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Abstract. Sequence compression is one of the most promising tools for
strengthening pseudo-random generators used in stream ciphers. Indeed,
adding compression components can thwart algebraic attacks aimed at
LFSR-based stream ciphers. Among such components are the Shrink-
ing Generator and the Self-Shrinking Generator, as well as recent vari-
ations on Bit-Search-based decimation. We propose a general model
for compression used to strengthen pseudo-random sequences. We show
that there is a unique (up to length-preserving permutations) construc-
tion that reaches an optimal trade-off between output rate and security
against several attacks,

1 Introduction

The huge amount of work impulsed by the ECRYPT call for stream ciphers [5]
shows how much progress has been made in stream ciphers analysis in the recent
years. While researchers in the area are still willing to design new proposals with
innovative, yet not always secure, ideas. If cryptanalysis seems to put the fate
of stream ciphers at stake, this is also the consequence of a lack of theoretical
security results for stream ciphers and pseudo-random generators.

Compression of sequences can strengthen pseudo-random generators used
in stream ciphers. In particular, adding compression components can thwart
algebraic attacks aimed at LFSR-based stream ciphers [1, 4]. Such components
include decimation components such as the Shrinking Generator [3] and the Self-
Shrinking Generator [15]. Decimation has come back in focus recently with the
Bit-Search Generator [9] and subsequent variations on it [10].

Compression mechanisms may suffer from timing attacks [12] since the speed
of the output is variable in a manner that depends on the generator’s state. Thus,
LFSR-based ciphers involving a decimation mechanism may be easily breakable
in case of leakage of the number of times LFSRs are clocked for each output.
However, such side channel attacks are usually alleviated by buffering the output,
as described for instance in [14]; these issues are not discussed in this paper.
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Our main purpose is to propose a general model for compression used in the
generation of pseudo-random sequences, in order to build compression compo-
nents upon theoretical results. In Section 2, we detail related work on the subject
including the Shrinking Generator and the Bit-Search generator variation used
in the DECIM proposal to the ECRYPT stream cipher project. In Section 3, we
construct our framework for compression components using prefix codes dedi-
cated to pseudo-random generation. In Section 4, we focus on the case when the
compression output is 0 or 1. We show that there is then a unique (up to length-
preserving permutations) construction that reaches an optimal trade-off between
output rate and security against several attacks, including entropy-based recon-
struction, linear equations retrieval, and FBDD attacks. In Section 5, we apply
our results to the Self-Shrinking Generator and Bit-Search based decimation.

2 Related work

Generation of pseudo-random sequences using compression techniques relies on
the use of a compression function. A compression function is a function that com-
presses m-bit inputs (m is not necessarily a fixed value) to n-bit outputs, where
m ≥ n. The properties required for such functions depend on the application
context. For instance, one-wayness is required for cryptographic hash functions,
whereas compression functions for data compression must not be one-way. The
properties of a compression function to be used to shrink pseudo-random se-
quences are yet to be defined.

Decimation components are a particular case of compression components.
The Shrinking Generator (SG) [3] compresses two sources of pseudo-random bits
to create a third source of potentially better quality than the original sources; the
term quality stands for the difficulty of predicting the pseudo-random sequence.
Similarly, the Self-Shrinking Generator (SSG) [15], the Bit-Search Generator
(BSG) [9] and its variants such as the ABSG [10] all compress a single source
of pseudo-random bits in order to produce a second source of potentially bet-
ter quality. The ABSG is used in the DECIM stream cipher proposed to the
ECRYPT stream cipher project. The general running of DECIM is to produce a
pseudo-random bit sequence from an LFSR filtered by a Boolean function which
is next compressed by the ABSG.

The output rate is usually considered to compare the efficiency of compression
components. The BSG and the ABSG have the advantage over the SG and the
SSG that they operate at a rate 1/3 instead of 1/4 (i.e. producing n bits in the
output requires on average 3n bits of the input sequence instead of 4n bits).

Security criteria are crucial for cryptographic compression components. Since
many stream ciphers are LFSR-based, most theoretical results on compression
components concern the period or the linear complexity of the sequences ob-
tained by applying these components on the output of a maximal length LFSR.
First, algebraic results show that regular decimation is not suitable [16]. Then,
several attacks on stream cipher based on a compression component are known.
The first type of attack focuses on the properties of the compression function
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when assuming that the input sequence is uniformly chosen. For instance, FBDD-
attacks, proposed by Krause [13], rely on properties of the compression function
in the context of LFSR-based generators. The attacks given in [10, 11] use the
most probable case (when it exists) in order to reconstruct the input sequence
in the context of LFSR-based generators. A second type of attack exploits more
information on LFSR-based generators. For instance, the attack on the SG given
in [3] exploits the knowledge of the feedback polynomials, and the attack on the
SSG given in [6, 7] applies only for particular feedback polynomials.

3 A compression model for pseudo-random generation

One usually expects data compression techniques to transform an input sequence
into a very short output sequence while keeping the ability to recover the input
from the output, which means no information on the input shall be lost.

In the context of pseudo-random generation, the purpose is different. We
focus on the use of the compressed output as the keystream used to cipher a
message in a stream cipher. The input sequence s is supposed to be the pseudo-
random output of a public mechanism with secret parameters (e.g., the output of
an LFSR initialized with a secret key and an initialization vector). This mech-
anism may have weaknesses with respect to attacks aiming at correlation or
algebraic properties of its output. Our aim is to delete from s enough informa-
tion to prevent such attacks that may apply to s, by hiding algebraic properties
of the input sequence. At the same time, our output should not be too short
compared with its input, so that it can be used for the same applications as s.

Thus, our aim is opposite to usual data compression: we expect the compres-
sion algorithm to process the input into an output sequence which delivers as
little information on the input as possible, while remaining as long as possible.

In the sequel, we call random input sequences those sequences that follow the
uniform distribution of binary words: each word w is a prefix of a random input
sequence with probability 1/2|w|, and all words are assumed to be independent.

3.1 Prefix codes and binary trees

A binary code is a subset of words of {0, 1}+. The language C∗ of a binary code
C is the set of all binary words that are concatenation of words in C. A code C
is a prefix code if no codeword has a strict prefix in C. Notice that, in this case,
the words of C∗ parse into codewords in a unique manner. A code is maximal
prefix when no other prefix code properly contains it. A code C is right complete
if every word w can be completed into a word v = ww′ that belongs to C∗ or,
equivalently, if every word w with no prefix in C has a multiple v = ww′ in C.
Proposition 1. A code is maximal prefix if, and only if, it is prefix and right
complete.

Proof. Suppose C is maximal prefix. Let w be a non-empty word which has no
prefix in C. As C is maximal prefix, C ∪{w} is not a prefix code, so w has a right
multiple in C. Hence, C is right complete.
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Conversely, let C be prefix and right complete, and C′ be a prefix code that
contains C. Let w ∈ C′. As C is right complete, w has a right multiple w′ in C∗.
Let then m be the smallest prefix of w′ in C. As C′ is prefix, this implies m = w,
so we have w ∈ C, and consequently C′ = C. Therefore, C is maximal prefix. ut

Throughout the paper, we will see that all suitable codes for our constructions
are maximal prefix codes. There is a natural bijection between binary prefix codes
and binary trees called coding trees, in which a node either is a leaf, or it has
two children. This bijection links the words of the code and the leaves of the
tree. Thus, we often use the equivalence between binary prefix codes and binary
trees in the sequel. An example of a coding tree is given in Figure 1.
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Fig. 1. ABSG code tree

3.2 General framework

We consider an infinite input sequence of bits s = (si)i≥0, a binary prefix code C
and a mapping f : C → {0, 1}∗, called the compression function. We call f(C) the
output set. The sequence s parses into a sequence of codewords w = (wi)i≥0, each
wi being the unique codeword such that w0 . . . wi is a prefix of s that belongs to
C∗. Each wi is then mapped by f to its image in f(C). The output sequence is
(f(wi))i≥0, seen as a bit sequence. We denote this output sequence by

y = EncC,f (s).

The framework extends to finite input sequences, by parsing the input se-
quence in the same way, until the remainder has no prefix in C.
Definition 1. The output rate of the pair (C, f), denoted by Rate(C, f), is the
average number of output bits generated by one bit of a random input sequence.

Obviously, not all binary codes and functions are suitable for this framework.
For instance, choosing C = {00} does not enable to process a sequence containing
ones. As for the function, choosing the projection onto the empty word ε produces
an empty output sequence. In order to apply the framework to every possible
input sequence, it is then necessary to determine what the requirements on the
following components are:
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1. the choice of C must enable the parsing of every random input sequence,
2. the choice of f must be such that, for uniformly distributed input sequences,

the corresponding output sequences also follow the uniform distribution.

3.3 Requirements on C
First, there are some straight requirements on C. In our framework, we consider
prefix codes only. Indeed, if C contained two distinct words w and w′ with w a
prefix of w′, then w′ would never appear in the decomposition w of s. Therefore,
we may delete from C all the codewords that already have a prefix in C with
no loss of generality, thus transforming C into a binary prefix code. Next, we
want every random input sequence to be processable. This implies that C is
right complete. Overall, in order to effectively process any random input, we
introduce the following definition:

Definition 2. A binary code C is suitable if it is prefix and if the expected
length E(C) of an element of C in the decomposition of a random input sequence
is finite.

Proposition 2. For a suitable code C, the following equality holds:
∑

w∈C

1
2|w|

= 1.

Proof. Let us consider the binary tree corresponding to C. We denote by Ln

and Nn respectively the number of leaves and nodes of depth n. Then, we have
L0 = 0, N0 = 1, and for every n ≥ 1, the relation Ln + Nn = 2Nn−1 holds. Let
Sn =

∑
0≤k≤n

Ln

2n . Then, we have Ln

2n = Nn−1
2n−1 − Nn

2n , which gives Sn = N0− Nn

2n =
1− Nn

2n , so we only have to prove Nn = o(2n).
Now, Nn is the number of nodes of depth n, and a random input sequence

begins with n bits corresponding to such a node with probability Nn

2n . For each
one of these nodes, the first word of the input sequence recognized as a word of
C has length at least n. Thus, these nodes contribute at least nNn

2n to E(C). As
E(C) is finite, this implies that Nn

2n tends to 0 when n tends to ∞. ut
Therefore, in the case of a suitable code, E(C) is equal to the mean length of

the words of C for the uniform distribution on the alphabet {0, 1}, so we have:

Proposition 3. Let C be a suitable code. Then, we have the equality

E(C) =
∑

w∈C

|w|
2|w|

.

Remark 1. If a prefix code C satisfies the equality in Proposition 2 (for binary
codes, otherwise 2 is replaced by the size of the alphabet), then it is maximal
prefix, and the equivalence holds when C is finite (see for instance [2]). Thus,
suitable codes are maximal prefix, and the converse is true for finite codes, with
E(C) then being given in Proposition 3. However, being maximal prefix may not
be sufficient for E(C) to converge when C is infinite, as Example 1 will show.
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Example 1. Let us consider the code C defined iteratively as follows: for every n
starting from n = 0, C contains all the words w12n

, where w is a word of length
2n with no prefix already in C. The defined code is prefix, and every word w
with no prefix in C with 2n−1 < |w| ≤ 2n can be completed into a word of C by
concatenating enough 1’s to reach length 2n+1, so C is right complete. Therefore,
C is maximal prefix. However, the number of words of length 2n+1 in C being at
most 2n, we get ∑

w∈C

1
2|w|

≤
∑

n≥0

1
22n ,

this last sum being strictly less than 1. Thus, a random binary sequence may
never fall into C with non-zero probability. Hence, E(C) is infinite, and it is no
longer equal to the mean length of code words, which, here, is finite. The code
C is an example of maximal prefix code which is not suitable.

3.4 Requirements on f

As for C, there are also several immediate requirements on f(C). However, they
are more practical than theoretical: at first glance, f(C) may be any set of binary
words, including ε. Now, it must obviously contain at least two non-empty words,
one beginning with 0, and the other with 1, in order to make it possible for the
output to look random for random inputs. Moreover, it must be possible to
construct every binary sequence with the elements of f(C).

In order to be able to process every random input sequence, we introduce
the following definition, which corresponds to the requirement of Definition 2:

Definition 3. Suppose C is a suitable code. Let f be a compression function
f : C → {0, 1}∗. We say that the pair (C, f) is a proper encoder if the expected
length E(f(C)) of the image by f of an element of C in the decomposition of a
randomly chosen input sequence is finite and nonzero.

As we review the properties of the output sequences with respect to uniformly
distributed input sequences, we have:

Proposition 4. For a proper encoder (C, f), the expected length of the image by
f of an element of C in the decomposition of a randomly chosen input sequence,
denoted by E(f(C)), is given by

E(f(C)) =
∑

w∈C

|f(w)|
2|w|

.

Definitions 2 and 3 ensure the finiteness of E(C) and E(f(C)), so we get:

Proposition 5. The output rate of a proper encoder (C, f) is given by

Rate(C, f) =
E(f(C))

E(C) .
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Now, we are going to determine an optimal choice for the output set f(C)
against reconstruction of the input. To every word in the output corresponds a
set of preimages in C. Knowing an output word thus reduces the possible choices
of preimages to one particular set. We will show that, in order to minimize the
information rate, the set f(C) should be as small as possible.

In order to ensure that the distribution of the output sequences satisfies
randomness properties such as those described in [8], each bit of the output
sequence must have equal probability to be 0 or 1. Therefore, we need, for every
n ≥ 1: ∑

w∈C,|f(w)|≥n,f(w)n=0

1
2|w|

=
∑

w∈C,|f(w)|≥n,f(w)n=1

1
2|w|

,

where f(w)n is the n-th bit of the word f(w).

The prefix code output case. First, we consider the case where f(C) is a
prefix code. If it contains two elements, the only possible choice such that the
probability distribution of the output for random inputs is that of a random
sequence is f(C) = {0, 1}. In this case, 0 and 1 must have probability 1

2 to
appear in the output sequence for a random input sequence.

Suppose now that f(C) has more than 2 elements. We want to prove that,
given a random input sequence, knowing the output sequence, we can retrieve
more information on the first element of C than in the case f(C) = {0, 1}.
Proposition 6. Let (C, f) be a proper encoder, and, for x ∈ f(C), let P (x) =∑

w∈f−1(x)
1

2|w| . Then, for a random input sequence s, each word of the decom-
position of s over C has average length E(C), and it is known with an average
entropy

E(C) +
∑

x∈f(C)
P (x) log P (x).

Proof. For x ∈ f(C), let us denote by Cx the preimage of x in C. Then, the
probability that the first element of C recognized in a random input sequence is
mapped by f to x is P (x) =

∑
w∈Cx

1
2|w| . Similarly, the expected length of an

element in the preimage of x is E(Cx) = 1
P (x)

∑
w∈Cx

|w|
2|w| . At last, we compute

the entropy on the elements in Cx:

H(Cx) = −
∑

w∈Cx

1
P (x)2|w|

log
1

P (x)2|w|
=

∑

w∈Cx

1
P (x)2|w|

(log P (x) + |w|)

=
1

P (x)

∑

w∈Cx

|w|
2|w|

+
log P (x)

P (x)

∑

w∈Cx

1
2|w|

= E(Cx) + log P (x).

The average number of bits retrieved is therefore
∑

x∈f(C) P (x)E(Cx) = E(C) for
a random input sequence, so it does not depend on f(C). The average entropy is

∑

x∈f(C)
P (x)(E(Cx) + log P (x)) = E(C) +

∑

x∈f(C)
P (x) log P (x),
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with
∑

x∈f(C) P (x) = 1. ut
It is always possible, given a suitable code C, to divide C into two equiprobable

subsets (the probabilities of leaves in the tree being of the form 1
2n with n ≥ 1,

and their sum being 1). Thus, for every suitable code, there exists a mapping
f : C → {0, 1} such that 0 and 1 are output with probability 1

2 .
Therefore, in order to maximize the entropy for a given suitable code C, the

value of |∑x∈f(C) P (x) log P (x)| should be as small as possible, which implies
#(f(C)) = 2. Therefore, the optimal choice of the output set is f(C) = {0, 1},
with 0 and 1 having probability 1

2 to be output for a random input sequence.

The non-prefix output case. We now consider the case where f(C) does not
contain the empty word ε, but f(C) is not a prefix code. Let C(y) be the set of
words of C such that, for every w ∈ C(y), the sequence y begins with w. Then,
the probability that s begins with w depends on y.

Example 2. Suppose f(C) = {0, 01, 10, 11} with P0 = P11 = 1
3 and P01 = P10 =

1
6 . Then, the first word of the finite output sequence 010 corresponds to a pair
of words (w,w′) of C, with either f(w) = 0 and f(w′) = 10, or f(w) = 01 and
f(w′) = 0. As we have P0P10 = P01P0, the probabilities that f(w) = 0 and
f(w) = 01 are equal whereas P0 > P01.

Thus, it is no longer possible to determine with certainty each word (f(wi))
in the image of the input sequence. However, a path similar to that of Section 3.4
can be followed. The corresponding Proposition 12 and its proof are provided
in Appendix A. They lead to the same conclusion as Section 3.4, namely that
the optimal choice of the output set is f(C) = {0, 1} (thus being prefix), with 0
and 1 having probability 1

2 to appear in the output sequence for a random input
sequence. This case is discussed in Section 4.

General case. We now suppose that ε can belong to the output set f(C).
Proposition 7. Let (C, f) be a proper encoder such that f(C) contains ε. Then,
there exists a proper encoder (C′, f ′) such that f ′(C′) does not contain ε and that,
for every infinite binary sequence s, we have

EncC,f (s) = EncC′,f ′(s).

Moreover, defining Pε =
∑

w∈f−1(ε)
1

2|w| , we have

E(C′) =
1

1− Pε
E(C), and E(f ′(C′)) =

1
1− Pε

E(f(C)).

Proof. Denote by Cε the set of preimages of ε, and by Cε̄ the complement of Cε in
C. Let C′ be the binary code defined by C′ = C∗εCε̄, that is, the set of binary words
that parse into a sequence of words of Cε, followed by a word of Cε̄. Consider
the function f ′ that maps each element ww′ of C′, with w ∈ C∗ε , and w′ ∈ Cε̄,
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to f(w′). As the decomposition is unique, f ′ is well-defined. Moreover, for every
input sequence s, the equality EncC,f (s) = EncC′,f ′(s) is obviously satisfied. At
last, we have f(C′) = f(C)\{ε}, so the image of f ′ does not contain ε.

There remains to show that the new pair (C′, f ′) is also a proper encoder.
First, C′ is also a prefix code because of unicity of the decomposition over C.
Next, as the length of ε is 0, we have

E(f ′(C′)) =
∑

v∈C∗ε ,w∈Cε̄

|f(w)|
2|v|+|w|

=
∑

n≥0

( ∑

v∈Cε

1
2|v|

)n

×
∑

w∈Cε̄

|f(w)|
2|w|

=
E(f(C))
1− Pε

.

As the two encoders (C, f) and (C′, f ′) are equivalent, they have the same output
rate, which yields the same relation between E(C′) and E(C). Hence, (C′, f ′) is
a proper encoder. ut

Proposition 7 shows that we can suppose without loss of generality that f(C)
does not contain ε. Therefore, the optimal choice for f(C) is

f(C) = {0, 1}.

4 The {0, 1}-case

In this section, we focus on the optimal choice of the proper encoder (C, f) when
f(C) = {0, 1}, with 0 and 1 equiprobable relatively to the uniform distribution
over the input sequence. We first give the results that arise from Section 3 in this
case, and we study the security of the framework against well-known attacks:
exhaustive reconstruction, most probable case reconstruction, equations retrieval
and FBDD attacks. Then, using these security results, we deduce the optimal
choice for (C, f) against these attacks.

4.1 Parameters of the {0, 1}-case

Firstly, we give some general properties of the framework in the {0, 1} case. We
denote by C0 and C1 the two sets of preimages of respectively 0 and 1 by f . We
also define Cn

b = {w ∈ Cb, |w| = n} and Dn
b = #(Cn

b ).

Proposition 8. Let (C, f) be a proper encoder with f(C) = {0, 1}. Then, for
a random input sequence s, the average length and entropy of each word of the
decomposition of s over C are respectively E(C) and E(C)− 1.

This result comes from Proposition 6 when applied to the case f(C) = {0, 1},
with 0 and 1 being equiprobable. This equiprobability also implies:

Proposition 9. Given a bit b of the output sequence, a word w ∈ Cb is the
preimage of b with probability 1

2|w|−1 .

Proof. Each word w of C appears in the input sequence with probability 1
2|w| ,

and the probability that w belongs to Cb is 1
2 , which gives the result. ut
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4.2 Security analysis

This section is dedicated to the general analysis of the security provided by the
compression component. We also focus on the case when the input sequence is
the output of a maximal length LFSR.

Exhaustive reconstruction. Exhaustive reconstruction consists in reconstruct-
ing consecutive bits of the input sequence from the output sequence starting from
a fixed point in the output sequence. When a bit b appears in the output, the
expected length and the entropy on the preimage of b in the input sequence are
respectively equal to

Eb =
∑

w∈Cb

|w|
2|w|−1

and Hb = −
∑

w∈Cb

1
2|w|−1

log2(
1

2|w|−1
).

Developing Hb gives

Hb =
∑

w∈Cb

|w| − 1
2|w|−1

= Eb − 1.

Therefore, for a bit b in the output, one can deduce Eb bits in the input, with
entropy Eb − 1.

Suppose that the input sequence is given by a LFSR of length L with a public
feedback polynomial and with the secret key as its initial state. Let E = E0+E1

2 .
It is therefore possible to retrieve the complete state of the LFSR with an attack
of average complexity O(2

E−1
E L), requiring O( L

E ) consecutive output bits.
Moreover, when E0 6= E1 holds, the complexity of the attack can be reduced

by seeking for a sequence where mostly bits b appear, with b such that Eb < Eb̄.
This yields an attack with better complexity, but requiring the knowledge of more
output bits. The general running of this attack consists in taking a window of
consecutive bits in the keystream sequence where most bits are b. The difficulty
when mounting this attack is to determine the better trade-off between the
length of the window and the required number of bits b in this window in order
to retrieve L equations involving consecutive bits of the input sequence. Such an
attack is described in [10] in the case of the BSG decimation algorithm.

Reconstruction based on the most probable case. Another reconstruction
attack consists in betting each time that the preimage of a bit b is (one of) the
most probable. Consequently, for each bit b, we set `b = min{|w|, w ∈ Cb}, and
Cshort

b = {w ∈ Cb, |w| = `b}. Contrary to the previous attack, we cannot choose
the point from which consecutive input bits will be effectively reconstructed.

For a bit b in the output, the preimage of b is w ∈ Cshort
b with probability

1/2`b−1. Thus, we recover `b bits of the input with probability 1/2`b−1.
Suppose now that the input sequence is given by a LFSR of length L. Let

` = `0+`1
2 . It is then possible to retrieve the complete state of the LFSR with an
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attack of average complexity O(2
`−1

` L), requiring O(2
`−1

` L) output bits (namely,
enough for the bet to succeed). In the case where not all the preimages of b have
the same length, we have `b < Eb, so the complexity of this attack is less than
that of exhaustive reconstruction.

Like in exhaustive reconstruction, when `0 6= `1 holds, the attack complexity
can be reduced by seeking sequences where most bits are b, such that `b < `b̄.

Equations retrieval. In some cases, and in particular when the input sequence
is given by a maximum-length LFSR, it is sufficient to retrieve linear equations
on bits that are not consecutive in the input sequence.

However, it is not necessarily easier to retrieve bits that are apart in the
input sequence, because the compression process creates entropy on the length
of the preimages of words in the output sequence. Thus, retrieving bits that are
apart means that we are able to control the length of the gaps between the bits
retrieved in the input sequence.

For a bit b in the output, the preimage of b has length n with probability
Dn

b

2n−1 , where Dn
b is the number of preimages of b of length n. Now, if the preimage

of b has length n, then we can derive a number φn
b of linear equations on the

input bits satisfying

max (0, n− (Dn
b − 1)) ≤ φn

b ≤ n− dlog(Dn
b )e.

Therefore, we can retrieve at least n + 1−Dn
b equations with probability Dn

b

2n−1 .
For a bit b in the output, the average number of retrieved linear equations is
thus

φ̄b =
∑

n≥1

Dn
b φn

b

2n−1
,

the entropy on the length of the preimage of b being

H length
b = −

∑

n≥1

Dn
b

2n−1
log(

Dn
b

2n−1
).

In the best case (which can always be achieved by properly choosing C and f),
where φn

b is the least possible, we obtain:

Proposition 10. Consider a proper encoder (C, f) such that f(C) = {0, 1},
with 0 and 1 having the same probability for random input sequences. Let φ̄b and
H length

b be the average number of retrieved linear equations for a bit b and the
associated entropy on the length of the preimage of b. Then, we have

φ̄b = Eb − δφ
b , with δφ

b =
∑

n≥1

Dn
b

2n−1
min(n, Dn

b − 1),

and
H length

b = Eb − 1− δH
b , with δH

b =
∑

n≥1

Dn
b

2n−1
log Dn

b .

Moreover, δφ
b and δφ

b are both positive, and they satisfy δφ
b ≥ δH

b .
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Proof. The formulas for δφ
b and δH

b both follow from straight computation. Now,
we always have Dn

b ≤ 2n, so log Dn
b is always at most n. Moreover, for every

integer x > 1, we have x− 1 ≥ log x. So, for every n such that Dn
b 6= 0, we have

min(n,Dn
b − 1) ≥ log Dn

b . ut
These results link the complexity of equations retrieval attacks with exhaus-

tive reconstruction by way of Eb. As a consequence of this proposition, when
0 and 1 have the same number of preimages of each given length, retrieving L

equations has complexity at least O(2
E−1−δφ

E−δφ L), while exhaustive reconstruction
of L bits has complexity O(2

E−1
E L). Thus, for δφ = 0, equations retrieval is not

more effective than exhaustive reconstruction. This happens only when each bit
has at most one preimage of each length.

Suppose now the input sequence is given by a LFSR of length L. It is therefore
possible to retrieve L linear equations on the input bits of the LFSR with an
attack of average complexity

O(2(
H

length
0
φ̄0

+
H

length
1
φ̄1

) L
2 ),

requiring O(L) consecutive output bits.
Like in the previous attacks, when φ̄0

Hlength
0

6= φ̄1

Hlength
1

holds, the complexity of
the attack can be reduced by seeking for a sequence where mostly bits 0 or 1
appear (depending on the inequality direction). The attack thus obtained has
better complexity, but requires the knowledge of more output bits.

Example 3. We consider the ABSG code tree. For every length n ≥ 2, there is
exactly one preimage of 0 and one preimage of 1 of length n. We obtain

φ̄b =
∑

n≥2

n

2n−1
= 3 = Eb, and H length

b =
∑

n≥2

n− 1
2n−1

= φ̄b = Hb.

The equations retrieval attack is thus as difficult as exhaustive reconstruction
for the ABSG.

FBDD attacks. Krause [13] introduced the FBDD-attack (standing for Free
Binary Decision Diagram) which is a cryptanalysis method for LFSR-based gen-
erators, i.e., a generator LG that, for each initial state x ∈ {0, 1}n, outputs a
linear bitstream LG(x), and a compression function which compresses the linear
bitstream. The cryptanalysis method relies on two assumptions called the FBDD
Assumption and the Pseudo-randomness Assumption (see [13] for details).

The cost of the cryptanalysis depends on two properties of the compression
function that are a parameter γ linked to the maximal length of the sequence
output by the compression function when applied on all sequences of length m,
and some parameter α (see [13] and some details in [10]); the two parameters
α and γ are reals between 0 and 1. Then, the time and space complexity of
the FBDD-attack is LO(1)2

1−α
1+α L and it requires dγα−1Le consecutive bits of the

keystream in order to compute L consecutive bits of the input sequence.
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When the probability that the image of a randomly chosen finite input se-
quence is a prefix of a given output sequence varies according to the output
sequence, it is not clear whether the original FBDD-attack may be improved to
be more efficient.

4.3 Optimal choices

In this part, we construct an optimal proper encoder in light of the attacks
considered previously.

Requirements based on security analysis. In order to thwart attacks based
on asymmetry between the preimage of 0 and that of 1, each output bit must
have the same number of preimages of a given length.

Next, in order to maximize the complexity of most probable case attacks
while keeping a good output rate, the length of the shortest word in C should
be as close as possible to the average length of the words in C.

Example 3 shows that the ABSG compression mechanism is optimal regard-
ing equations retrieval attacks, meaning that it is not easier to retrieve equations
than to reconstruct consecutive bits of the input sequence.

In the general case, equations retrieval attacks can have a better complexity
than exhaustive reconstruction. However, as shown in Proposition 10, in order to
lessen their efficiency, each bit should have at most one preimage of each length.

Construction of an optimal framework. For an output rate at least 1
2 ,

the number of choices for the proper encoder are finite, because of symmetry
requirements, and the output rate is either equal to 1 or 1

2 exactly. For Rate = 1,
there are two proper encoders, with C = {0, 1}, which is insecure. For Rate = 1

2 ,
one can construct 6 proper encoders. The suitable code is C = {00, 01, 10, 11},
and the function f is such that 0 and 1 have two preimages each. For each choice,
as the length of the preimages is constant, we can apply the equations retrieval
attack and solve the corresponding system. The complexity is then O(L).

Let then h be the minimal depth of leaves in the tree. As each output bit must
have the same number of preimages of a given length, the number of preimages
of 0 and 1 of depth h in C is the same. Then, the complexity of reconstruction
using the most probable case is O(h−1

h L). In order to maximize the output rate,
we have to choose h = 2, and no level in the tree should have only internal
nodes. This implies that, at every depth more than 2, the tree must have exactly
2 leaves, until the last level with depth d, where it has 4 leaves. We denote by
T d

2 the set of code trees of depth d, and exactly 2 leaves of depth 2, 3, . . . , d− 1
(hence 4 leaves of depth d for d < ∞). The ABSG code tree belongs to T∞2 . In
order to obtain proper encoders using these codes, one only has to use functions
f such that the number of preimages of 0 and 1 of each depth in C is the same.

This optimal code can be adapted for smaller output rates, beginning at
depth h > 2. This makes most probable case attacks more complex, though
another way of complexifying them is to act on the input sequence using, for
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instance, a longer LFSR. The tree considered then has exactly 2h−1 leaves of
depth h, . . . , d − 1 and maximal depth d (reached by exactly 2h leaves when d
is finite). Notice that the trees T d

h can be constructed by putting 2h−2 trees of
T d+2−h

2 at depth h− 2 in a tree with all internal nodes until depth h− 2.
However, equations retrieval attacks are more efficient for h > 2:

Proposition 11. Consider a proper encoder (C, f) such that the code tree of C
is a T d

h tree, and that 0 and 1 have the same number of preimages of each given
length. Suppose also that C is such that the number of equations linking the
preimages of b of length n is the least possible, namely φn

b = max(0, n+1−Dn
b ).

Then, we have:

1. for every h ≥ 2, the entropy on the length of the preimage of a given output
bit b is H length = 2− 2h+1−d,

2. for 2 ≤ h ≤ 4, we have φ̄b = h + 2− 2h−2 − 2h−d − 22h−d−2, which is equal
to 3 for h = 3 and d = ∞.

Proof. These are the results of straight, yet tedious computations. ut
As a consequence of these results, and namely of the entropy remaining less

than 2, the complexity of equations retrieval attacks does not grow fast when the
output rate decreases. Therefore, the optimal framework against these attacks
is reached when the code tree belongs to T∞2 . However, the attack complexity
remains at least O(2

L
2 ) for trees in T d

2 with d > 2.

Definition 4. We say that a proper encoder (C, f) is an optimal encoder if the
associated code tree belongs to T∞2 , and if 0 and 1 have exactly one preimage by
f of length `, for ` ≥ 2.

In Table 1, we provide the characteristics of proper encoders constructed on
the basis of general T d

h trees as defined in Proposition 11. We also provide a
comparison with the SSG. We left aside polynomial terms in the computational
complexity. One should also note than most probable case attacks require much
known keystream, whereas the other attacks considered require only a number
of bits linear in L, where L is the number of bits we want to retrieve. The results
for FBDD attacks are taken from [13, 10] for the SSG and ABSG. Moreover,
the complexity of FBDD attacks is the same for all optimal encoders, including
the ABSG. We see that equations retrieval attacks are more powerful against
T d

2 trees than exhaustive reconstruction, which is why we did not consider them
as optimal. However, they may be easier to protect against timing attacks than
optimal encoders, because the length of their codewords is bounded.

5 Applications

5.1 Bit-search-based generators

In [9], the BSG algorithm was proposed, and was presented together with the
ABSG, which was then described in [10]. Both share the same code tree pre-
sented in Figure 1, which belongs to T∞2 , and thus fits in our framework. The
corresponding code is C = {01k0, 10k1, k ≥ 0}.
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Output Exhaustive Most probable Equations FBDD

rate reconstruction case retrieval attacks

T d
h

1
h+1−2h−d

h−2h−d

h+1−2h−d L h−1
h

L see Prop.11 n/a

T∞h
1

h+1
h

h+1
L h−1

h
L see Prop.11 n/a

T d
2

1
3−22−d

2−22−d

3−22−d L 1
2
L 2−23−d

3−23−d L n/a

T∞2 (ABSG) 1
3

2
3
L 1

2
L 2

3
L ' 0.532L

T∞3
1
4

3
4
L 2

3
L 2

3
L ' 0.615L

SSG 1
4

3
4
L 1

2
L 2

3
L(see Section 5.2) ' 0.656L

Table 1. Characteristics and attack exponent against T d
h trees filtering LFSRs

In the case of the BSG, the compression function fBSG maps codewords
of length 2 to 0, and the other codewords to 1. Therefore, it is not an opti-
mal encoder. This asymmetry resulted in several attacks [10, 11]. For instance,
the equations retrieval attack takes advantage of it and it is especially efficient
against the BSG, with complexity O(2

1
3 L).

In the case of the ABSG, the compression function fABSG maps codewords
to their second bit, so it is an optimal encoder. Therefore, the ABSG is optimal
against the attacks we described. Their complexity is given in table 1.

5.2 Self-Shrinking Generator

Let us set C = {00, 01, 10, 11}, and define f : C → {0, 1, ε} by : f(00) = f(01) =
ε, f(10) = 0 and f(11) = 1. The Self-Shrinking Generator is exactly the scheme
corresponding to the pair (C, f) in our framework.

The pair (C, f) is a proper encoder, but it contains ε. Following the trans-
formation described in Proposition 7, we set C′ = {(0{0, 1})∗1{0, 1}}, and we
define f ′ : C′ → {0, 1} by f(w) = b for w ∈ {(0{0, 1})∗1b}.

The pair (C′, f ′) is a proper encoder that has an optimal output set and
satisfies the symmetry requirement: at every level of the corresponding tree,
described in Figure 2, there are exactly as many preimages of 0 and 1.

The SSG is neither an optimal encoder, nor is it optimal among proper
encoders having the same output rate. This comes from the fact that one out of
two levels in the tree is empty. Let us compare the corresponding scheme to the
optimal choice for the same output rate ( 1

4 for the SSG), whose code tree is a T∞3
tree. For both schemes, the complexity of the exhaustive reconstruction attack
is the same, namely O(2

3
4 L). However, the complexity of the most probable case

attack against the SSG is O(2
L
2 ), requiring O(2

L
2 ) bits of the output. For the

T∞3 choice, this attack has complexity O(2
2
3 L), and requires O(2

2
3 L) output bits.

Therefore, the SSG is not optimal against most probable case attacks.
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Fig. 2. SSG code tree

Moreover, for each output bit, the input has length 2n with probability 1
2n ,

in which case one can recover n + 1 equations. This yields that 3 equations are
known on average, with an entropy of 2. Therefore, the equations retrieval attack
has complexity O(2

2
3 L), which is the same as T∞3 , but also as T∞2 (ABSG). As

this attack requires a number of bits linear in L, it is as practical as exhaus-
tive reconstruction. Notice that the equations retrieval attack against the SSG
has almost the same complexity as the FBDD attack of Krause [13], while not
requiring a large amount of memory.

Therefore, an optimal encoder such as the ABSG is as secure against the
attacks considered in this paper as the Self-Shrinking Generator (apart from
FBDD-attacks), while providing a better output rate ( 1

3 instead of 1
4 ).

6 Conclusion and further work

In this paper, we have extensively studied how to compress efficiently and se-
curely the output of pseudo-random generators. It turns out that the ABSG,
which was introduced in [9, 10], and is part of the DECIM proposal to the
ECRYPT stream cipher project [5], has the optimal properties against several
well-known attacks. But it is also possible to design several other optimal en-
coders with the same properties, using code trees taken from the T∞2 infinite
family. At last, we have also shown compression components based on these
trees are almost as secure as the Self-Shrinking Generator [15], while providing
an output rate of 1

3 instead of 1
4 . We consider two main directions for research

in this area. First, one could use another generator to choose the compression
function at each iteration, while keeping the same code tree. The idea is thus to
generalize this framework by using other pseudo-random generators to control
compression. This should provide us with comparisons with the Shrinking Gen-
erator [3]. Second, if the compression function and the code are chosen properly,
a compression component may also erase the bias of a pseudo-random generator
that does not produce every bit sequence with equal probability. It then seems
possible to construct a general design for bias-erasing compression.
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A Choice of the output set: non-prefix case

We consider the case where f(C) is not a prefix code and does not contain
the empty word ε. Thus, it is no longer possible to determine with certainty
each word (f(wi)) of the image of the input sequence. For statistical reasons,
f(C) contains at least one word beginning with 0, and one beginning with 1.
Moreover, as it is not prefix, it also contains two words beginning with the same
bit. Therefore, f(C) contains at least three elements.

Proposition 12. Let (C, f) be a proper encoder such that f(C) is a non-prefix
set that does not contain the empty word ε. Then, the average expected length of
the first word of the decomposition of the input sequence over C is E(C) when
the input sequence is chosen uniformly. This word is known with average entropy
E(C) + ∆(C), with ∆(C) < −1.
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Proof. For x ∈ f(C), we denote by Cx the set of preimages of x in C, and we
define P (x) =

∑
w∈Cx

1
2|w| . Let y be the output sequence corresponding to a

randomly chosen input sequence s. Let C(y) be the set of words of C such that,
for every w ∈ C(y), the sequence y begins with w.

Let Py(x) denote the probability that the image by f of the first element of
C recognized in s is x, given y. Then, we have

∑

x∈C(y)

Py(x) = 1.

Now, each element in Cx has probability 1
P (x)2|w| to be the preimage of x.

Thus, the average length of the first element of C recognized in s, given y, is

Ey(C) =
∑

x∈C(y)

Py(x)
∑

w∈Cx

|w|
P (x)2|w|

.

Output sequences are chosen following the uniform distribution on input
sequences, so the average length of the first element of C recognized in a random
input sequence knowing the output is E(C) =

∑
w∈C

|w|
2|w| . Hence, the average

value of Ey for random input sequences is E(C), which is the first result.
Next, the entropy on the first element of C recognized in s, given y, is:

Hy(C) = −
∑

x∈C(y)

∑

w∈Cx

Py(x)
1

P (x)2|w|
log

Py(x)
P (x)2|w|

=
∑

x∈C(y)

∑

w∈Cx

Py(x)
P (x)2|w|

(|w|+ log P (x)− log Py(x))

= Ey(C) +
∑

x∈C(y)

Py(x)(log P (x)− log Py(x)).

The average value of Hy for uniformly chosen input sequences is thus the sum
of E(C) and of the average value of ∆y(C) =

∑

x∈C(y)

Py(x)(log P (x)− log Py(x)).

for random input sequences. Let b be the first bit of y. Then, C(y) is included in
the subset C(b∗) of C consisting of those words that are mapped by f to a word
whose first bit is b. For statistical reasons, we have

∑
x∈C(b∗)

1
2|x| = 1

2 , which
yields ∑

x∈C(y)

1
2|x|

≤ 1
2

. (1)

Moreover, as there are at least 3 elements in f(C), there are some output se-
quences y such that the inequality in Equation (1) is strict.

Using equality
∑

x∈C(y) Py(x) = 1 and inequality (1), we obtain ∆y ≤ −1
for every output y, the inequality being strict when that of (1) is. Therefore, the
average value of ∆y for all random input sequences is strictly less than −1. ut

Hence, the optimal choice of the output set, even if non-prefix output sets
are considered, is still f(C) = {0, 1}, with 0 and 1 having probability 1

2 to appear
in the output sequence for a random input sequence.


