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Abstract. The ground-breaking results of Wang et al. have attracted
a lot of attention to the collision resistance of hash functions. In their
articles, Wang et al. give input differences, differential paths and the
corresponding conditions that allow to find collisions with a high proba-
bility. However, Wang et al. do not explain how these paths were found.
The common assumption is that they were found by hand with a great
deal of intuition.
In this article, we present an algorithm that allows to find paths in an
automated way. Our algorithm is successful for MD4. We have found
over 1000 differential paths so far. Amongst them, there are paths that
have fewer conditions in the second round than the path of Wang et al.
for MD4. This makes them better suited for the message modification
techniques that were also introduced by Wang et al.
Keywords: collision search, differential path, MD4

1 Introduction

The cryptanalysis of hash functions has become a hot topic within the cryp-
tographic community over the last two years. Especially the ground breaking
results of Wang et al. have drawn significant attention towards the security
claims that were made for commonly used hash functions.

During the last two years, most hash functions have succumbed to the attacks
of Wang et al. At first, the hash functions MD4 (as well as RIPEMD) and MD5
were analyzed by Wang et al. in [WLF+05] and [WY05]. Based on the techniques
that have been introduced in these two papers, more advanced attacks on SHA-0
and SHA-1 have been published some time later in [WYY05b] and [WYY05a].
In all articles published by Wang et al. so far, only little details about the way in
which the differences and the conditions were determined, have been published.
Except for the article of Hawkes et al. [HPR04] that provides some musings on
the techniques used for MD5, the PhD thesis of Magnus Daum [Dau05] and an
ECRYPT deliverable [ABB+05] that both provide some high level discussions
of the techniques of Wang et al., we are not aware of any other article that
gives insights into the techniques of Wang et al. In particular, there exist, to
our knowledge, no insights about the techniques that Wang et al. used to find
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so-called differential paths, i.e. to find the specific sequence of differences over a
given number of steps that produces a local collision.

It is therefore easy to motivate and to explain the aim of the research that
we present in this paper. We have tried to come up with an algorithm that
finds differential paths in an automated way. As target for our path-searching-
algorithm we picked MD4. The reason for choosing MD4 is also easily motivated;
it is the simplest of the well known hashing algorithms and it is the basis for
many other algorithms such as MD5, RIPEMD, SHA-0 and SHA-1.

Our algorithm is successful: given a difference for the input message it com-
putes differential paths for MD4 in an automated way. Among the differential
paths that we have found so far, there are paths that are even slightly better
than the path that Wang et al. reported in their original article. Our path has
less conditions in the second round.

This article is organized as follows. In Sect. 2 we briefly review the attack
by Wang et al. on MD4. In Sect. 3, we introduce the notation that we use to
describe our algorithm. In Sect. 4, we explain our algorithm and in Sect. 5, we
report on the results that we have obtained with it. We conclude this article in
Sect. 6. There are several appendices to this article. They give more information
about our algorithm and the best path that we found with it.

2 The Wang et al. approach

In this section we outline the approach by Wang et al. based on the example of
the MD4 hash function. We first review the working principle of MD4 and then
we focus on the attack of Wang et al.

2.1 The MD4 Hash Function

The MD4 algorithm hashes an input of arbitrary length to a 128-bit value. The
algorithm proceeds as follows. The input message M is modified by a specific
padding rule to a message with a length that is a multiple of 512. Then, the
padded message is subjected to the MD4 compression function. The compression
function consists of three rounds having 16 steps each. Each round uses a different
Boolean function fi: in the first round it is the IF function, in the second round
it is the MAJ (majority) function and in the third round it is the XOR function.

In every step in MD4, a 32-bit variable ri is updated according to the rule
given in (1). Later in this article, we use the notation that the j-th bit of ri

is denoted by ri,j . In (1), the operator + denotes the addition modulo 232 and
the operator ≪ si denotes a circular left shift (rotation) by si positions. The
variable mwi defines a message word and the variable ki defines a round constant.
The order of accessing the message words is given in Tab.1.

ri = (ri-4 + fi(ri-1, ri-2, ri-3) + mwi
+ ki) ≪ si, 0 ≤ i ≤ 47. (1)

The number of bit positions si in a rotation is either {3, 7, 11, 19} in the first
round, {3, 5, 9, 13} in the second round, or it is {3, 9, 11, 15} in the third round.
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Table 1. The order of message words in MD4.

i wi

0. . . 15 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
16. . . 31 0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15
32. . . 47 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15

The initial values are in hexadecimal notation:

(r-4, r-3, r-2, r-1) = (0x67452301, 0x10325476, 0x98badcfe, 0xefcdab89)

These initial values are used to initialize the four 32-bit chaining variables
(A,B,C, D). After 48 steps, the values (r44, r45, r46, r47) are added to the chain-
ing variables (A,B,C, D). If all message blocks have been processed, then the
hash value of the input message is determined by the concatenation of the four
chaining variables.

2.2 Selecting an Input Difference

In the first step of the Wang et al. attack, one determines the difference ∆
between the two input messages M and M ′ (i.e. the input difference). In contrast
to Dobbertin’s attack [Dob98] on MD4, Wang et al. do not aim on producing one
local collision within MD4 but two. The idea is to have one local collision in the
third round that is easily fulfilled and to have another local collision over some
steps in the first two rounds. The local collision in the third round determines
the input difference (see [Sch06] for further details).

Differential properties of the XOR function. There are two simple ob-
servations that are the foundation for producing the local collision in the third
round in the Wang et al. attack. The first observation is that an input differ-
ence of 231 (mod 232) implies that only the 31st bit in the message words differ.
The second observation is that if two input values of the XOR function have a
difference of 231, then this difference is canceled.

Differential properties of the update rule in the third round. In the
third round of MD4, the function fi in the update rule (1) is the XOR function.
We look at step i and assume hereby that there are no differences in the four
previous steps. Choosing the message difference to be 231−si in step i, causes
the difference after the i-th step to be 231. In the (i + 1)-st step, the difference
of 231 propagates through the XOR function. In order to cancel it, we choose
the difference of mwi+1 to be 231 (also −231 would work). Because the difference
from the i-th step also goes into the XOR function in the (i + 2)-nd step, it
is clever to set the difference of mwi+1 to be 231 + 231−si+1 . In this way we
cancel the 231 difference in the (i + 1)-st step and insert a +231−si+1 difference
that becomes a 231 difference after the rotation by si+1 bit positions. In the
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Table 2. Propagation of differences in the third round of MD4 according to the update
rule ri = (ri-4 + XOR(ri-3, ri-2, ri-1) + mwi + ki) ≪ si.

Step ∆ri-4 ∆ri-3 ∆ri-2 ∆ri-1 ∆ri ∆mwi

i 0 0 0 0 231 231−si

i+1 0 0 0 231 231 231 + 231−si

i+2 0 0 231 231 0 0
i+3 0 231 231 0 0 0
i+4 231 231 0 0 0 0
i+5 231 0 0 0 0 231

i+6 0 0 0 0 0 0

(i + 2)-nd step, we have on two inputs of the XOR function a difference of 231,
which cancel each other. Hence, the difference after the (i + 2)-nd step is zero.
The same argument holds for step i + 3. In step i + 4, the input ri+1 of the
XOR function has difference 231, hence it propagates and gets canceled by ri in
the addition. Consequently, in the (i + 5)-th step, there is the 231 difference in
ri+1 value that needs to be canceled. This can be done by inserting the same
difference in mwi+5 . This differential behavior is summarized in Tab. 2. One can
choose the starting step i for this local collision. The choice of i determines in
which message words the differences are introduced. This in turn determines the
length of the differential path that describes the local collision over the steps
in the first two rounds. We can also choose the sign of the differences. The
choice i = 35 leads to ∆m1 = 231, ∆m2 = 231 + 228 and ∆m12 = 216. As
indicated before, we may choose other signs for the differences: the differences
∆m1 = 231, ∆m2 = 231− 228 and ∆m12 = −216 also lead to a local collision. In
our experiments, this particular choice of i turned out to be the best choice.

2.3 Finding a Differential Path

The second crucial step is to find a so-called differential path that cancels the
differences between steps 1 and 24. In the articles of Wang et al. such paths
were given. However, no insight was provided how these paths were found. It
is therefore assumed that the paths were found by hand. This means, that a
great deal of intuition by the researchers was needed to determine the paths.
The main contribution of this article is the automated search algorithm, which
is described in Sect. 4.

2.4 Message modification

The result of the second step is a differential path and the conditions on the
intermediate values that are needed to fulfill the path. These conditions can
be translated into equations for the message words that allow to pre-fulfill the
conditions. In the third and last step of the attack, one applies different message
modification techniques to the message in order to pre-fulfill as many conditions
as possible.

4



Different message modification techniques were introduced by Wang et al.
There is the single-step message modification technique, which allows to pre-
fulfill all conditions that occur in the first round. The second technique is the
multi-step message modification and allows to pre-fulfill some conditions in the
second round. Other ideas for message modification techniques are the so-called
advanced multi-step message modification techniques [WLF+05] and techniques
that have been mentioned in [ABB+05]. The number of conditions that cannot
be pre-fulfilled determines the overall complexity of the attack.

The main difference between the single-step and the multi-step message mod-
ifications is that the singe-step modifications always succeed. This means that
all conditions that occur in the first round can be pre-fulfilled whereas this is
not the case for the conditions in the second round. Consequently, it is desirable
for a path search algorithm to look for paths that have most conditions in the
first round of MD4.

3 Notation

This section details the notation that we will use in the remainder of this article.
Furthermore we discuss the carry expansion of signed differences and the differ-
ential properties of the functions IF and MAJ. The input messages are denoted
by M = (m0,m1, ...,m15) and M ′ = (m′

0,m
′
1, ...,m

′
15). The intermediate steps

in MD4 are computed according to (1) and the results are typically represented
by the variable ri.

3.1 Signed Differences

We follow the idea by Wang et al. and use signed differences. Because we only
use signed differences, we will often refer to them simply as differences.

Definition 1 The signed difference ∆x between two 32-bit words x and x′ is
defined bitwise by

∆x = x′ − x = (δx31, ..., δx0) with δxj = x′
j − xj ∈ {-1, 0, 1}, 0 ≤ j ≤ 31

We use the following abbreviation for ∆x:

∆x = ∆[d1, d2, ..., dw] where di =

{
-j if δxj = -1
j if δxj = 1

Definition 2 For a given difference ∆[d1, d2, . . . , dw], the value |di| defines a
bit position. The value w is the Hamming weight of the difference. The value ∆[]
denotes the zero difference.

A nonzero difference ∆x = x′ − x already determines the values of the corre-
sponding bits in x (and therefore in x′):

∆x = ∆[d1, d2, ..., dw] ⇒ x|di| =

{
0 if sign(di) = 1
1 if sign(di) = -1
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The difference ∆x also imposes conditions on the value x.

Example 1 The difference ∆x can be represented as follows:

∆x =x′ − x = ∆[-27, 15, -3]
=(0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0),

and it implies that x27 = 1, x15 = 0, x3 = 1 and x′
27 = 0, x′

15 = 1, x′
3 = 0.

Remark. Because we use signed bit differences in our differential analysis, we
need to be able to add and rotate signed bit differences throughout each step.
For a detailed definition of these operations see [Dau05] or [Sch06]. We only
provide one simple case and one example here.

Lemma 1 When adding two signed bit differences ∆x = ∆[dx1] and ∆y =
∆[dy1] with hamming weight 1 the following four cases can occur:

∆[dx1] + ∆[dy1] =


∆[] if dx1 = -dy1

∆[dx1 + 1] if dx1 = dy1 and sign(dx1) = 1
∆[-(|dx1|+ 1)] if dx1 = dy1 and sign(dx1) = -1

∆[dx1, dy1] otherwise

A difference at position 32 is always discarded. When adding signed bit differ-
ences with Hamming weight w > 1 a signed carry effect may occur. To rotate a
signed bit difference ∆x = ∆[dx1, dx2, ..., dxw] each element is rotated as follows:

∆[dxi] ≪ s = ∆[dyi] where dyi =

{
dxi + s mod 32 if sign(dxi) = 1

-(|dxi|+ s mod 32) if sign(dxi) = -1

Example 2 We look at the sum of ∆x = ∆[31, 27, 16, 15, 4] and of ∆y =
∆[31, -27, 15, -3]. Carries at positions 15, 16 and 31 occur. The carry that comes
from position 31 is discarded.

∆x + ∆y = ∆[31, 27, 16, 15, 4] + ∆[31, -27, 15, -3] = ∆[17, 4, -3]
∆x ≪ s = ∆[31, -27, 15, -3] ≪ 5 = ∆[20, -8, 4, -0]

3.2 Carry Expansion of Signed Differences

Because the representation of signed differences is redundant, every (nonzero)
element di of a signed difference can be expanded as described in the following.
Note that differences at position 32 are discarded.

∆[d1, ..., di, ..., dw] =

{
∆[d1, ..., -di, ..., dw] + ∆[di + 1] if sign(di) = 1

∆[d1, ..., -di, ..., dw] + ∆[-(|di|+ 1)] if sign(di) = -1

This step can be applied recursively on the resulting signed difference, and on the
previous signed difference but for a different bit position. We call the number of
expansion steps for each element di additional carries. A specific representation
is achieved by imposing conditions on the difference.
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Example 3 In this example the difference ∆x = ∆[-11, 9] is expanded, where
the maximum number of expansion steps performed in each recursion branch,
and thus the number of additional carries, is 2 and where the expanded element
is marked with

←−
di :

∆x→ ∆[-11,
←−
9 ]→ ∆[-11,

←−
10, -9]→ ∆[-10, -9]

→ ∆[-
←−
11, 10, -9]→ ∆[-12, 11, 10, -9]

→ ∆[-
←−
11, 9]→ ∆[-

←−
12, 11, 9]→ ∆[-13, 12, 11, 9]

→ ∆[-12,
←−
11, 9]→ ∆[-12, 11, 10, -9]

Hence, all representations for ∆x with a maximum carry expansion of two, sorted
by their Hamming weight, are:

∆x = ∆[-11, 9] = ∆[-10, -9]
= ∆[-11, 10, -9] = ∆[-12, 11, 9]
= ∆[-12, 11, 10, -9] = ∆[-13, 12, 11, 9]

An expanded signed difference can be reduced to an equivalent difference with
minimum weight again. However, this is not true if the difference is rotated
between expansion and reduction.

Example 4 This example shows that the weight of an expanded difference can-
not be reduced to a difference with equal weight, if the expanded part is rotated
over position 31:

∆[12] ≪ 19 = ∆[13, -12] ≪ 19 = ∆[-31, 0] 6= ∆[31] = ∆[12] ≪ 19

3.3 Properties of the Functions IF and MAJ

In this section we discuss the propagation of signed differences through the
functions IF and MAJ. In order to control the propagation of differences through
these functions, we need to impose conditions on the input values. Table 5 (see
App. A) shows all cases and conditions that allow to achieve a specific output
difference of these functions.

For the IF function, the majority of input cases can be manipulated. How-
ever, consecutive ones in the input differences have to be avoided if a zero output
difference is desired. For the MAJ function, we can only influence the output
difference if the number of input differences is exactly one. Table 5 shows that
the input difference of the IF function can be flipped if δx is not zero. Therefore,
it can be assumed that in the first two rounds a zero output difference is possible
by imposing conditions in most cases.

4 Our Algorithm for the Differential-Path Search

In Sect. 2.2, we have selected the input difference ∆M as ∆m1 = 231 = ∆[31],
∆m2 = 231 − 228 = ∆[31, -28] and ∆m12 = -216 = ∆[-16]. These differences
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are introduced in steps 1, 2 and 12 of round one and in steps 19, 20 and 24 of
round two. Thus, in order to derive a differential path for MD4, the differences
between step 0 and 24 have to cancel each other. The complexity of a brute-force
search through all possible paths is too high. To reduce the search space of our
algorithm, we have tried to avoid any uncontrolled propagation of differences
through the function fi (see Sect. 3.3) or by carry propagation (see Sect. 3.2). In
order to reduce the resulting number of conditions, low weight signed differences
are used by default.

The algorithm consists of three major parts which are the target differences
computation (see Sect. 4.1), the cancelation search (see Sect. 4.2), and the cor-
rection step (see Sect. 4.3). An overview of the algorithm is given in Fig. 4 (see
App. B).

In the first part, the target output difference for the function fi is determined
for every step. Therefore, the message differences are computed backward and
forward to derive the so-called correction and disturbance differences. They are
then combined to define the target differences.

During the cancelation search, all variations of the elements of the target
differences are considered. Note, that this is done for every step of MD4. The
elements of the target differences need to be canceled by using the properties of
the function fi. To achieve an output difference for fi at a specific bit position,
the input differences ∆ri-1, ∆ri-2 and ∆ri-3 need to be expanded. Finally, the
conditions for each step are derived.

In the correction step, impossible output differences are resolved without
searching for a new differential path first. If some contradictions cannot be cor-
rected, additional differences are added to the target differences. These distur-
bance differences, which we typically derived by hand, distribute the conditions
such that a new differential path without contradictions can be found.

4.1 Target Differences Computation

The goal of an algorithm for finding a differential path is to cancel out all differ-
ences that are introduced by the message words. Because one of the four state
variables is updated in one step, a message difference can be canceled every
fourth step. Hence, a message difference introduced in step i can be canceled by
introducing an opposite difference in all steps (i± 4k). To know where to intro-
duce a difference and to determine its position and sign, the message differences
are compute backward and forward (see Fig. 1 left). To reduce the complexity,
no propagation through the function fi or by a carry expansion is considered
while deriving the target differences.

Disturbance differences ∆di are simply derived by forward computing the
message differences:

∆di = ∆di−4 ≪ si−4 + ∆mwi

with i := {0, 1, ..., 24} and ∆d-4 = ∆d-3 = ∆d-2 = ∆d-1 = 0
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Fig. 1. Left: Forward and backward computation of the message differences to get a
target difference for each step. Right: Fulfilling the target difference using the input
differences of the function fi.

Correction differences ∆ci are backward computed message differences. Using
the correction differences it can be determined where to introduce a difference,
which in turn can cancel a message difference in a subsequent step:

∆ci = (∆ci+4 + ∆mwi+4) ≫ si

with i := {20, 19, ..., 0} and ∆c24 = ∆c23 = ∆c22 = ∆c21 = 0

Target differences are the merged correction and disturbance differences of
each step. A target difference ∆ti in step i is the target output difference of the
function fi. This difference is known to cancel a message difference in a previous
or later step. The target differences are defined by the sum of the disturbance
and correction differences (2). Table 6 shows the target differences of steps 0−24.

∆ti = −(∆di + ∆ci) (2)

4.2 Cancelation Search

In this section we describe how to find candidates for differential paths. The
main concept is to cancel the target differences in each step using the function
fi. The search is performed recursively over all steps i = {0, ..., 24}. In order to
cancel an element of the target difference we use carry expansions.

Variation of Target Difference Elements It is not known in advance which
elements of the target differences should be canceled in what step. Therefore, in
every step i all variations of the elements of the target difference ∆ti have to be
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considered. These variations are simply called target variations in the remainder.
If the target difference ∆ti has Hamming weight w then there are 2w possibilities
to cancel elements of the target difference (see Tab. 3).

Carry Expansions The target variations need to be canceled by the function
fi (see Fig. 1 right). A non-zero output difference of the function fi is only
possible, if a non-zero input difference at the same bit position is available. This
is usually not the case. Therefore, the input differences of the function fi are
expanded. Note, that there are again many possibilities to achieve a specific bit
position. Each element of the target variation could be canceled by any carry
expansion of any input difference of fi (see Tab. 3). To limit the complexity
of the search algorithm, a predefined maximum length for each of the carry
expansions (usually 3) is used. Besides limiting the search space, low weight
differences reduce the number of conditions as well.

Table 3. This table shows all target variations of ∆ti = ∆[-29, 20, -17] and all carry
expansions of ∆ri-1 = ∆[19, -17], ∆ri-2 = ∆[16] and ∆ri-3 = ∆[14, -7] with a maximum
length of 2. Each target variation may be canceled by any carry expansion of these
inputs of fi(ri-1, ri-2, ri-3).

∆ti ∆ri-1 ∆ri-2 ∆ri-3
∆[-29, 20, -17] ∆[19, -17] ∆[16] ∆[14, -7]
∆[-29, 20 ] ∆[18, 17] ∆[17, -16] ∆[15, -14, -7]
∆[-29, -17] ∆[20, -19, -17] ∆[18, -17, -16] ∆[14, -8, 7]
∆[-29 ] ∆[19, -18, 17] ∆[15, -14, -8, 7]
∆[ 20, -17] ∆[20, -19, -18, 17] ∆[16, -15, -14, -7]
∆[ 20 ] ∆[21, -20, -19, -17] ∆[14, -9, 8, 7]
∆[ -17]
∆[ ]

Cancel Possibilities In this step it is determined which target variation can
be achieved by which carry expansion. To achieve one specific target variation,
all combinations of the inputs ∆ri-1, ∆ri-2 and ∆ri-3 of fi can be tried. How-
ever, a target variation can only be met by an input difference, if they share at
least the same bit positions. Because most inputs of fi cannot meet this require-
ment anyway, the search space can be significantly reduced by considering only
combinations that are possible using this principle.

In every step i of the hash function, we first start with the difference ∆ri-1 of
fi and try to meet all target variations by carry expanding ∆ri-1. Some targets
will not be met at all, whereas others can be met with several expansions of
∆ri-1 (see Ex. 5). Note, that it cannot be determined whether a specific output
difference of the function fi is indeed possible until all of its inputs are fixed.
Therefore, it is first assumed that the desired target can be canceled and verified
in a later step. The input difference with the lowest weight is used by default.
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Example 5 This example shows all cancel possibilities for all variations of the
target difference ∆ti = ∆[-29, 20, -17]. In this example the expansions of the
input ri-1 = ∆[19, -17] are considered. A target variation containing a difference
at position 29 cannot be achieved by any input difference listed, whereas the zero
target variation can be achieved by all input differences.

∆ri−1 = ∆[19, -17] = ∆[18, 17] = ∆[20, -19, -17] = ∆[19, -18, 17]
= ∆[21, -20, -19, -17] = ∆[20, -19, -18, 17]

∆ti = ∆[-29, 20, -17] =⇒ not possible
∆ti = ∆[-29, 20 ] =⇒ not possible
∆ti = ∆[-29, -17] =⇒ not possible
∆ti = ∆[-29 ] =⇒ not possible
∆ti = ∆[ 20, -17] =⇒ ∆[20, -19, -17]
∆ti = ∆[ 20 ] =⇒ ∆[20, -19, -17],∆[20, -19, -18, 17]
∆ti = ∆[ -17] =⇒ ∆[19, -17],∆[20, -19, -17],∆[21, -20, -19, -17]
∆ti = ∆[ ] =⇒ all expansions of ∆ri−1

Already canceled elements of a target difference are removed from the target
and the remaining elements are canceled in a later step. All possible target
variations are examined recursively. Thus, the message differences are tried to
be canceled in all steps i ± 4k. After having processed ∆ri-1, we continue with
∆ri-2 and ∆ri-3. Note, that ∆ri-2 and ∆ri-3 may have already been used to
cancel a previous target. Further expansions are only possible if they do not
contradict these cancelations. For example, the expansion ∆[18, 17]→ ∆[19, -17]
is not possible if ∆[18] has already been used to cancel a target in a previous
step.

Deriving the Conditions The used carry expansions of the input differences
finally determine the conditions. Only after we have fixed all three input dif-
ferences of fi, we can determine whether a certain output difference is really
possible. This is often not the case. However, one of the other cancel possibilities
can be tried. In addition, in many cases a previously set condition can contradict
with a newly set condition and further expansions need to be tried.

After examining all possible expansions there are usually some contradictions
left. A path with at least one contradiction is called an impossible path. To reduce
the complexity, the search in a branch with too many contradictions is aborted.
The result of the cancelation search are a number of paths from step 0 to step 24
that have a zero differences in step 24, but may still have a few contradictions.

4.3 Correction Step

In the correction step, contradictions within impossible paths are corrected. In
such impossible paths a specific target difference cannot be met in some step or
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a zero output difference of the function fi cannot be achieved. As a consequence,
these additional (disturbance) differences induced by the contradictions need to
be canceled in some other step.

Correction by Solving Contradictions To cancel these additional distur-
bances, they are computed forward and backward through the already deter-
mined differential path. As we only need to correct a few new disturbances,
longer carry expansions can be allowed. However, this does not always work be-
cause further contradictions may occur which are even harder to resolve. The
reason is, that in the case of MD4 the conditions and differences stick together
throughout the whole differential path (see Fig. 2).

Correction by Dispersion Differences Typically, differences propagate from
the least significant bit in the first few steps to the most significant bit in the last
steps (see Fig. 2). The reason for this propagation is that the rotation values si

are very similar for most differences. In order to spread the differences and thus
the conditions, dispersion differences (∆pi) are introduced in steps with a high
rotation value, i.e. s3 = 19. This high rotation allows the dispersion differences
to spread within only a few steps. The dispersion differences are then used in
the following steps to cancel differences in areas with a low condition density.
The dispersion difference ∆p3 = ∆[6], which we determined by hand, leads to a
differential path without contradictions (see Fig. 3).

5 Experiments and results

In our experiments we tried carry expansions with different lengths and different
dispersion differences. It turned out that at least in one step, a carry expansion of
length three is needed. We further noticed that increasing the maximum length
of the carry expansions up to 10 does not lead to less contradictions when using
no dispersion differences. During the evaluation of different parameters, we were
able to produce over 1000 (similar) differential paths without contradictions so
far. One run of our algorithm takes only a couple of minutes. For example, using
the disturbance difference ∆p3 = ∆[6] and a maximum carry expansion of 3,
13871 possibilities to cancel the elements of the target differences have been
tried. 208 possibilities result in a zero differences in step 24 but have at least
2 contradictions. To correct the contradictions of these paths, 140068 different
cancel possibilities to achieve the respective target differences were examined.
Finally, 324 paths with no contradiction could be found. The overall number of
steps performed was 1964131.

With respect to the message modification, the best of our paths is the one
shown in Fig. 3. It has the smallest number of conditions in the second round.
Remember that conditions in the first round can be easily pre-fulfilled by the
single-step message modification technique. Further, most differences occur in
the first few steps of the second round and are thus also easily pre-fulfilled. Our
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Tabelle2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -1  .  .  .  .  .  .

1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -1  .  . -1 0  .  .  .  .  .  .

2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0  .  . 0  .  . 1 0  .  .  .  .  .  .

3  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0  .  . 1  .  . 0 1  .  .  .  .  .  .

4  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -1 -1 -1 0  .  . 1  .  . 1  .  .  .  .  .  .  .

5  .  .  .  .  .  .  .  .  .  . -1  .  . -1  . 0 1 1 1  .  .  .  .  .  .  .  .  .  .  .  .  .

6  .  .  .  .  .  .  .  .  .  . 0  .  . 1  . 0 0 0 0  .  .  .  .  .  .  .  .  .  .  .  .  .

7  .  .  .  .  .  .  .  .  .  . 0  . -1 0  . 0 1 1  .  .  .  .  .  .  .  .  .  .  .  .  .

8  .  .  .  .  .  .  . -1 -1 -1 1 -1 0 1  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

9  .  . -1  .  .  .  . 0 1 1 1 1 0  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

10  .  . 1  .  .  .  . 0 0 0 0 0 1  .  . 1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

11  .  . 0  .  . -1 -1 0 1 0 1 1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

12  .  . 1 -1 -1 1 0  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

13  .  . 0 1 1 0 0  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

14  .  . 1 0 0 1 1  .  . 1  .  .  .  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

15 -1  . -1 -1 -1 -1 -1  .  .  .  .  .  .  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

16 1  .  .  . 1 1 1  .  .  .  .  .  .  .  . -2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

17 -2  .  .  . -2 -2 -2  .  .  .  .  .  .  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

18 -1  .  .  . -1 -1 -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

19 -1  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

20 1  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

21 -2  .  . -2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

22 -1  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

23  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

24  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

← bit position →

←
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Seite 1

Fig. 2. This figure shows the conditions for a specific differential path. Most differences
are rotated with low values. Thus, conditions do not spread (different shades show
different rotation values) and so contradictions are more likely to occur although the
number of conditions, which is 119, is small. A value of c = 0 or c = 1 requires ri,j = c
for a specific bit j and step i. A negative value c or c requires the respective bit to be
ri,j = ri-|c|,j or ri,j 6= ri-|c|,j . The entry marked by # denotes a contradiction.

path has 146 conditions with only 22 conditions in round two and 2 conditions
in round three. In contrast, the path of Wang et al. has 122+2 conditions where
25 conditions occur in round two and 2 conditions occur in round three. The two
additional conditions were found by [NSKO05]. Fig. 3 shows all conditions in our
path in a graphical manner. Further details about the conditions are provided
in App. D and an example of a collision is given in Tab. 4.

6 Conclusions

In this article, we have introduced an algorithm that finds differential paths for
the first 24 steps of MD4 in an automated way. Our algorithm is successful:
given a difference for the input message, it computes differential paths for MD4.
Among the differential paths that we have found so far, there are paths that have
fewer conditions in the second round than the path of Wang et al. This is an
advantage with respect to the message modification techniques; the complexity
of a collision attack based on our path is therefore lower.
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Tabelle1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -1  .  .  .  .  .  .

1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -1  .  . -1 0  .  .  .  .  .  .

2  .  .  .  .  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0  .  . 1 1  .  .  .  .  .  .

3  .  .  .  .  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0  .  . 0 1  .  .  .  .  .  .

4  .  .  .  .  .  . 0  . 0  .  .  .  .  .  . -1 -1 -1 -1  .  . 1  .  . 1  .  .  .  .  .  .  .

5  .  .  .  .  .  . 1  . 1 -1 -1  .  . -1  . 0 1 1 1  .  .  .  .  .  .  .  .  .  .  .  .  .

6  .  .  .  .  .  .  .  . 0 1 1  .  . 1  . 0 0 0 0 -1  . -1  .  .  .  .  .  .  .  .  .  .

7  .  .  .  .  . -1 -1  . 1 1 0  . -1 0  . 0 1 1 1 0  . 0  .  .  .  .  .  .  .  .  .  .

8  .  . 0  .  . 0 1  . 1 1 1 -1 0 1  .  .  .  .  . 0  . 0  .  .  .  .  .  .  .  .  .  .

9  .  . 0  .  . 0 0  . 0 1 1 1 0  .  .  .  .  .  . 1  . 1  .  .  .  .  .  .  .  .  .  .

10 -1  . 1  .  . 1 1  . 0 0 0 0 1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . -1

11 1  . 0 -1  .  . -1  . 1 0 1 1 -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0

12 0  . 0 1  .  . 1  .  . 0  . 1 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0

13 1  .  . 0  .  . 0  .  . 0  . 0 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

14  .  . 1 1  .  . 1  .  . 1  . 1 1 -1  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

15 -1  .  . -1  .  . -1  .  .  .  .  . 0 1  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

16 0  .  . 1  .  . 0  .  .  .  .  . -2 -2  . -2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

17 -2  .  . -2  .  . -2  .  .  .  .  . -1 -1  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

18 -1  .  . -1  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

19 0  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

20 1  .  . 0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

21  .  .  . -2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

22 -1  .  . -1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

23  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

24  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

← bit position →

←
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Fig. 3. In our path, differences and conditions are spread by introducing a dispersion
difference in step i = 3 which has a high rotation value (s3 = 19). This dispersion
difference causes new conditions, which are marked by a box in this figure. Because
of introducing a new difference, the number of conditions is higher (146). However, no
contradictions appear.

The techniques that we have used are not very specific for MD4. The forward-
backward computation for instance, which is performed in the first part of our
algorithm, can be applied in general to determine the target differences. The
cancelation search is general in the sense that we try out all carry expansions
up to a certain length starting from the simplest one. The use of dispersion dif-
ferences must be carefully considered for other algorithms where the conditions
might be more distributed anyway. In addition, the approach of trying the sim-
plest differences first, and only enlarging the search space if necessary, is also
algorithm independent.

Summing up, we have made the first successful step towards an automated
search for differential paths, which is the crucial part of Wang et al.’s attacks.
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Table 4. One collision of MD4 using our differential path.

M0 9de70013 4b5611b3 d2ce37bb d3fbfd91 25bb4551 42d059f8 41b1bd57 19ed222e
4c9c5258 20df2cbf d868c1a8 314acd01 e4aca811 5089a823 bb1912b1 2b61d489

M ′
0 9de70013 cb5611b3 42ce37bb d3fbfd91 25bb4551 42d059f8 41b1bd57 19ed222e

4c9c5258 20df2cbf d868c1a8 314acd01 e4aba811 5089a823 bb1912b1 2b61d489

H0 877bd941 14da836a 0af87c2e 143a4028
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A Differential Characteristic of IF and MAJ

Table 5. Signed differential characteristic of the IF and MAJ function, with necessary
conditions, probability 1 or “-” if the desired output is not possible.

δxδyδz δIF = 0 δIF = 1 δIF = -1 δMAJ = 0 δMAJ = 1 δMAJ = -1

0 0 0 1 - - 1 - -
0 0 1 x = 1 x = 0 - x = y x 6= y -
0 0 -1 x = 1 - x = 0 x = y - x 6= y

0 1 0 x = 0 x = 1 - x = z x 6= z -
0 1 1 - 1 - - 1 -
0 1 -1 - x = 1 x = 0 1 - -

0 -1 0 x = 0 - x = 1 x = z - x 6= z
0 -1 1 - x = 0 x = 1 1 - -
0 -1 -1 - - 1 - - 1

1 0 0 y = z y = 1, z = 0 y = 0, z = 1 y = z y 6= z -
1 0 1 y = 0 y = 1 - - 1 -
1 0 -1 y = 1 - y = 0 1 - -

1 1 0 z = 1 z = 0 - - 1 -
1 1 1 - 1 - - 1 -
1 1 -1 1 - - - 1 -

1 -1 0 z = 0 - z = 1 1 - -
1 -1 1 1 - - - 1 -
1 -1 -1 - - 1 - - 1

-1 0 0 y = z y = 0, z = 1 y = 1, z = 0 y = z - y 6= z
-1 0 1 y = 1 y = 0 - 1 - -
-1 0 -1 y = 0 - y = 1 - - 1

-1 1 0 z = 0 z = 1 - 1 - -
-1 1 1 - 1 - - 1 -
-1 1 -1 1 - - - - 1

-1 -1 0 z = 1 - z = 0 - - 1
-1 -1 1 1 - - - - 1
-1 -1 -1 - - 1 - - 1
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B Overview of our Algorithm
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C The Target Differences

Table 6. Deriving the target differences ∆ti by forward computation of the distur-
bance differences ∆di, and backward computation of the correction differences ∆ci for
all message differences of step 0 − 24. The differences caused by m12 of step 12 are
highlighted.

step ∆mwi si ∆di ∆ci ∆ti

0 3 ∆[16, 13, -10, -7] ∆[-16, -13, 10, 7]
1 ∆[31] 7 ∆[31] ∆[-31]
2 ∆[31, -28] 11 ∆[31, -28] ∆[-31, 28]
3 19 ∆[-4] ∆[4]
4 3 ∆[19, 16, -13, -10] ∆[-19, -16, 13, 10]
5 7 ∆[6] ∆[-6]
6 11 ∆[10, -7] ∆[-10, 7]
7 19 ∆[-23] ∆[23]
8 3 ∆[22, 19, -16, -13] ∆[-22, -19, 16, 13]
9 7 ∆[13] ∆[-13]

10 11 ∆[21, -18] ∆[-21, 18]
11 19 ∆[-10] ∆[10]
12 ∆[-16] 3 ∆[-16] ∆[25, 22, -19] ∆[-25, -22, 19, 16]
13 7 ∆[20] ∆[-20]
14 11 ∆[-29, 0] ∆[29, -0]
15 19 ∆[-29] ∆[29]
16 3 ∆[-19] ∆[28, 25, -22] ∆[-28, -25, 22, 19]
17 5 ∆[27] ∆[-27]
18 9 ∆[11, -8] ∆[-11, 8]
19 ∆[-16] 13 ∆[-16] ∆[16]
20 ∆[31] 3 ∆[31, -22] ∆[28, -25] ∆[-31, -28, 25, 22]
21 5 ∆[0] ∆[-0]
22 9 ∆[20, -17] ∆[-20, 17]
23 11 ∆[-29] ∆[29]
24 ∆[31, -28] 3 ∆[31, -28, -25, 2] ∆[-31, 28, 25, -2]
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D Detailed Description of our Path.

Table 7. Differential characteristic of our differential path for MD4.

Step ri si mwi ∆mwi ∆fi ∆ri

0 r0 3 m0

1 r1 7 m1 ∆[31] ∆[6]

2 r2 11 m2 ∆[31, -28] ∆[10, -7]

3 r3 19 m3 ∆[6] ∆[25]

4 r4 3 m4

5 r5 7 m5 ∆[16, -15, -14, -13]

6 r6 11 m6 ∆[23, -22, -21, -18]

7 r7 19 m7 ∆[23] ∆[12, 10]

8 r8 3 m8 ∆[23, -22, 16] ∆[26, -25, 19]

9 r9 7 m9 ∆[23, -22, -21, -20]

10 r10 11 m10 ∆[-21] ∆[-29]

11 r11 19 m11 ∆[-31, 29, 0]

12 r12 3 m12 ∆[-16] ∆[-22] ∆[29, -28, -25, 22, -20, 19]

13 r13 7 m13 ∆[-20]

14 r14 11 m14 ∆[29]

15 r15 19 m15 ∆[19, -18, 16]

16 r16 3 m0 ∆[19] ∆[31, -28, 25]

17 r17 5 m4

18 r18 9 m8

19 r19 13 m12 ∆[-16] ∆[31]

20 r20 3 m1 ∆[31] ∆[-31, 28]

21 r21 5 m5

22 r22 9 m9

23 r23 13 m13 ∆[-31]

24 r24 3 m2 ∆[31, -28]

... ...

35 r35 15 m12 ∆[-16] ∆[-31]

36 r36 3 m2 ∆[31, -28] ∆[-31] ∆[-31]

37 r37 9 m10

38 r38 11 m6

39 r39 15 m14

40 r40 3 m1 ∆[31]
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Table 8. Conditions for our differential path.

Step Conditions for ri

0 r0,6 = r-1,6

1 r1,6 = 0, r1,7 = r0,7, r1,10 = r0,10

2 r2,6 = 1, r2,7 = 1, r2,10 = 0, r2,25 = r1,25

3 r3,6 = 1, r3,7 = 0, r3,10 = 0, r3,25 = 0

4 r4,7 = 1, r4,10 = 1, r4,13 = r3,13, r4,14 = r3,14, r4,15 = r3,15, r4,16 = r3,16,
r4,23 = 0, r4,25 = 0

5 r5,13 = 1, r5,14 = 1, r5,15 = 1, r5,16 = 0, r5,18 = r4,18, r5,21 = r4,21, r5,22 = r4,22,
r5,23 = 1, r5,25 = 1

6 r6,10 = r5,10, r6,12 = r5,12, r6,13 = 0, r6,14 = 0, r6,15 = 0, r6,16 = 0, r6,18 = 1,
r6,21 = 1, r6,22 = 1, r6,23 = 0

7 r7,10 = 0, r7,12 = 0, r7,13 = 1, r7,14 = 1, r7,15 = 1, r7,16 = 0, r7,18 = 0, r7,19 = r6,19,
r7,21 = 0, r7,22 = 1, r7,23 = 1, r7,25 = r6,25, r7,26 = r6,26

8 r8,10 = 0, r8,12 = 0, r8,18 = 1, r8,19 = 0, r8,20 = r7,20, r8,21 = 1, r8,22 = 1, r8,23 = 1,
r8,25 = 1, r8,26 = 0, r8,29 = 0

9 r9,10 = 1, r9,12 = 1, r9,19 = 0, r9,20 = 1, r9,21 = 1, r9,22 = 1, r9,23 = 0, r9,25 = 0,
r9,26 = 0, r9,29 = 0

10 r10,0 = r9,0, r10,19 = 1, r10,20 = 0, r10,21 = 0, r10,22 = 0, r10,23 = 0, r10,25 = 1,
r10,26 = 1, r10,29 = 1, r10,31 = r9,31

11 r11,0 = 0, r11,19 = r10,19, r11,20 = 1, r11,21 = 1, r11,22 = 0, r11,23 = 1,
r11,25 = r10,25, r11,28 = r10,28, r11,29 = 0, r11,31 = 1

12 r12,0 = 0, r12,19 = 0, r12,20 = 1, r12,22 = 0, r12,25 = 1, r12,28 = 1, r12,29 = 0,
r12,31 = 0

13 r13,0 = 1, r13,19 = 0, r13,20 = 0, r13,22 = 0, r13,25 = 0, r13,28 = 0, r13,31 = 1

14 r14,16 = r13,16, r14,18 = r13,18, r14,19 = 1, r14,20 = 1, r14,22 = 1, r14,25 = 1,
r14,28 = 1, r14,29 = 1

15 r15,16 = 0, r15,18 = 1, r15,19 = 0, r15,25 = r14,25, r15,28 = r14,28, r15,31 = r14,31

16 r16,16 = r14,16, r16,18 = r14,18, r16,19 = r14,19, r16,25 = 0, r16,28 = 1, r16,31 = 0

17 r17,16 = r16,16, r17,18 = r16,18, r17,19 = r16,19, r17,25 = r15,25, r17,28 = r15,28,
r17,31 = r15,31

18 r18,25 = r17,25, r18,28 = r17,28, r18,31 = r17,31

19 r19,28 = r18,28, r19,31 = 0

20 r20,28 = 0, r20,31 = 1

21 r21,28 = r19,28

22 r22,28 = r21,28, r22,31 = r18,31

23

24

The information in this document reflects only the authors’ views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.
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