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Abstract. We demonstrate an efficient method for computing a Gröbner
basis of a zero-dimensional ideal describing the key-recovery problem
from a single plaintext/ciphertext pair for the full AES-128. This Gröbner
basis is relative to a degree-lexicographical order. We investigate whether
the existence of this Gröbner basis has any security implications for the
AES.
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1 Introduction

Gröbner bases are standard representations of polynomial ideals that pos-
sess several useful properties:
– given a Gröbner basis of an ideal I ⊂ R, we can efficiently decide

whether a polynomial f ∈ R lies in I
– for suitable term orders (e.g. lexicographical orders), the variety of

the ideal can be efficiently computed; this yields solutions for the
polynomial system induced by the ideal.
Usually, the Gröbner basis of a set of polynomials is computed using

either a variant of Buchberger’s algorithm [3] or using Faugere’s F4 [10]
or F5 [11] algorithm. These algorithms involve polynomials reductions
which are costly. In general the time and the space complexity of these
algorithms is difficult to predict. For polynomials in a large number of
variables, these algorithms quickly become infeasible.

Rijndael, the block cipher that has been selected as the Advanced
Encryption Standard (AES) in 2001, has become the industry-wide stan-
dard block cipher by now. Its design, the wide-trail strategy, is considered
state of the art. However, Rijndael has from the beginning been critized
for its mathematical simplicity and rich algebraic structure [15, 13, 8]. On
the other hand this criticism has not yet substantiated into an attack;
quite to the contrary, claims of an algebraic attack using XSL [8] have
recently been debunked [6].
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For the Rijndael block cipher, two algebraic representations in the
form of multivariate polynomial systems of equations have been proposed
so far. Courtois and Pieprzyk have demonstrated how to obtain overde-
fined systems of quadratic equations over GF (2), while Murphy and Rob-
shaw have constructed an embedding for the AES called Big Encryption
System (BES) for which a system of overdefined quadratic equations over
GF (28) exists [16].

A representation considering the output of the S-Box as a polynomial
expression of the input over GF (28) has thus far been neglected because
the polynomials in this case are of relatively high degree. Using this rep-
resentation we can describe the key recovery problem for the AES cipher
with a key length of 128 bits as a system of 200 polynomial equations
of degree 254 and 152 linear equations. In this paper we will show that
by choosing an appropriate term order and by applying linear operations
only, we can generate a Gröbner basis for AES-128 from this system with-
out a single polynomial reduction.

The structure of this paper is as follows: in Section 2 we establish
the notation used in this paper, in Section 3 we explain how to construct
the Gröbner basis for Rijndael, in Section 4 we study the cryptanalytic
importance of our result. Finally we summarize the impact of our result
in Section 5 and conclude.

2 Notation

We assume the reader to be familiar with the description of AES as given
in [17]. In the following we restrict ourselves to AES-128, i.e. Rijndael
with a block and key size of 128 bits.

We will deviate from the standard representation by using a column
vector instead of a matrix for the internal state and the round keys. The
elements in the column vector are identified with the elements of the
matrix in a column-wise fashion by the following map:

ϕ :F 4×4→F 16,

 s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

 7→(s0,0, s1,0, . . . , s0,1, s1,1, . . .)
T (1)

Furthermore we define the 16 × 16 matrix P to be the permutation
matrix that achieves the exchange of elements in the column vector that
is equivalent to transposing the state matrix.
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The above notation allows us to express the diffusion performed by the
MixColumns and ShiftRows operations as a single matrix multiplication.

Let xi,j denote the variable referring to the ith component of the state
vector after the jth round execution. By this definition the variables xi,0

are called plaintext variables, correspondingly xi,10 are called ciphertext
variables. All other variables xi,j are called intermediate state variables;
variables ki,j are called key variables. We will also refer to ki,0 as cipher
key variables.

The field F is the finite field GF (28) as defined for Rijndael. The
polynomial ring R is defined as

R := F [xi,j , ki,j : {0 ≤ i ≤ 15, 0 ≤ j ≤ 10}]

3 Construction of the Gröbner Basis

In this section we will explain how to construct a degree lexicographical
Gröbner basis describing the AES key recovery problem step by step.
To accomplish this task we will first give a very minimal introduction
to Gröbner bases; just enough to follow this paper. We kindly refer the
inclined reader to [9] and [2] for a more gentle introduction to the topic.

3.1 Gröbner Bases

Some confusion regularly arises out of the expressions term and monomial.
One school calls a product of variables a term and the product of said
term and a coefficient a monomial; notably this is done in [2]. The other
camp, e.g. the authors of [9], uses term and monomial in an interchanged
fashion. We adopt the conventions of [2].

For a given ideal there usually exists more than one Gröbner basis.
These are relative to a so called term order, which we shall now define:

Definition 1 (Term order). A term order ≤ is a linear order on the
set of terms T (R) such that
1. 1 ≤ t for all terms t ∈ T (R)
2. for all terms s, t1, t2 ∈ T (R) whenever t1 ≤ t2 then st1 ≤ st2

The maximum element of the set of terms of a polynomial p under a
fixed term order ≤ shall be referred to as the head term of p, short HT(p).

We will now introduce two useful and widely used term orders. First,
however, we define two technicalities: For a term t = ve1

1 ve2
2 · · · vek

k ∈ T (R)
we define the exponent vector of t to be ε(t) = (e1, e2, . . . , ek) ∈ Nk

0. The
total degree of the term t then is deg(t) =

∑k
i=1 ei.
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Example 1 (lexicographical term order). For terms s, t we define s <lex t
iff there exists an i with 1 ≤ i ≤ k such that the first i − 1 components
of ε(s) and ε(t) are equal but the ith component of ε(s) is smaller than
the ith component of ε(t).

Example 2 (degree lexicographical term order). For terms s, t we define
s <dlex t iff either deg(s) < deg(t) or if deg(s) = deg(t) and s <lex t.

Remark 1. Note that there is more than one lexicographical order and
more than one degree lexicographical term order. Different orderings on
the variables induce different term orders!

The formal definition of a Gröbner basis does not give much insight
about how to construct one:

Definition 2 (Gröbner basis). Let I be an ideal of R. A set of poly-
nomials {g1, . . . , gm} ⊂ I is a Gröbner basis if the following holds:

〈HT (g1), . . . ,HT (gm)〉 = 〈{HT (p) : p ∈ I}〉

The first Buchberger criterion [4] is a basic test that is used in most
implementations of Buchberger’s algorithm to avoid “useless” polynomial
reductions. The following theorem follows almost instantaneously from
this criterion and gives an important hint how a Gröbner basis can be
attained without knowing anything about polynomial reductions.

Theorem 1. Let G be a set of polynomials and H = {HT (f) : f ∈ G}.
If all elements in H are pairwise prime, then G is a Gröbner basis.

Proof. See [5].

A zero-dimensional ideal is an ideal that has a finite number of solu-
tions over the closure of the field. It usually is advantageous to have this
property for Gröbner basis computations. By using Corollary 6.56 of [2]
we can determine whether an ideal I is zero-dimensional. Below we state
a reduced version of this corollary:

Lemma 1. Let I be a proper ideal of F [x1, . . . , xn]. Then the following
assertions are equivalent:
– dim(I) = 0
– There exists a term order ≤ such that for each 1 ≤ i ≤ n there is

gi ∈ I with HT(gi) = xνi
i for some 0 ≤ νi ∈ N.
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3.2 The S-Box

The S-Box used in Rijndael can be interpolated as a sparse polynomial
over F :

σ : F → F, x 7→ 05x254 + 09x253 + F9x251 + 25x247 + F4x239+
B5x223 + B9x191 + 8Fx127 + 63

(2)

whilst the interpolation polynomial of the inverse S-Box

σ−1 : F → F, x 7→
254∑
i=0

cix
i (3)

is dense. This polynomial is given in Appendix A.

3.3 The Linear Transformation

The linear transformation of AES consists of two operations, ShiftRows
and MixColumns. We can perform the linear transform by multiplying
the state column vector with a 16 × 16-matrix D from the left. In the
following, we calculate D; however at the start of each round we apply
the transposition matrix P since it makes expressing the operations as
matrices easier. At the end we multiply with the matrix P to undo the
initial transposition.

A matrix that shifts the elements of a 1 × 4 row vector cyclically by
an offset t is of the following form:

DSRt =
(
∆i,(j−t) mod 4

)
∈ F 4×4 (4)

where ∆i,j is the Kronecker delta. The ShiftRows operation is equiv-
alent to multiplying by the matrix DSR:

DSR =


DSR0 0 0 0

0 DSR1 0 0
0 0 DSR2 0
0 0 0 DSR3

 ∈ F 16×16 (5)

The MixColumns operation is applied to each row of the internal state.
We use the matrix DMC to transform the column vector equivalently:

DMC =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⊗ I4 ∈ F 16×16 (6)
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where ⊗ denotes the tensor product. Concatenation of the two opera-
tions in the diffusion layer is achieved by multiplying the above matrices,
yielding the matrix D:

D = P ·DMC ·DSR · P (7)

The diffusion layer of the last round is missing the MixColumns trans-
formation; it will be described by the matrix D̃:

D̃ = P ·DSR · P (8)

This enables us to obtain the following vectorial representation of a
system of 16 polynomial equations that holds for rounds 1 ≤ j ≤ 9 of the
cipher:  σ(x0,(j−1) + k0,(j−1))

...
σ(x15,(j−1) + k15,(j−1))

 + D−1

 x0,j
...

x15,j

 = 0 (9)

For the last round we need to take the simplified diffusion layer and
the final key addition into account: σ (x0,9 + k0,9)

...
σ (x15,9 + k15,9)

 + D̃−1

 x0,10 + k0,10
...

x15,10 + k15,10

 = 0 (10)

Choosing any degree lexicographical term order, either a term x254
i,j

or a term k254
i,j occurs as head term of each polynomial. We take note

that none of the head terms is a power of a plaintext nor of a ciphertext
variable. Moreover all of the head terms are pairwise prime. The variable
order chosen will influence whether the head term is a power of a key
variable or of an intermediate state variable.

3.4 The Key Schedule

In order to obtain a Gröbner basis of both the cipher and the key schedul-
ing polynomials, we need to set up the key scheduling in a slightly different
way. Usually, the key scheduling expresses the elements of the round sub-
key of round 1 ≤ j ≤ 10 as a vector of polynomials in the key variables
of the previous round as follows:
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k0,j

k1,j

k2,j

k3,j

k4,j
...

k15,j


=



k0,j−1

k1,j−1

k2,j−1

k3,j−1

k4,j−1
...

k15,j−1


+



σ(k15,j−1)
σ(k12,j−1)
σ(k13,j−1)
σ(k14,j−1)

k0,j
...

k11,j


+



γj−1

0
0
0
0
...
0


(11)

where the γ0, . . . , γ9 are the round constants. To make all head terms
pairwise prime (see also Section 3.5 on the term order chosen), we we
have to proceed in reverse order:

σ−1(k0,j + k0,j−1 + γj−1)
σ−1(k1,j + k1,j−1)
σ−1(k2,j + k2,j−1)
σ−1(k3,j + k3,j−1)

k4,j + k4,j−1
...

k15,j + k15,j−1


+



k15,j−1

k12,j−1

k13,j−1

k14,j−1

k0,j
...

k11,j


= 0 (12)

3.5 Choosing a Suitable Variable Order

The plaintext and ciphertext polynomials simply are of the form

xi,0 + pi pi ∈ F, 0 ≤ i ≤ 15 (13)

respectively
xi,0 + ci ci ∈ F, 0 ≤ i ≤ 15. (14)

Let A be the union of the left-hand side of equations (9), (10) and (12)
for all rounds 1 ≤ j ≤ 10 as well as the plaintext and ciphertext poly-
nomials. Ordering the variables as follows makes all head terms pairwise
prime:
1. plaintext variables: x0,0 < . . . < x15,0

2. ciphertext variables: x0,10 < . . . < x15,10

3. key variables of all rounds in natural order: k0,0 < k1,0 < . . . < k15,10

4. intermediate state variables in their natural order
The degree lexicographical term order with the above variable order

will be in the following be referred to as <A. By Theorem 1, the set of
polynomials A is a Gröbner basis relative to this term order! Moreover,
checking Lemma 1 we verify that this ideal is zero-dimensional.
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4 Exploiting the Gröbner Basis

In the previous section we have shown how to obtain a zero-dimensional
Gröbner basis A for AES-128. In this section we explore the cryptana-
lytic impact of this finding. To this end, we investigate the complexity of
a Gröbner basis conversion algorithm, find an invariant under the elimi-
nation of variables and explain why the näıve way of applying the ideal
membership test does not work for guessing parts of the round key.

4.1 Complexity of Gröbner Basis Conversions

An obvious question is whether the Gröbner basis we have computed
in the previous section can be efficiently converted to a different, more
suitable order, i.e. a lexicographical order or an elimination order [1].

Two algorithms and variations of them are known for performing
Gröbner basis conversions, the FGLM algorithm [12] and the Gröbner
Walk [7]. While the FGLM algorithm as described in [12] only works
for zero-dimensional ideals, the Gröbner Walk naturally also works for
ideals of positive dimension. Since we have established that A is zero-
dimensional, we are in a position to use FGLM and give an estimate for
its time complexity below.

An important characteristic of the ideal is the vector space dimension
of the residue class ring obtained when factoring the polynomial ring R
by the ideal I:

Definition 3. Let R := F [x1, . . . , xn]. Then the F -space dimension of
the ideal I ⊂ R shall be denoted by dim(R/I).

From Lemma 6.51 and Proposition 6.52 in [2] it is straightforward to
deduce the following lemma:

Lemma 2. Let ≤ be a term order on T (R) and G a Gröbner basis of I
w.r.t. ≤. Then

dim(R/I) = # {t ∈ T (R) : s - t for all s ∈ HT(I)}
= # {t ∈ T (R) : s - t for all s ∈ HT(G)}

Applying the lemma to a Gröbner basis with univariate head terms
yields the following corollary:

Corollary 1. Let G = {g1, . . . , gn} be a Gröbner basis for the ideal I ⊂
F [x1, . . . , xn] with head terms xd1

1 , . . . , xdn
n . Then dim(R/I) = d1 · · · · · dn.
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This result is sufficient to give a bound on the complexity of the
Gröbner basis conversion using FGLM. The following theorem is a slightly
rephrased version of Theorem 5.1 in [12]:

Theorem 2. Let F be a finite field and R = F [x1, . . . , xn]. Furthermore
G1 ⊂ R is the Gröbner basis relative to a term order <1 of an ideal I,
and D = dim(R/I). We can then convert G1 into a Gröbner basis G2

relative to a term order <2 in O(nD3) field operations.

From Corollary 1 we conclude that the vector space dimension of the
ideal generated by the Gröbner basis A is way too big for the FGLM
algorithm be useful for cryptanalytic purposes in this case:

dim(R/A) = 254200 ≈ 21598 (15)

For the Gröbner Walk, the running time strongly depends on the
source and the target term order. It is an open problem to give bounds on
the time and space complexity for this algorithm. The only bounds known
are local bounds, namely for adjacent term orders, due to Kalkbrener [14].

4.2 Elimination of Variables

In this section we establish that the dimension of the vector space of the
ideal remains invariant when eliminating certain variables. We first prove
the following more general statement:

Proposition 1. Let I ′ be a zero-dimensional ideal of R′ := F [x1, . . . , xn],
I an ideal of R := R′[xn+1] and I ′ = I ∩ R′. Then dim R/I = dim R′/I ′

iff there exists a polynomial g ∈ R′ such that xn+1 + g ∈ I.

Proof. W.l.o.g. we fix a lexicographical term ordering such that xn+1 is
the greatest variable. Let RT(I) and RT(I ′) be defined as follows:

RT(I) = {t ∈ T (R) : s - t for all s ∈ HT(I)}
RT(I ′) =

{
t ∈ T (R′) : s - t for all s ∈ HT(I ′)

}
⊂ RT(I)

By Lemma 2, dimK(R/I) = #RT(I) holds. Thus it is sufficient to
prove that #RT(I) = #RT(I ′). Since xn+1 - t for t ∈ T (R′), the equality
RT(I) = RT(I ′) holds iff xn+1 ∈ HT(I), i.e. exists a g ∈ R′ for which
xn+1 + g ∈ I.
�
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Corollary 2. For the set of polynomials A the dimension dim(R/I) is
invariant under the elimination of all variables except the round key vari-
ables ki,0 with 0 ≤ i ≤ 15 and ki,j with 0 ≤ i ≤ 3, 1 ≤ j ≤ 9.

Proof. By induction using Proposition 1.

So even eliminating a significant amount of variables does not reduce
the complexity of converting the Gröbner basis to a term order suitable
for key recovery.

4.3 Taking the Field Equations into Account

Let R = F [x1, . . . , xn] be a polynomial ring over finite field F = GF (2m)
with q = 2m elements. For every element τ ∈ F the relation τ q = τ holds;
the equations

xq
i + xi = 0 (16)

are commonly called field equations. The set of roots of each of these
equations is the set of all elements of the field F . By adjoining the set of
all field polynomials F — the left-hand side of Equation 16 — to the set
of polynomials A, we eliminate all points of the variety that only exist in
the closure but not in the ground field. The resulting set does not form a
Gröbner basis, however.

What we have to do is to compute the intersection of two varieties;
this is usually achieved by computing the Gröbner basis of the sum of the
corresponding ideals. We have a set of polynomials A, describing AES
which is a Gröbner basis relative to the order <A, and a second set of
polynomials F , which also forms a Gröbner basis relative to the same
order. It is however unclear how to exploit the Gröbner basis property of
the input.

4.4 Testing Keys

Gröbner bases were invented to solve the ideal membership problem. So
why are we not able to simply test whether a linear polynomial of the
form

ki + C, C ∈ F (17)

— with C being a key variable guess — lies in the ideal? After all,
this would allow us to determine the key piecementally by guessing each
byte.
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Several problems present themselves here. First of all, the polynomial
system has solutions over the closure of the ground field, which means
that we have to test for a polynomial

g = p ·
∏

(ki + Cj)tj , tj ∈ N0, Cj ∈ F

instead, where the Cj denote candidate values for the key variable
and p is a product of irreducible non-linear polynomials. Moreover the
dimension of the ideal again plays an important role here: it is an upper
bound on the number of solutions of the corresponding polynomial system
in the closure of the field. Hence the degree of g is expected to be very
large.

5 Implications

As far as the authors are aware at the time of writing this paper, the
existence of the above Gröbner basis has no security implications for
AES. We conjecture that methods similar to the one presented in this
paper can be used to produce total-degree Gröbner bases for many other
iterated block ciphers – however we like to point out that because of the
high algebraic structure of Rijndael, it makes for an excellent example.

6 Conclusion

We have demonstrated that by choosing a particular variable order, degree
lexicographical Gröbner bases for AES-128 can be constructed without
polynomial reductions. We have analyzed the implications of this finding
and have shown that several obvious approaches do not translate into a
successful cryptanalysis. It is an open problem whether the results con-
tained in this paper can be leveraged into an attack.
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A Polynomial interpolation of the inverse S-Box of
Rijndael

σ−1 : F → F

x 7→ 05x254+CFx253+B3x252+16x251+55x250+C0x249+7Ax248+01x247+

22x246+D8x245+6Bx244+A6x243+1Fx242+0Dx241+BCx240+49x239+

85x238+B4x237+1Bx236+5Ex235+BDx234+18x233+1Dx232+6Dx231+

C5x230+23x229+09x228+43x227+68x226+80x225+6Cx224+CCx223+

42x222+9Fx221+0Fx220+D2x219+3Bx218+2Cx217+5Fx216+BEx215+

AEx214+E4x213+93x212+8Bx211+CBx210+65x209+C0x208+1Ex207+

8Ex206+32x205+1Dx204+A5x203+76x202+A9x201+2Cx200+13x199+

05x198+60x197+FDx196+1Bx195+ABx194+64x193+C1x192+A8x191+

7Fx190+55x189+DBx188+ECx187+20x186+C4x185+DBx184+7Ex183+

92x182+80x181+A3x180+59x179+91x178+91x177+81x176+4Ex175+

11x174+DDx173+4Ex172+D3x171+E3x170+19x169+E7x168+03x167+

24x166+45x165+DAx164+EAx163+87x162+2Dx161+23x160+82x159+

38x158+B7x157+9Ex156+B3x155+2Ax154+3Ex153+1Cx152+ECx151+

C3x150+45x149+EDx148+D5x147+2Ax146+8Dx145+EDx144+37x143+

26x142+E0x141+BCx140+58x139+E2x138+6Cx137+24x136+55x135+

C7x134+AAx133+09x132+4Fx131+82x130+CAx129+10x128+EEx127+

1Ax126+2Ex125+40x124+27x123+81x122+92x121+B1x120+02x119+

8Bx118+87x117+7Fx116+B0x115+6Fx114+53x113+08x112+CBx111+

03x110+B0x109+DFx108+1Fx107+A7x106+A2x105+FEx104+8Ex103+

A8x102+E1x101+71x100+FFx99+55x98+5Ax97+1Dx96+9Dx95+

BFx94+E8x93+BAx92+6Bx91+72x90+E3x89+04x88+D9x87+

38x86+D3x85+B9x84+16x83+52x82+18x81+19x80+3Ex79+

9Ex78+03x77+56x76+A6x75+71x74+03x73+E4x72+86x71+

F5x70+B0x69+05x68+D1x67+10x66+E2x65+E5x64+CBx63+

B1x62+F2x61+8Ex60+C7x59+0Cx58+A7x57+BFx56+46x55+

0Bx54+01x53+C5x52+A3x51+50x50+77x49+EAx48+05x47+

65x46+8Ex45+89x44+D4x43+6Dx42+D3x41+75x40+65x39+

13x38+2Fx37+86x36+AFx35+7Cx34+7Bx33+85x32+C8x31+

E8x30+04x29+7Bx28+CFx27+2Fx26+8Ax25+9Ax24+3Dx23+

CFx22+21x21+39x20+D9x19+29x18+73x17+F6x16+23x15+

40x14+1Bx13+B2x12+C0x11+6Dx10+85x9+1Cx8+8Ax7+

2Cx6+BBx5+90x4+1Ex3+7Ex2+F3x1+52
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