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Abstract. We propose message authentication codes (MACs) that com-
bine a block cipher and an additional (keyed or unkeyed) permutation.
Our MACs are provably secure if the block cipher is pseudorandom and
the additional permutation has a small differential probability. We also
demonstrate that our MACs are easily implemented with AES and its
4-round version to obtain MACs that are provably secure and 1.4 to 2.5
times faster than the previous MAC modes of AES such as the CBC-
MAC-AES.
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1 Introduction

Message Authentication Codes (MACs) are symmetric cryptographic functions
that ensure the authenticities of messages. The CBC-MAC and its variants (such
as EMAC [4], XCBC [8], and OMAC [16]) are well-known modes for block ciphers
to provide MACs. They are provably secure and efficient; they operate at almost
the same throughput as that of the underlying block cipher. However, what can
we do if we want a MAC that is faster than these MAC modes to keep the
additional implementation as small as possible? In other words, can we have a
block cipher based MAC faster than the CBC-MAC?

In this paper, we give a solution to this problem. We propose MACs that
combine a block cipher and its component, typically a reduced-round version
of the block cipher. These kinds of MACs can easily be implemented on any
platform where the block cipher has already been implemented. The additional
program size would be quite small. A similar approach called ALRED [11] was
recently proposed by Daemen and Rijmen. It was interesting because of its effi-
ciency (in terms of authentication tag generation and preprocessing). It was also
shown that ALRED was secure against some attacks. Compared to ALRED,
our schemes are secure in a stronger security model: if one can distinguish our
MACs from uniform random function, then the underlying block cipher can be
distinguished from uniform random permutation. A MAC with this property is
called a provably secure MAC.

Formally, our MACs combine an n-bit block pseudorandom function (PRF)
and an n-bit auxiliary permutation (AXP), which is an unkeyed or keyed per-
mutation. AXPs are naturally expected to be faster than the block cipher, since



they do not need to be cryptographically strong: they are only required to be
ε-differentially-uniform, i.e., their maximum differential probability (MDP) or
maximum expected differential probability (MEDP) is at most ε. Since we have
assumed that the AXP is derived from the block cipher we intend to use, not
all block ciphers can be used for our MACs. However, a keyed permutation with
small MEDP can be obtained as a reduced-round of well-designed block ciphers,
since such permutations are essential components of the block ciphers that are
secure against differential cryptanalysis. For example, the MEDP of the 4-round
AES with independent round keys is very small [26, 18] and thus our proposals
can be securely implemented using AES and 4-round AES.

We propose two approaches. They have different characteristics regarding the
amount of preprocessing, memory consumption, and the speed for long and short
messages. The first approach is based on the modified tree hash (MTH), which
was proposed by Boesgaard et al. [9]. It was an improvement on the well-known
tree hash [10, 27]. Although they used the Length Annotation (LA) [19] to handle
variable message lengths, we demonstrate that this is redundant. Removing LA
from MTH improves efficiency, particularly for short messages.

The second uses chaining of the block cipher and the AXP. This is similar to
the CBC-MAC, but the block cipher is only called for every d message blocks,
where d is a parameter that determines the amount of preprocessing and MAC
speed. This scheme is provably secure if the AXP is ε-differentially-uniform (for
small ε) and satisfies an additional weak condition.

If our MACs are built using AES and its 4-round, we have MACs 1.4 to 2.5
times faster than the CBC-MAC-AES, depending on the scheme we use. The
key length is short (one block cipher key, K, or K and an additional one-block
key), and only one block cipher keyscheduling is needed. Their preprocessing
times are moderate (log-order of the message length for the first approach, and
constant for the second). We also show a software implementation of our MACs
and comparisons between other MACs.

2 Preliminaries

Notations. {0, 1} is denoted by Σ and n-bit space is denoted by Σn. (Σn)≤m

denotes the set of binary sequences whose lengths are multiples of n and at
most nm. (Σn)+ is the set of all binary sequences whose lengths are multiples
of n, and Σ∗ is the set of all finite-length binary sequences. If X is distributed
independently and uniformly over set X , we write X ∈U X . If F is a keyed
function with domain X , and range Y, and key K ∈U K, then we write F :
X → Y and there is function f : K × X → Y such that Pr[F (x) = y] =
|{k ∈ K : f(k, x) = y}|/|K|. If we want to emphasize that F ’s key is K, FK is
written and if K is fixed to k, then Fk denotes function f(k, ∗). Keyed and fixed
functions are written by upper and lower case letters, respectively.

Definition 1. Keyed function F ∈U {f : Σn → Σm} is called an n-bit to m-bit
uniformly random function (URF) and denoted by Rn,m. If F is uniform over all



n-bit permutations, it is called an n-bit uniformly random permutation (URP)
and denoted by Pn. Specifically, R∗,n denotes the Variable-Input-Length (VIL)-
URF such that R∗,n ∈U {f : Σ∗ → Σn}. Here, VIL means that it accepts inputs
of all lengths.

We express the elements of field GF(2n) by the n-bit coefficient vectors of the
polynomials in the field. We alternatively represent n-bit coefficient vectors by
integers 0, 1, . . . , 2n − 1, e.g., 2 corresponds to the coefficient vector (00 . . . 010)
and 1 denotes (00 . . . 01), i.e., the identity element.

Definition 2. Let f be a permutation on group X and FK be a keyed permuta-
tion on X with key K ∈U K. The maximum differential probability (MDP) for
f , denoted by MDP(f), is maxa6=0,b Pr(f(X) − f(X + a) = b), where X ∈U X .
Similarly, the maximum expected differential probability (MEDP) of FK is de-
fined as MEDP(FK) def= maxa6=0,b Pr(FK(X) − FK(X + a) = b), which can also
be written as maxa6=0,b

∑
k∈K Pr(Fk(X) − Fk(X + a) = b)/|K|.

If X is a field with characteristic 2 (say, GF(2n)), then the addition and sub-
traction in Def. 2 correspond to the bitwise XOR operation, i.e., ⊕. In this case,
MDP is always no less than 2/2n. However, this does not hold true for MEDP.

Definition 3. Let H be a keyed function: (Σn)≤l → Σn. The maximum colli-
sion probability of H for a pair of m-block and m′-block input is defined as

CollH(m,m′) def= max
x∈(Σn)m,x′∈(Σn)m′ ,x 6=x′

Pr(H(x) = H(x′)), where m,m′ ≤ l.

If the collision probability is no more than ε for all possible inputs, it is called
an ε-almost universal (ε-AU) hash function.
Security notions. We used a standard security notion for symmetric cryptog-
raphy [5, 6, 13].

Definition 4. Let F and G be two keyed functions. Let us assume that the
oracle has implemented H, which is identical to one of F or G. An adversary,
A, guesses if H is F or G using Chosen-plaintext attack (CPA). The maximum
CPA-advantage in distinguishing F from G is defined as

AdvcpaF,G(q, t, σ) def= max
A:(q,t,σ)-CPA

∣∣ Pr(AF = 1) − Pr(AG = 1)
∣∣, (1)

where AF = 1 denotes that A’s guess is 1, which indicates one of F or G, and
(q, t, σ)-CPA denotes a CPA that uses q queries with time complexity t, and
the total length of q queries is at most σn bits. Instead of σ, we can use ρ,
which denotes the maximum length (in n-bit block) of each query, to limit the
adversary’s resources. We omit σ and ρ if F and G have fixed input length, since
they have been determined from q in this case. Also, we omit t if we consider
attacks without computational restrictions. Especially, if F : Σm → Σn we have
AdvprfF (q, t) def= AdvcpaF,Rm,n

(q, t). Similarly, if F is an n-bit keyed permutation, then

AdvprpF (q, t) def= AdvcpaF,Pn
(q, t). Finally, if F is a VIL keyed function:Σ∗ → Σn,

then AdvvilprfF (q, t, κ) def= AdvcpaF,R∗,n
(q, t, κ), where κ is σ or ρ.



If AdvcpaF,Rm,n
(q, t) is small for any sufficiently large q and t, F is called the

pseudorandom function (PRF) [13]. The pseudorandom permutation (PRP) and
VIL-PRF are defined similarly. As a VIL-PRF is also a secure VIL-MAC (e.g.,
see Proposition 2.7 of [5]), we focus on building VIL-PRFs.

3 Basic Idea

Let g be a (possibly keyed) function with n-bit domain and X be an n-bit random
variable. Then, g⊕X denotes a function such that g⊕X(a) = g(a ⊕ X). All our
MACs are based on the following function.

Lemma 1. We define the Add-Permute-Add (APA) function: (Σn)≤2 → Σn as
follows.

APAK,F (x) =

{
x if x ∈ Σn,

F⊕K(x1) ⊕ x2 if x = (x1, x2) ∈ (Σn)2,
(2)

where K ∈U Σn and F is an n-bit (keyed or fixed) permutation. Then, APAK,F

is ε-AU if F ’s MEDP (for the case of keyed permutation) or MDP (for the case
of fixed permutation) is at most ε.

Proof. Let x = (x1, x2) and x′ = (x′
1, x

′
2) be two different inputs to APAK,F .

If x1 6= x′
1, then the output collision means F⊕K(x1) ⊕ F⊕K(x′

1) = x2 ⊕ x′
2,

which cannot occur with a probability larger than ε. If x1 = x′
1, which implies

x2 6= x′
2, then clearly the collision probability is zero. Moreover, the probability

of x1 = F⊕K(x′
1)⊕x′

2 is 1/2n, since F is invertible. Thus, the maximum collision
probability is at most ε.

An example of a permutation with small MDP is the following.

Example 1. Let inv be an n-bit permutation such that inv(x) = x−1 for x 6= 0
and inv(0) = 0, where x−1 satisfies x · x−1 = 1. Then, MDP(inv) = 4/2n [25].

As this example shows, a fixed permutation with small MDP does exist. However,
this cannot be efficiently implemented if input is large (say, more than 32-bit). In
contrast, a keyed permutation with small MEDP is more practical. For example,
the 4-round AES with independent round keys has an MEDP of less than 2−113

[18]. In later sections, this fact enables us to implement our MACs using AES.
As stated in the Introduction, all our MACs combine an n-bit block cipher,

EK , and an n-bit additional keyed or fixed permutation, which is called the
auxiliary permutation (AXP). If the AXP has a key, we denote it by GU , where
key U ∈U U . The sequence of m AXPs are denoted by G = (GU1 , . . . , GUm).
We will abbreviate GUi to Gi unless it is confusing. Hereafter, we will usually
assume that the AXP is a keyed permutation. Since a fixed permutation can be
seen as a keyed permutation with a single-point key space, this provides general
descriptions of our schemes.



4 Building Variable Input Length Universal Hash

4.1 Modified Tree Hash

As Lemma 1 shows, a double input length AU hash function can be built using
one invocation of a differentially-uniform permutation and an n-bit random key.
The simplest way to expand the input length of this AU hash is using the well-
known tree hash. The original tree hash proposed by Wegman and Carter [27]
required some redundant calls of AU hash when the length of an input was not
2ln for some positive integer l. An improvement to remove these redundant calls
was proposed by Boesgaard et al., which is as follows.

Definition 5. (Modified Tree Hash (MTH) [9], the binary case)
Let H = (H1,H2, . . . , ) be an infinite sequence of keyed functions: (Σn)2 → Σn.
Let x = (x1, . . . , xm) ∈ (Σn)m. For all i ≥ 1, let LHi

be a function defined as:

LHi
(x) =

{
Hi(x1, x2)‖Hi(x3, x4)‖ . . . ‖Hi(xm−1, xm) if m mod 2 = 0,

Hi(x1, x2)‖Hi(x3, x4)‖ . . . ‖Hi(xm−2, xm−1)‖xm if m mod 2 = 1.

The output of the modified tree hash using H for input x is

MTHH(x) = LHb
◦ LHb−1 ◦ · · · ◦ LH1(x),where b = dlog2 me.

Here, ◦ denotes the serial composition (i.e., F2 ◦ F1(x) = F2(F1(x))).

Collision Probability of MTH. The collision probability of MTH for equal
length inputs was proved [9]. To handle inputs with unequal lengths, Boesgaard
et al. suggested using a technique called the Length Annotation (LA), i.e., ap-
pending the length information of x to MTHH(x). However, we here prove that
LA is not needed, if some additional conditions are satisfied.

Lemma 2. In Def. 5, if each Hi is independent ε-AU and satisfies Pr(Hi(x) =
y) = 1/2n for any x ∈ (Σn)2 and y ∈ Σn, then

CollMTHH
(m,m′) ≤ max{dlog2 me, dlog2 m′e} · ε, for any (m,m′). (3)

Moreover, if Hi = APAKi,GUi
and Ki and Ui are independent and random, then

Eq. (3) holds, where ε is the MEDP of GUi and 1/2n ≤ ε.

Proof. Let us prove the first claim. We start with the case for inputs with equal
lengths. Let us abbreviate max2c−1<i≤2c CollMTHH

(i, i) to p=
c . Clearly p=

0 = 0
and p=

1 ≤ ε hold. Assume the claim holds for c = i − 1 for some i ≥ 1. Let
x = (x1, . . . , xm) and x′ = (x′

1, . . . , x
′
m) be two m-block inputs where 2i−1 <

m ≤ 2i. Let S, T , and V denote MTHH(x1, . . . , x2i−1), MTHH(x2i−1+1, . . . , xm),
and MTHH(x), respectively. For x′, S′, T ′, and V ′ are similarly defined. If the
first 2i−1-block prefixes of x and x′ are identical, then P (S = S′) = 1 and we
have

P (V = V ′) ≤ P (T = T ′, S = S′)+P (V = V ′|T 6= T ′, S = S′) ≤ (i−1)ε+ε = iε,



where the last inequality follows from the assumption and the fact that each Hi

is independent. If the first 2i−1-block prefixes are different, we have

P (V = V ′) ≤ P (S = S′) + P (V = V ′|S 6= S′) ≤ (i − 1)ε + ε = iε.

Thus, we have p=
i ≤ iε. Let p6=

c be the maximum collision probability for two
inputs that have unequal lengths and their lengths are at most 2c blocks. Then,
p 6=
1 ≤ ε follows from the condition of Hi (note that 1/2n ≤ ε). Let us assume

p 6=
i−1 ≤ (i−1)ε holds. Let x = (x1, . . . , xm) and x′ = (x′

1, . . . , x
′
m′) where m < m′

and 2i−1 < m′ ≤ 2i. If m < 2i−1, the computation of V from (S′, T ′) involves
the key (for some Hi), K̃, that never appears in the computation of V . If we fix
keys other than K̃, the collision of MTHH(x) and MTHH(x′) is equivalent to the
event that Hi(s, t) = v for some (s, t, v, i), thus occuring with probability 1/2n.
If m > 2i−1, then we prove the collision probability is at most iε in a similar
way to the case of equal length. Therefore we have p6=

i ≤ iε and the first claim is
proved. The second claim follows from the first claim and Lemma 1.

If LA is used, then more AU hash function calls are needed to obtain an n-bit
hash value from (length(x)||MTHH(x)). Therefore, removing LA contributes to
faster speed (particularly for short messages) and shorter key length.

4.2 Periodic CBC Hash

The MTH is ideally fast, as its theoretical throughput is almost the same as
that of the AXP. However, the amounts of preprocessing and working memories
required are proportional to b, where 2b is the maximum message block length.
This implies that MTH is not well suited to constrained (e.g., low-power and/or
memory) environments. This problem is common to all tree-based MAC func-
tions. In this section, we focus on building AU hash functions that accept any
long block inputs with a small constant amount of preprocessing and memory.
Interestingly, our proposal is an iterative procedure similar to the CBC-MAC.
Since this is iterative, only a small constant working memory is needed for any
input in (Σn)+, as in the CBC-MAC.

For i = 1, 2, . . . ,m, let Fi be an n-bit block keyed function and Z be an
n-bit random variable. Let x = (x1, . . . , xm+1). We define two keyed functions:
(Σn)+ → Σn such that

Ch[F1, . . . , Fm](x) def= xm+1 ⊕ Fm(xm ⊕ Fm−1(. . . F2(x2 ⊕ F1(x1)) . . . ), and

Ch[F1, . . . , Fm|Z](x) def= Ch[F1, . . . , Fm](x′), where x′ = (x1 ⊕ Z, x2, . . . , xm+1),

i.e., CBC-MAC-like chaining. If the input is longer than (m + 1) blocks, the
chaining is iterated using (F1, . . . , Fm), and they terminate as soon as the last
input block is XORed. Here, the CBC-MAC[F ] corresponds to F ◦ Ch[F ]. For
one block input x = x1, the output is itself, i.e., x1.

Definition 6. Let EK be an n-bit block cipher. For d ≥ 0, let G = (G1, . . . , Gd)
be the sequence of d AXPs G = (G1, . . . , Gd) (recall that GUi has been abbreviated
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Fig. 1. PC-MAC with d = 2. System surrounded by dotted lines denotes PCH2[EK ,G].

to Gi). We call d the interval. We assume that (d − 1) n-bit keys, denoted by
Kxor

1 , . . . ,Kxor
d−1, are available. The Periodic CBC Hash (PCH) with interval d

is a keyed function: (Σn)+ → Σn defined as

PCHd[EK ,G] def= Ch[EK , G1, G
⊕Kxor

1
2 , . . . , G

⊕Kxor
d−1

d ].

Here, PCHd[EK ,G] terminates as soon as the last input block is XORed.

See Fig. 1 for an example of PCH. If d = 1, then no Kxor
i is used and EK and

G1 are called alternately.

Collision Probability of PCH. For any inputs in (Σn)+, the collision prob-
ability of the PCH is small if the AXP has a small differential probability and a
small self-differential probability, which is defined as follows.

Definition 7. The maximum self-differential probability (MSDP) of a permuta-
tion on group X , f , is defined as MSDP(f) def= maxa∈X Pr[X −f(X) = a], where
X ∈U X . For a keyed permutation, the maximum expected SDP (MESDP) is
similarly defined.

Let Kaux = (Kxor
1 , . . . ,Kxor

d−1, U1, . . . , Ud), where Ui ∈ U is the key for Gi.

Kaux is the key of G⊕ def= (G1, G
⊕Kxor

1
2 , . . . , G

⊕Kxor
d−1

d ) and distributed over Kaux
def=

(Σn)d−1 × Ud. This determines the operation between two consecutive block
cipher calls in PCH. The collision probability of PCH is proved as follows.

Lemma 3. If Kaux ∈U Kaux, and MEDP(Gi) ≤ εdp and MESDP(Gi) ≤ εsdp

for i = 1, . . . , d, then,

CollPCHd[R,G](m,m′) ≤ dεdp + εsdp +
(l + l′)2 + 2

2n+1
, (4)

where G = (G1, . . . , Gd), and R is the n-bit URF, and l = d m
d+1e and l′ = d m′

d+1e.

Proof. Let x = (x1, . . . , xm) and x′ = (x′
1, . . . , x

′
m′) be two distinct inputs for

PCHd[R,G] with m ≤ m′ and let V = PCHd[R,G](x), V ′ = PCHd[R,G](x′).
Let Yi and Zi (Y ′

i and Z ′
i) be the i-th input and output of R for x (for x′). For

example, when d = 1, then Y1 = x1, Z1 = R(Y1), and Y2 = x3 ⊕ G1(x2 ⊕ Z1).



Here, if m − 1 = c(d + 1) for some positive integer c, then Yc+1 corresponds to
PCHd[R,G](x) and Zc+1 does not exist. We also assume that the block length
of the longest common prefix (LCP) between x and x′ is mlcp. That is, xi = x′

i

for i = 1, . . . ,mlcp < m and xmlcp+1 6= x′
mlcp+1 or mlcp = m (if m < m′). If

x1 6= x′
1, the LCP is empty and has a length of 0. Let llcp = dmlcp

d+1 e (this means
that Yi = Y ′

i for i = 1, . . . , llcp with probability 1).
Let D be an event where Yα, Y ′

β , 1 ≤ α ≤ l, 1 ≤ β ≤ l′ are distinct, except for
the trivial collisions Yγ = Y ′

γ for γ = 1, . . . , llcp. In addition, let Dlcp denote an
event where Yi 6= Yj (and Y ′

i 6= Y ′
j ) for 1 ≤ i < j ≤ llcp. If the LCP is empty, we

define Pr(Dlcp) = 1. Clearly Dlcp is a subevent of D. For any 1 ≤ i ≤ j ≤ d + 1,
we have

CollCh[G⊕|Rnd](i, j) ≤


(i − 1)εdp ≤ dεdp if i = j,

εsdp if (i, j) = (1, 2),
1
2n otherwise,

(5)

where Rnd ∈U Σn. In Eq. (5), the first case follows from simple inductive analy-
sis. For the second, note that the collision means Rnd⊕x1 = x′

2⊕G1(Rnd⊕x′
1),

which occurs with probability (at most) εsdp. The third follows from the fact
that the output for the longer input always includes Kxor

j , which does not ap-
pear in the other output, and that all AXPs are invertible. Here, we show that
the probabilities of D and Dlcp are negligible, where D is the negation of D.

Lemma 4. For any kaux ∈ Kaux, we have

Pr(Dlcp) = Pr(Dlcp|Kaux = kaux) ≤
llcp−1∑
i=1

i

2n
≤ llcp

2

2n+1
, and (6)

Pr(D) ≤ dεdp +
(l + l′)2

2n+1
. (7)

The proof of Lemma 4 is in Appendix A. Next, let us analyze the collision
probability of PCHd[R,G]. Let xlast be the last m − 1 mod (d + 1) blocks of x.
Then, V = Ch[G⊕|Zl](xlast) if xlast is not empty (i.e., m − 1 mod (d + 1) ≥ 1),
and V = Yl otherwise. x′

last is similarly defined for x′. First, we assume that
l = l′ = llcp does not hold true. Then, the occurrence of D means that Zl and
Zl′ are independent and uniformly random even if Kaux is fixed. Thus, we have

Pr(V =V ′) ≤
∑

kaux∈Kaux

Pr(V =V ′|Kaux = kaux, D) · Pr(Kaux = kaux|D) + Pr(D),

≤ 1
2n

∑
kaux∈Kaux

Pr(Kaux = kaux|D) + dεdp +
(l + l′)2

2n+1
≤ dεdp +

(l + l′)2 + 2
2n+1

, (8)

unless both xlast and x′
last are empty. If both are empty, then Pr(V = V ′) ≤ P (D)

holds. Next, let us assume l = l′ = llcp holds true. In this case, D is equivalent
to Dlcp and at least one of xlast or x′

last is not empty (otherwise we have x =



x′), and Zl (= Z ′
l′) is independent and random if Dlcp is given. If both xlast

and x′
last are not empty, then Pr(V = V ′|Dlcp) equals Pr(Ch[G⊕|Zl](xlast) =

Ch[G⊕|Zl](x′
last)|Dlcp). Here, note that Dlcp (or Dlcp) gives no information on

Kaux, since Eq. (6) implies P (Kaux = kaux|Dlcp) = P (Kaux = kaux) for all kaux.
From these observations and Eq. (5), and Lemma 4, we have

Pr(V = V ′) ≤ Pr(V =V ′|Dlcp)+Pr(Dlcp) ≤ max{dεdp, εsdp, 1/2n}+
llcp

2

2n+1
. (9)

It is easy to see that Eq. (9) also holds even if one of xlast or x′
last is empty. Thus,

Eq. (9) holds when l = l′ = llcp. We conclude the proof by combining Eqs. (8)
and (9).

Relation Between MDP (MEDP) and MSDP (MESDP). It seems that
every permutation with a small MDP has a small MSDP, though we have not
formally proved this for now. For instance, the inv permutation in Ex. 1 has
MSDP 3/2n. A more useful fact is that any n-bit keyed permutation that contains
an independent key-addition layer has MESDP 1/2n, as the output is completely
random and independent of the input.

5 Complete Description of Our MACs and Their
Securities

The following lemma, proved by Black and Rogaway [8], demonstrates that a
VIL-PRF: Σ∗→Σn can be built with an AU hash: (Σn)+→Σn and n-bit PRFs.

Lemma 5. (Lemma 2 of [8]) Let H : (Σn)+ → Σn and R,R′ be two indepen-
dent n-bit URFs. We define CW3[H,R,R′](x) = R(H(x)) if the length of x, |x|,
is a multiple of n, and R′(H(x ‖ 10l)) otherwise, where |x| mod n = n − l − 1
and 10i denotes an i-bit sequence (100 . . . 0). Then,

AdvvilprfCW3[H,R,R′](q, σ) ≤ max
q,m1,...,mq,

Pq
s=1 ms=σ

 ∑
1≤i<j≤q

CollH(mi,mj)

 (10)

holds. In Eq. (10), if σ is substituted with ρ, then the maximum is taken for all
(q,m1, . . . ,mq) such that ms ≤ ρ for all s = 1, . . . , q.

The Hash-to-MAC (actually Hash-to-PRF) conversion described in Lemma 5
requires two additional n-bit PRFs and thus requires two additional block cipher
keyschedulings in practice. However, these keyschedulings can be removed using
the idea of tweakable block ciphers [21]. This technique was used to propose
the XCBC [8], TMAC [20], and OMAC [16]. In converting our hashing schemes
into MACs, we also employed the tweaking technique. Here, we present complete
descriptions of our MACs. The first is based on the MTH and called the MT-
MAC. It uses a block cipher EK and an AXP, GU , and the maximum message
length is n2b bits. See Fig. 2 for the details of MT-MAC. In Fig. 2, i+a indicates



Preprocessing Let L be EK(0).
Let U = (U1, . . . , Ub) be the first b|U| bits of EK(1) · · ·EK(a).
Let H = (H1, . . . , Hb), where Hi = APAEK(i+a),GUi

.

Tag Computation Input message x ∈ Σ∗.

Let Tag = CW3[MTHH, E⊕L·u
K , E⊕L·u2

K ](x).
Output (x, Tag).

Fig. 2. MT-MACb[EK |GU ]. Key of MAC is K, AXP is GU , and a = db|U|/ne.

Preprocessing Let U = (U1, . . . , Ud) be the first d|U| bits of

E⊕L
K (0) · · ·E⊕L

K (â − 1), and let G = (G1, . . . , Gd).

Let Kxor
j−â+1 be E⊕L

K (j) for j = â, . . . , â + d − 2.

Tag Computation Input message x ∈ Σ∗.

Let Tag = CW3[PCHd[EK ,G], E⊕L·u
K , E⊕L·u2

K ](x).
Output (x, Tag).

Fig. 3. PC-MACd[EK , L|GU ]. Key of MAC is (K, L), AXP is GU , and â = dd|U|/ne.

usual integer addition, and u is an element of GF(2n) that is not 0 or 1 and
L · u denotes the multiplication on GF(2n). It can be implemented with shift
and conditional XOR (e.g., see [16]). The second is based on PCH and called
the PC-MAC. The PC-MAC is shown in Fig. 3.

The security of MT-MAC is proved as follows. The proof is in Appendix B.

Theorem 1. Let c = db|U|/ne + b + 1. Then,

AdvvilprfMT-MACb[EK |GU ](q, t, σ) ≤ AdvprpEK
(σ + c, t′) +

(σ + c)2

2n
+ εdpσ2,

where t′ = t + O(σ) and εdp = MEDP(GU ).

The security proof of PC-MAC can be similarly obtained, which is as follows.

Theorem 2. Let c = dd|U|/ne + d, where d is the interval parameter. Then,

AdvvilprfPC-MACd[EK ,L|GU ](q, t, ρ) ≤ AdvprpEK
(ρq+c, t′)+

2.5(ρq + c)2

2n
+(dεdp+εsdp)

q2

2
,

where t′ = t + O(ρq), and εdp = MEDP(GU ), and εsdp = MESDP(GU ).

The proof of Theorem 2 is in Appendix C.

Security Parameter. In Theorem 2, we used ρ instead of σ, although using σ
is generally more preferable than using ρ (see discussion in [15]). If we are forced
to use σ, the bound of a PC-MAC’s CPA-advantage would be O(σ2q2/2n), which
seems a bit too loose. It would be nice if we could obtain a smaller bound for
the collision probability to obtain a tight security analysis using σ.



K1

ByteSub ShiftRow & 
MixColumn ByteSub ShiftRow & 

MixColumn

K2

ByteSub ShiftRow & 
MixColumn

K3

ByteSub

Fig. 4. The simplified 4-round AES. Each Ki is independent and random.

Key Length. The PC-MAC uses two keys, the first for the block cipher and
the second to make the block cipher tweakable. It is natural to ask whether this
can be reduced to one block cipher key without introducing another block cipher
keyscheduling. For example, is it secure to let L = EK(0), just like in the OMAC
or MT-MAC? Unfortunately, we do not have a clear answer for now, but at least
we found a counterexample if some generalization was applied to the PC-MAC1.
Nevertheless, we think that a small change can provide a one-key version of the
PC-MAC. This is still a problem that needs to be solved.

6 AES-based Implementation

In this section, we consider the implementation of our MACs using AES. As
mentioned earlier, the 4-round AES with independent round keys has MEDP
2−113 [18]. Also, MESDP is exactly 2−128, since the 4-round AES contains an
independent key-addition layer (see end of Sect. 4.2). Here, the addition of the
first round key and the last diffusion layer can be omitted, since they do not affect
the differential and self-differential probabilities. Let us denote the simplified 4-
round AES in Fig. 4 by 4rAES. If our MACs are implemented with AES and
4rAES, then the securities of the resulting MT-MAC and PC-MAC can be proved
by Theorems 1 and 2 with n = 128, |U| = 384, εdp = 2−113, and εsdp = 2−128.

Some Comparisons. Compared with the previous MAC modes of AES, for
example OMAC-AES, our AES-based MACs are faster (MT-MAC is about 2.5
times faster, and PC-MAC is about 1.4 to 2.5 times faster, depending on the
interval). Both use the AES encryption, and do not require the AES decryption.
Their program sizes are almost the same. Both provide stateless (i.e., no counter
or nonce is used) provably secure VIL-MACs. The computational assumptions
we need are the same (i.e., the pseudorandomness of the AES). Drawbacks of
our MACs are the amount of preprocessing and slightly-degraded security: many
CBC-MAC variants have 64-bit security, i.e., they are secure if q (or σ, ρ) ¿ 264,
while ours have about 56-bit security. We have summarized the properties of our
1 For example, even if L · u is substituted with inv(L ⊕ u) (note that inv is defined in

Ex. 1), OMAC will still be secure, as it satisfies the condition for the “OMAC-family”
(see [16] for details). However, if L = EK(0), and the AXP is the inv permutation,
and the above substitution is applied to the PC-MAC with interval 1, then the tag
for the 3-block input (0, u, x2) is EK(x2) for any x2, i.e., direct access to EK is
possible. This means the complete break of the MAC.



Table 1. Summary of AES-based MACs. ”Rounds” denotes average AES rounds to
process one message block, and ”Preproc.” denotes AES encryption blocks needed in
preprocessing.

MAC Max.Message Length Rounds Preproc. Key size Type

MT-MACb[AES|4rAES] n2b 4 4b + 1 128 Tree

PC-MACd[AES, L|4rAES] Infinite 4 + 6
d+1

4d − 1 256 Iterative

OMAC-AES Infinite 10 1 128 Iterative

AES-based MACs below. For comparison, the OMAC-AES is also shown. Table
1 shows only average speed estimates for long messages. However, our MACs are
at least as fast as OMAC-AES for any short messages, since the AES rounds
needed by our MACs are no more than 10 · m, when the input is m-block and
this holds for all m ≥ 1.

It may be rather difficult to perform a rigorous comparison between our
MACs and the state-of-art CW-MACs, such as UMAC [19], (the MAC part of
) GCM [24], and Poly1305 [7], as they use customized functions that can not
be derived from AES. For example, CW-MACs are roughly 3 to 5 (or more)
times faster than the MAC modes using the optimized AES on software (e.g.,
see [3]). Therefore our MACs may not be as fast as them on software. Also, some
CW-MACs have much shorter keyscheduling time than ours. However, ours can
be easily implemented for any platform where an implementation of AES is
available. There are many studies on efficient AES implementations for various
software and hardware (e.g., see [1]), and we can directly benefit from them.
For other comparison items, both provide provably secure VIL-MACs (some
CW-MACs are stateful) based on the pseudorandomness of the AES.

The Pelican MAC [12] is an instantiation of the ALRED using AES and its 4-
round with all zero round keys. It is similar (but not identical) to the PC-MAC.
This is not surprising because the ALRED and the PC-MAC share the same
motivation. The Pelican MAC is about 2.5 times faster than the CBC-MAC,
thus almost the same speed as that of the MT-MAC or PC-MAC with a long
interval. Compared to our MACs, the Pelican MAC’s preprocessing time is very
short (only one block encryption). From the preliminary analysis of the ALRED
construction [11], the Pelican MAC’s security was proved against attacks that
did not invoke internal collisions. In addition, no attack better than the brute
force search has not been found for the moment. However, it is still unclear
whether the Pelican MAC is a provably secure (i.e., secure against all attacks)
VIL-MAC based on the pseudorandomness of the AES.

These comparisons are rough and might be insufficient. As a future work item,
we want to do a more comprehensive and quantitative comparison to clarify the
effectiveness of our approach.
Implementations. We also implemented our AES-based MACs on software. We
used the public-domain C code written by Rijmen et al.[2]. Our implementation
was naive and almost no optimization was performed. We did a speed comparison



Table 2. Comparison of AES-based MAC speed on software.

MAC Tag computation (cycle/byte) Preprocessing (cycles)

MT-MAC (b = 32) 12.5 53777 (estimate)
PC-MAC (d = 1) 18.5 1651
PC-MAC (d = 5) 14.4 8311
PC-MAC (d = 17) 13.1 28444
OMAC 25.1 821

on a Pentium III 1Ghz, where raw AES encryption ran at about 25 cycle/byte.
We can see from Table 2 that our MACs did not achieve the theoretical limit (i.e.,
2.5 times faster than OMAC-AES). This is because some overhead was involved
in both AES and 4rAES, such as byte/word conversion. The effect overhead has
may change according to the platform and AES implementation.
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A Proof of Lemma 4

We assumed that LCP was not empty and llcp < l (i.e., Yllcp+1 and Y ′
llcp+1 exist).

If we fix Kaux to kaux, then the operation that accepts Zi and outputs Yi+1 (i.e.,
Ch[G⊕]) is a deterministic n-bit permutation defined by kaux and some d + 1
input blocks. It is not hard to see that Pr(Dlcp|Kaux = kaux) is exactly the same
as the output collision probability of the OFB mode of R, for all kaux ∈ Kaux

and inputs. Then, Eq. (6) follows from this observation and a simple collision



analysis. Next, let us prove Eq. (7). Consider the following collision events. (I):
Yllcp+1 = Y ′

llcp+1 and (II):Yllcp+1 = Yi, Y
′
llcp+1 = Yi for i = 1, . . . , llcp. Here,

Yllcp+1 and Y ′
llcp+1 are two outputs of Ch[G⊕|Zllcp ] with different inputs. Since

Zllcp is independent and uniformly random if Dlcp is given, we can use Eq. (5)
and obtain Pr(Yllcp+1 = Y ′

llcp+1|Dlcp) ≤ dεdp. Moreover, Pr(Yllcp+1 = Yi|Dlcp)
(or Pr(Y ′

llcp+1 = Yi|Dlcp)) is 1/2n for i = 1, . . . , llcp, since Yllcp+1 and Y ′
llcp+1 are

permutations of Zllcp . If no collision events of types (I) and (II) have occurred,
Zllcp+1 and Z ′

llcp+1 are independent and completely random, no matter what
Kaux is. This implies that other collision events consisting of D|Dlcp occur with
probability 1/2n. Consequently, all collision events consisting of D|Dlcp occur
with probability 1/2n except for the event Yllcp+1 = Y ′

llcp+1. By counting these
events and using Eq. (6), we have

Pr(D) ≤ Pr(Dlcp) + Pr(D|Dlcp),

≤ llcp
2

2n+1
+ dεdp +

1
2n

((
l + l′ − llcp

2

)
−

(
llcp
2

)
− 1

)
≤ dεdp +

(l + l′)2

2n+1
.

For other cases (e.g., the LCP is empty or llcp = l), the above bound also holds
true. This proves Eq. (7).

B Proof of Theorem 1

Let Q be CW3[MTH
eH, R,R′], where H̃ = (H̃1, H̃2, . . . , H̃b) consists of H̃i =

APA
eKi,G

eUi

and {Ũi, K̃i}i=1,...,b are independent of each other, and R,R′ are

independent n-bit URFs. From Lemmas 2 and 5, we have

AdvvilprfQ (q, σ) ≤ εdp · qσ ≤ εdpσ2. (11)

Then, we use the following lemma.

Lemma 6. Let R be an n-bit URF. Let TE1 : Σn×Σ → Σn, where TE1(x, 0) =
R⊕L·u(x) and TE1(x, 1) = R⊕L·u2(x) for L = R(0). Consider the following two
games, Gm1 and Gm2. In Gm1, one can access TE1 and R(c1), R(c2), . . . , R(ca)
where c1, c2, . . . , ca are distinct and fixed constants and ci 6= 0 for all i. In Gm2,
one can access the URF: Σn ×Σ → Σn and a (an)-bit independent and random
sequence. Then, AdvcpaGm1,Gm2(q)

2 is at most q2

2n+1 + (a+1)q
2n .

Proof. (Sketch) Let Si be the i-th input to R in Gm1, i.e., Si equals xi⊕L·u if the
i-th query is (xi, 0) and xi ⊕L · u2 if the i-th query is (xi, 1). Let ai be the event
that S1, S2, . . . , Si are distinct and Sj 6∈ {0, c1, . . . , ca} for j = 1, . . . , i. Then,
using the methodology of Maurer [23], AdvcpaGm1,Gm2(q) is at most the probability
of aq for all (both adaptive and non-adaptive) adversaries using q queries when
2 This should be interpreted as the maximum CPA-advantage in distinguishing two

games using q queries with no computational restriction, where a query is in Σn×Σ.



Gm1 is considered. All collision events consisting of aq have probability 1/2n or
0. By counting the number of collision events and using the union bound, we
conclude the proof.

From Lemma 6, we have AdvcpaQ,MT-MACb[R|GU ](q, σ) ≤ σ2

2n+1 + (c+1)σ
2n . From

this observation and Eq. (11), we have

AdvvilprfMT-MACb[R|GU ](q, σ) ≤ AdvcpaQ,MT-MACb[R|GU ](q, σ)+ εdpσ2 +
σ2

2n+1
+

(c + 1)σ
2n

.

(12)
Distinguishing MT-MACb[R|GU ] from MT-MACb[EK |GU ] with (q, t, σ) implies
distinguishing R from EK with σ + c queries and t′ = t+O(σ) time. Combining
this observation and Eq. (12) and the standard PRF/PRP switching lemma (e.g.,
see Lemma 1 of [8]) proves the theorem.

C Proof of Theorem 2

Let Q be CW3[PCHd[R,G], R′, R′′] where three n-bit URFs R,R′, and R′′ are
independent and the auxiliary key Kaux is generated by the counter mode of
another URF, R′′′, i.e., Kaux ∈U Kaux. Combining Lemmas 5 and 3, we have

AdvvilprfQ (q, ρ) ≤ max
q,m1,...,mq,ms≤ρ

∑
1≤i<j≤q

dεdp + εsdp +
(d mi

d+1e + d mj

d+1e)
2 + 2

2n+1

≤
(

dεdp + εsdp +
2ρ2 + 1

2n

)
q2

2
. (13)

Then, the following lemma is used. It is similar to Lemma 4.1 of [15].

Lemma 7. Let R be the n-bit URF. Consider the following two games, Gm1 and
Gm2. In Gm1, one can access TE2 : Σn × {0, 1, 2, 3} → Σn where TE2(x, 0) =
R(x), and TE2(x, i) = R⊕L·u(i−1)

(x) for i = 1, 2, 3, and L ∈U Σn. In Gm2, one
can access the URF compatible with TE2. Then, AdvcpaGm1,Gm2(q) is at most q2

2n+1 .

As the proof of Lemma 7 is a simple extension of the proof of Lemma 6, we have
omitted it here. Note that PC-MACd[R,L|GU ] invokes R at most ρq + c times.
From this observation and Lemma 7, it is clear that AdvcpaPC-MACd[R,L|GU ],Q(q, ρ)

is at most (c+ρq)2

2n+1 . From this and Eq. (13), we have

AdvvilprfPC-MACd[R,L|GU ](q, ρ) ≤ (c + ρq)2

2n+1
+

(
dεdp + εsdp +

2ρ2 + 1
2n

)
q2

2
, and

AdvvilprfPC-MACd[EK ,L|GU ](q, t, ρ) ≤ AdvprfEK
(ρq + c, t′) + AdvvilprfPC-MACd[R,L|GU ](q, ρ)

(14)

where t′ = t + O(ρq). Combining Eq. (14) with the PRF/PRP switching lemma
concludes the proof.


