] ensures that a key-exchange protocol can se-
curely run concurrently with arbitrary other applications. In fact, UC-
security of KEA+C automatically follows from the result of Canetti and



Krawczyk [9]. They establish UC security of authenticated key exchange
provided that the protocol satisfies AKE security and also enjoys the
so-called “ACK property”. The latter requires that at the time when
the initiator party outputs its session key, the other party’s state can
be “simulated” given only the session key and public information in the
protocol. We observe that Claim 15 in [9] implies that KEA+C has this
property, thus establishing UC security of KEA+C. Finally, we observe
that the full Perfect Forward Secrecy property follows from UC security.

Acknowledgements

The work for this paper was done while the second author was visiting
Microsoft Research. The authors thank Josh Benaloh, Brian LaMacchia,
Gideon Yuval and anonymous reviewers for helpful comments and sug-
gestions.

References

1. M. Abdalla, O. Chevassut and D. Pointcheval, One-Time Verifier-
Based Encrypted Key Exchange, Public Key Cryptography —
PKC ’05, pp. 47–64, Springer-Verlag, 2005

2. M. Bellare, A. Palacio, The Knowledge-of-Exponent Assumptions
and 3-Round Zero-Knowledge Protocols, Advances in Cryptology —
CRYPTO ’04, pp. 273–289, Springer-Verlag, 2004

3. M. Bellare, D. Pointcheval, P. Rogaway, Authenticated Key Ex-
change Secure Against Dictionary Attacks, Advances in Cryptol-
ogy — Eurocrypt ’00, pp. 139–155, Springer-Verlag, 2000

4. M. Bellare and P. Rogaway, Entity Authentication and Key Dis-
tribution, Advances in Cryptology — CRYPTO ’93, pp. 110–125,
Springer-Verlag, 1993

5. S. Blake-Wilson, D. Johnson, and A. Menezes, Key Agreement Pro-
tocols and their Security Analysis, 6th IMA International Confer-
ence on Cryptography and Coding, LNCS 1355, pp. 30-45, Springer-
Verlag, 1997

6. R. Canetti, Universally Composable Security: A New Paradigm for
Cryptographic Protocols, FOCS ’01: Proceedings of the 42nd IEEE
symposium on Foundations of Computer Science, IEEE Computer
Society, 2001

7. K.-K. R. Choo, C. Boyd and Y. Hitchcock, Examining
Indistinguishability-Based Proof Models for Key Establishment Pro-
tocols, to appear in Advances in Cryptology — Asiacrypt ’05,
Springer-Verlag, 2005

8. I. R. Jeong, J. Katz, D. H. Lee, One-Round Protocols for Two-Party
Authenticated Key Exchange, ACNS ’04, 2004

9. R. Canetti and H. Krawczyk, Analysis of Key-Exchange Protocols
and Their Use for Building Secure Channels, Advances in Cryptol-
ogy — EUROCRYPT ’01, pp. 453–474, Springer-Verlag, 2001



10. H. Krawczyk, SIGMA: The “SIGn-and-MAc” Approach to Authen-
ticated Diffie-Hellman and Its Use in the IKE Protocols, Advances
in Cryptology — CRYPTO ’03, LNCS 2729, pp. 400–425, Springer-
Verlag, 2003

11. H. Krawczyk, HMQV: A High-Performance Secure Diffie-Hellman
Protocol, Advances in Cryptology — CRYPTO ’05, LNCS 3621,
pp. 546–566, Springer-Verlag, 2005

12. M. Jakobsson and D. Pointcheval, Mutual Authentication for Low-
Power Mobile Devices, Financial Cryptography ’01, pp. 178–195,
Springer-Verlag, 2001

13. C. Kudla and K. G. Paterson, Modular Security Proofs for Key
Agreement Protocols, Advances in Cryptology — ASIACRYPT ’05,
pp. 549–565, Springer-Verlag, 2005

14. A. Menezes, Another look at HMQV, IACR Eprint archive,
http://eprint.iacr.org/2005/205, 2005

15. NIST, SKIPJACK and KEA Algorithm Specification,
http://csrc.nist.gov/encryption/skipjack/skipjack.pdf,
1998

16. T. Okamoto and D. Pointcheval, The Gap Problems: A New Class
of Problems for the Security of Cryptographic Schemes, Public Key
Cryptology — PKC ’01, LNCS 1992, pp. 104–118, Springer-Verlag,
2001

17. V. Shoup, On Formal Models for Secure Key Exchange, Theory of
Cryptography Library, http://www.shoup.net/papers/skey.ps,
1999

18. Y. S. T. Tin, C. Boyd and J. M. González Nieto, Provably Secure
Mobile Key Exchange: Applying the Canetti-Krawczyk Approach,
ACISP ’03, pp. 166–179, Springer-Verlag, 2003


