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Abstract. The Isomorphism of Polynomials (IP) [28], which is the main
concern of this paper, originally corresponds to the problem of recovering
the secret key of a C∗ scheme [26]. Besides, the security of various other
schemes (signature, authentication [28], traitor tracing [5], . . . ) also de-
pends on the practical hardness of IP. Due to its numerous applications,
the Isomorphism of Polynomials is thus one of the most fundamental
problems in multivariate cryptography. In this paper, we address two
complementary aspects of IP, namely its theoretical and practical dif-
ficulty. We present an upper bound on the theoretical complexity of
“IP-like” problems, i.e. a problem consisting in recovering a particular
transformation between two sets of multivariate polynomials. We prove
that these problems are not NP-Hard (provided that the polynomial hi-
erarchy does not collapse). Concerning the practical aspect, we present
a new algorithm for solving IP. In a nutshell, the idea is to generate a
suitable algebraic system of equations whose zeroes correspond to a so-
lution of IP. From a practical point of view, we employed a fast Gröbner
basis algorithm, namely F5 [17], for solving this system. This approach
is efficient in practice and obliges to modify the current security criteria
for IP. We have indeed broken several challenges proposed in literature
[28, 29, 5]. For instance, we solved a challenge proposed by O. Billet and
H. Gilbert at Asiacrypt’03 [5] in less than one second.
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1 Introduction

Multivariate cryptography – which can be roughly defined as the cryptogra-
phy using polynomials in several variables – offers a relatively wide spectrum
of problems that can be used in public-key cryptography. The Isomorphism of
Polynomials (IP) lies in this family [28]. Briefly, this problem consists in recov-
ering a particular transformation between two sets of multivariate polynomials
permitting to obtain one set from the other. It originally corresponds to the



problem of recovering the secret key of a C∗ scheme [26]. Besides, the security of
several other schemes is directly based on the practical difficulty of IP, namely
the authentication/signature schemes proposed by J. Patarin at Eurocrypt’96
[28], and the traitor tracing scheme described by O. Billet and H. Gilbert at
Asiacrypt’03 [5]. We also mention that IP is in a certain manner related to the
security of Sflash [13] – the signature scheme recommended by the European con-
sortium Nessie for low-cost smart cards [27] – and can be alternatively viewed
as the problem of detecting affine equivalence between S-Boxes [6]. All in all,
one can consider the hardness of IP as one of the major issues in multivariate
cryptography. The goal of this paper is to provide new insights on the theoretical
and practical complexity of IP and some of its relevant variants.

1.1 Previous Work

To the best of our knowledge, the most significant results concerning IP are
presented in [11], where an upper bound on the theoretical complexity of IP is
given. Nevertheless, we point out that the proof provided is actually not com-
plete. Anyway, the upper bound presented in that paper is original and general.
It is indeed based on a group theoretic approach of IP and actually dedicated to
“IP-like” problems. A new algorithm for solving IP, called “To and Fro”, is also
described in [11]. This algorithm is however devoted to special instances of IP,
namely the ones corresponding to a public key of C∗ [26]. Thus, it can not be
used for solving generic instances of IP. This is not the case for the algorithm
presented here. Besides, we present in Section 4 experimental results demon-
strating that our algorithm outperforms the “To and Fro” method. Finally, we
would like to mention a result due to W. Geiselmann, R. Steinwandt, and T.
Beth [23]. In the context of C∗, they showed how to easily recover the affine
parts of a solution of IP. A similar property also holds in the context of HFE
[20]. Such a kind of result does not exist for generic instances of IP. Nevertheless,
it means that in the cryptographic context we can focus our attention on the
linear variant of IP, called 2PLE here.

1.2 Organization of the Paper and Main Results

The paper is organized as follows. We begin in Section 2 by introducing our nota-
tion and defining essential tools of our algorithm, namely varieties and Gröbner
bases. A recent algorithm (i.e. F5 [17]) for computing these bases is also suc-
cinctly described. Finally, we define more formally the Isomorphism of Polyno-
mials (IP) and two of its variants, namely the Isomorphism of Polynomials with
one Secret (IP1S) [28], and the linear variant of IP that we name 2PLE. In Sec-
tion 3, we show that these problems are actually particular instances of a more
general problem that we call Polynomial Equivalence (PE). This problem pro-
vides a formal definition of an “IP-like” problem. Using classical results of group
theory, we conclude this section by providing an upper bound on the theoretical
hardness of PE. A new algorithm for solving 2PLE is presented in Section 4.
The idea is to generate a suitable polynomial system of equations whose zeroes



correspond to a solution of IP. In order to construct this system, we also provide
some specific properties of 2PLE. From a practical point of view, we used the
most recent (and efficient) Gröbner basis algorithm, namely F5 [17], for solv-
ing this system. It is difficult to obtain a complexity bound really reflecting the
practical behavior of the F5 algorithm. We therefore carried out experimental
results illustrating the practical efficiency of our approach. We have indeed bro-
ken several challenges proposed in literature [28, 29, 5]. For instance, we solved
a challenge proposed by O. Billet and H. Gilbert at Asiacrypt’03 [5] in less than
one second.

2 Preliminaries

The notation used throughout this paper is the following. We denote by Fq the
finite field with q = pr elements (p a prime, and r ≥ 1), and by Mn,u(Fq) the
set of n×u matrices whose components are in Fq. As usual, GLn(Fq) represents
the set of invertible matrices of Mn,n(Fq), and AGLn(Fq) denotes the cartesian
product GLn(Fq)×F

n
q . Finally, let x = (x1, . . . , xn), and Fq[x] = Fq[x1, . . . , xn],

be the polynomial ring in the n indeterminates x1, . . . , xn over Fq. By convention,
a boldfaced letter will always refer to a row vector.

2.1 Gröbner bases

We define now two essential notions of this paper, namely varieties and Gröbner
bases. For a more thorough introduction to these tools, we refer to [1, 15].
Let p = (p1, . . . , ps) be polynomials in Fq[x]. We shall call I = 〈p1, . . . , ps〉 =
{

∑s
k=1 pkuk, u1, . . . , uk ∈ Fq[x]

}

⊂ Fq[x] the ideal generated by p1, . . . , ps, and
denote by V (I) = {z ∈ F

n
q : pi(z) = 0, ∀i, 1 ≤ i ≤ s} the variety associated

to I. Gröbner bases provide a method for computing this variety. Informally,
a Gröbner basis of an ideal I is a computable generator set of I with “good”
algorithmic properties. These bases are defined with respect to monomial orders.
Here, we will use the lexicographical (LEX) and degree reverse lexicographical
(DRL) orders, which are defined as follows:

Definition 1. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ N
n. Then:

– xα1

1 · · ·xαnn ≺LEX xβ1

1 · · ·xβnn , if the left-most nonzero entry of α−β is positive.

– xα1
1 · · ·xαnn ≺DRL xβ1

1 · · ·xβnn , if
∑n

i=1 αi >
∑n

i=1 βi, or
∑n

i=1 αi =
∑n

i=1 βi
and the right-most nonzero entry of α− β is negative.

To define Gröbner bases, we need to introduce the following definitions.

Definition 2. For any n-tuple α = (α1, . . . , αn) ∈ N
n, we denote by xα the

monomial xα1
1 · · ·xαnn . We shall define the total degree of this monomial by the

sum
∑n

i=1 αi. The leading monomial of a polynomial p ∈ Fq[x] is the largest
monomial (w.r.t some monomial ordering ≺) among the monomials of p. This
leading monomial will be denoted by LM(p,≺). The degree of p, denoted deg(p),
is the total degree of LM(p,≺). Finally, the maximal total degree of p is the
maximal total degree of the monomials occurring in p.



We are now in a position to define one of the main objects of this paper.

Definition 3. A set of polynomials G is a Gröbner basis – w.r.t. a monomial
ordering ≺ – of an ideal I in Fq[x] if, for all p ∈ I, there exists g ∈ G such that
LM(g,≺) divides LM(p,≺).

Gröbner bases are a fundamental tool to study algebraic systems in theory and
practice. They provide an algorithmic solution to several problems related to
polynomial systems (see [1] for instance). We pay here particular attention to
Gröbner bases computed for a lexicographical ordering. It offers a way of sim-
plifying an algebraic system by giving an equivalent system with a structured
shape. A lexicographical Gröbner basis of a zero-dimensional system (i.e. with
a finite number of zeroes over the algebraic closure) is indeed always as follows:

{f1(x1) = 0, f2(x1, x2) = 0, . . . , fk2(x1, x2) = 0, fk2+1(x1, x2, x3) = 0, . . . , . . . }

To compute the variety, we simply have to successively eliminate variables by
computing zeroes of univariate polynomials and back-substituting results. How-
ever, computing a Gröbner basis w.r.t. a lexicographical order is in practice much
slower than computing a Gröbner basis w.r.t. another monomial ordering. It is
usually for a DRL order that the computation of Gröbner bases is the fastest in
practice. Algorithms changing the monomial ordering of a Gröbner basis permit
to handle efficiently this problem. The FLGM algorithm [19] allows to transform
a Gröbner basis w.r.t. some monomial ordering into a lexicographical Gröbner
basis in the zero-dimensional case and is polynomial-time.

The historical method for computing Gröbner bases is Buchberger’s algorithm [9,
8]. Recently, more efficient algorithms have been proposed. The F4 algorithm [16]
is based on the intensive use of linear algebra methods. In short, the arbitrary
choices – which limit the practical efficiency of Buchberger’s algorithm – are
replaced by computational strategies related to classical linear algebra problems
(mainly the computation of a row echelon form).

In [17], a new criterion (the F5 criterion) for detecting useless computations has
been proposed. We mention that Buchberger’s algorithm spends 90% of its time
to perform these useless computations. Under some regularity conditions, it has
been proved that all useless computations can be avoided. A new algorithm,
called F5, has then been built using this criterion and linear algebra methods.
Briefly, it constructs incrementally the following matrices in degree d:

Ad =

m1 � m2 � m3 . . .
t1f1
t2f2
t3f3
. . .









. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .









where the indices of the columns are monomials sorted for the admissible order-
ing ≺ and the rows are product of some polynomials fi by some monomials tj
such that deg(tjfi) ≤ d. For a regular system ([17]) the matrices Ad are of full
rank. In a second step, row echelon forms of theses matrices are computed, i.e.



A′
d =

m1 m2 m3 . . .
t1f1
t2f2
t3f3
. . .









1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
0 0 0 . . .









For d sufficiently large, A′
d contains a Gröbner basis of the ideal considered.

Important parameters to evaluate the complexity of F5 is the maximal degree
d occurring in the computation and the size of the matrix Ad. The overall cost
is thus dominated by (#Ad)

3
. Very roughly, (#Ad) can be approximated by

O(nd). A more precise complexity analysis can be found in [3, 4].

From a practical point of view, the gap with other algorithms computing Gröbner
basis is consequent. To date, F5 is the most efficient method for computing
Gröbner bases, and hence zero-dimensional varieties. In particular, it has been
proved [2] – from both a theoretical and practical point of view – that XL [14]
is less efficient than F5. Due to the range of examples that become computable
with F5, Gröbner basis can be considered as a reasonable computable object in
real scale applications. For systems arising in cryptography, F5 has for instance
given impressing results on HFE [18].

2.2 Isomorphism of Polynomials and Related Problems

Before defining formally IP, we briefly come back here to the origin of this
problem. To do so, we describe the encryption scheme called C∗ [26]. The
public key of this system is a set of multivariate quadratic polynomials b =
(

b1(x), . . . , bn(x)
)

∈ Fq[x]n. These polynomials are obtained by applying two
bijective affine transformations (S,V) and (U,V) of AGLn(Fq) to a particular
set of polynomials a =

(

a1(x), . . . , an(x)
)

∈ Fq[x]n. That is:

(

b1(x), . . . , bn(x)
)

=
(

a1(xS + T), . . . , an(xS + T)
)

U + V,

denoted b(x) = a(xS + T)U + V in the sequel.
To encrypt, we simply evaluate a message m ∈ F

n
q on b, i.e.

(

b1(m), . . . , bn(m)
)

.
To recover the correct plaintext, the legitimate recipient uses the bijectivity of the
affine transformations combined with the particular structure of the polynomials
of a. How these polynomials are constructed is not relevant here. But, due to
particular constraints, the polynomials of a are always considered as a public
data. The secret key of C∗ is constituted of (S,T), (U,V) ∈ AGLn(Fq).

The first approach for attacking this scheme consists in trying to retrieve the
message corresponding to a ciphertext c ∈ F

n
q , i.e. finding a zero of b(x) = c.

This corresponds to solving a particular instance of the so-called MQ problem,
which is NP-Hard in general [10, 22]. We emphasize that such a kind of result
uniquely guarantees the worst-case hardness and does not provide any informa-
tion concerning the average-case difficulty. For instance, J.-C. Faugère and A.
Joux proposed a polynomial-time algorithm for solving instances of MQ corre-
sponding to the public key of HFE [18], which is an extension of C∗.



Another approach for breaking C∗ consists in attempting to recover the affine
transformations hiding the structure of a. That is, extracting the secret key from
the public key. This problem, introduced by J. Patarin at Eurocrypt’96 [28], is
defined as follows:
Isomorphism of Polynomials (IP)
Input: a = (a1, . . . , au), and b = (b1, . . . , bu

)

in Fq[x]u.
Question: Find – if any – (S,V) ∈ AGLn(Fq) and (U,V) ∈ AGLu(Fq), s. t.:

b(x) = a(xS + V)U + V.

More precisely, it is usually the linear variant of IP which is considered in practice
[28, 5]. That is, when the vectors T and V are both equal to the null vector. This
problem, that we call 2PLE is the following:
Input: a = (a1, . . . , au), and b = (b1, . . . , bu) in Fq[x]u.
Question: Find – if any – (S,U) ∈ GLn(Fq) ×GLu(Fq), such that:

b(x) = a(xS)U.

However, it is without solving any of the two problems mentioned above that
J. Patarin proposed a full cryptanalysis of C∗ [30]. This attack uses the very
particular structure of the polynomials of a. This result thus does not then
affect at all the practical hardness of IP. The security estimate provided for this
problem [29] is based on the complexity of the “To and Fro” (TF) algorithm [11,
12], which is qn/2 for quadratic polynomials, and qn otherwise.

In the rest of this paper,
(

a = (a1, . . . , au),b = (b1, . . . , bu)
)

will always denote
an element of Fq[x]u × Fq[x]u. We will always suppose that all the polynomials
of a have the same maximal total degree noted D (in the practical applications,
we have 2 ≤ D ≤ 4). Note that, if b(x) = a(xS)U , for some (S,U) ∈ GLn(Fq)×
GLu(Fq), then the polynomials of b must have the same maximal total degree
than the ones of a, i.e. D.

3 A Unified Point of View

The Isomorphism of Polynomials and 2PLE problems have actually a very similar
formulation. An input of these problems is formed of two systems of multivariate
polynomials and the question consists in recovering a particular transformation
permitting to express one system in function of the other. All transformations
have the same characteristic: inducing a group action on Fq[x]u. Recall that
a group (G, ·), with identity element e, acts on Fq[x]u if there exists a map
φ : G× Fq[x]u → Fq[x]u such that φ(e,p) = p, for all p ∈ Fq[x]u, and:

φ
(

g, φ(g′,p)
)

= φ(g · g′,p), for all g, g′ ∈ G, and for all p ∈ Fq[x]u.

Remark 1. In order to simplify the notations, we will write G instead of (G, ·).

For 2PLE, one can then easily check that GLn(Fq) × GLu(Fq) acts on Fq[x]u

through:
φ2PLE : GLn(Fq) ×GLu(Fq) × Fq[x]u → Fq[x]u

(

(S,U),a
)

7→ a(xS)U



Similarly for IP, AGLn(Fq) ×AGLu(Fq) acts on Fq[x]u through:

φIP : AGLn(Fq) ×AGLu(Fq) × Fq[x]u → Fq[x]u
(

(S,T), (U,V),a
)

7→ a(xS + T)U + V

This observation naturally leads to the introduction of the following problem.
Let (G, ·) be a group, and φ : G× Fq[x]u → Fq[x]u be an action of G on Fq[x]u.
Given (a,b) ∈ Fq[x]u × Fq[x]u, the problem we call Polynomial Equivalence,
with respect to (G, ·) and φ – and denoted by PE

(

G,φ
)

– is the one of finding
(if any) g ∈ G, verifying:

b = φ(g,a),

denoted a ≡(G,φ) b in the sequel. This formulation is very convenient since it

procures a unified description of IP and 2PLE. Indeed, PE
(

GLn(Fq)×GLu(Fq),

φ2PLE

)

=2PLE, and PE
(

AGLn(Fq) × AGLu(Fq), φIP

)

=IP. More generally, PE
provides a unified description of “IP-like” problems. In our mind, such a kind
of problems consists in recovering a particular transformation between two sets
of multivariate polynomials. For instance, the Isomorphism of Polynomials with
one Secret (IP1S) – introduced at Eurocrypt’96 by J. Patarin [28] – falls into
this new formalism. This problem, which can be used to design an authentica-
tion (resp. signature) scheme [28], is as follows. Given (a,b) ∈ Fq[x]u × Fq[x]u,
find – if any – (S,T) ∈ AGLn(Fq), such that b(x) = a(xS + T). Using our
formalism, we immediately obtain that PE

(

AGLn(Fq), φIP1S

)

= IP1S, with

φIP1S : AGLn(Fq) × Fq[x]u → Fq[x]u,
(

(S,T),a(x)
)

7→ a(xS + T). Finally, the
following lemma justifies the use of the word equivalence in PE.

Lemma 1. Let (G, ·) be a group, and φ : G × Fq[x]u → Fq[x]u be an action of
G on Fq[x]u. Then, ≡(G,φ) is an equivalence relation on Fq[x]u.

3.1 Polynomial Equivalence Problems and Group theory

In the Graph Isomorphism context, the introduction of group theory concepts
permitted to achieve significant advances from both a theoretical and algorithmic
point of view [24, 21]. The formalism previously given permits to naturally extend
these results to Polynomial Equivalence problems.

Definition 4. Let (G, ·) be a group. We shall call Aut(G,φ)(a) =
{

g ∈ G :

φ(g,a) = a
}

, Aut(G,φ)(b) =
{

g ∈ G : φ(g,b) = b
}

, the automorphism groups

of a and b w.r.t. (G,φ). We shall also set S(G,φ)(a,b) =
{

g ∈ G : b = φ(g,a)
}

.

Aut(G,φ)(a) and .Aut(G,φ)(b) are also known as stabilizer of a (resp. b) w.r.t.
(G,φ). However, we will rather call these sets automorphism groups. This desig-
nation being indeed more usually used in the Graph Isomorphism context [24].
Anyway, the results that we are going to expose are classical results of group
theory concerning the stabilizers and orbits, and then given without proofs.

Proposition 1. Let (G, ·) be a group, and φ : G×Fq[x]u → Fq[x]u be an action
of G on Fq[x]u. If there exists g ∈ G, such that b = φ(g,a), then S(G,φ)(a,b) is



a left (resp. right) coset – in G – of the automorphism group Aut(G,φ)(a)
(

resp.

Aut(G,φ)(b)
)

. That is:

{

S(G,φ)(a,b) =
{

g · h : h ∈ Aut(G,φ)(a)
}

= g ·Aut(G,φ)(a),

S(G,φ)(a,b) =
{

h · g : h ∈ Aut(G,φ)(b)
}

= Aut(G,φ)(b) · g.

Moreover, the automorphism groups Aut(G,φ)(a) and Aut(G,φ)(b) are conjugate,
i.e. Aut(G,φ)(b) = g ·Aut(G,φ)(a) · g−1, and we have:

|S(G,φ)(a,b)| = |Aut(G,φ)(b)| = |Aut(G,φ)(a)|.

3.2 A Generic Upper Bound on the Complexity of “IP-like”
Problems

Using the Polynomial Equivalence problem previously defined, we give in this
part a general upper bound on the theoretical complexity of “IP-like” problems.
To do so, Let us fix a group (G, ·) acting on Fq[x]u through a map noted φ.
For simplicity, we suppose here that G is included in a finite set E . We also
suppose that the uniform distribution of the elements of E can be simulated in
polynomial-time. These assumptions allows to facilitate the proofs, and are ad-
ditionally well adapted to “IP-like” problems. Indeed, AGLn(Fq) ⊂ Mn,n(Fq)×
F
n
q , GLn(Fq) × GLu(Fq) ⊂ Mn,n(Fq) × Mu,u(Fq), AGLn(Fq) × AGLu(Fq) ⊂

Mn,n(Fq) × F
n
q ×Mu,u(Fq) × F

u
q . To obtain our upper bound, we introduce:

Definition 5. An interactive proof for a language L
(

i.e. a subset of {0, 1}∗
)

is a two party protocol between a verifier V and a prover P. At the end of the
protocol, the verifier has to accept or reject a given input such that the following
conditions hold:
Efficiency. The verifier strategy is a probabilistic polynomial time procedure.
Completeness. For all x ∈ L, Pr[(V ,P)(x) accepts] = 1.
Soundness. For all x 6∈ L, and for any prover P∗, Pr[(V ,P∗)(x) accepts] ≤ 1

2 .
The probabilities are taken over the random choices of the verifier.

Let us analyse the following two party protocol:

Input: (a0,a1) ∈ Fq[x]u × Fq[x]u

Protocol: PI(G,φ)
The verifier chooses uniformly at random i ∈ {0, 1}.
He also chooses uniformly at random g ∈ E and checks if g ∈ G. If after C trials
the verifier does not obtain an element g ∈ G, he accepts directly.
Otherwise, he sends a′ = φ(g,ai) to the prover.
The prover replies by sending j ∈ {0, 1} to the verifier.
The verifier accepts if i = j and rejects otherwise.

Efficiency. The efficiency of this protocol depends on the cost of computing
φ(g,ai), for all g ∈ G, and of the number of trials C.



Completeness. If a0 6≡(G,φ) a1, then a prover can always check if a′ ≡(G,φ) a0

or a′ ≡(G,φ) a1. In this situation, the verifier accepts with probability one.

Soundness. If a0 ≡(G,φ) a1, then by transitivity a′ ≡(G,φ) a1 and a′ ≡(G,φ) a0.
In such a case, we will show that a′ = φ(g,ai) yields no information about the bit
i chosen by the prover. Let then ψ be a random variable uniformly distributed
over {0, 1}, and Σ be a random variable uniformly distributed over G.

Lemma 2. Let a0,a1,a
′ ∈ Fq[x]u. If a0 ≡(G,φ) a1 and a′ ≡(G,φ) a0, then:

Pr[ψ = 0 |aψ(xΣ) = a′] = Pr[ψ = 1 |aψ(xΣ) = a′] =
1

2
.

Proof. We have Pr[φ(Σ,aψ) = a′ |ψ = 0] = Pr[φ(Σ,a0) = a′ ] = Pr[Σ ∈
S(G,φ)(a0,a

′) ]. Moreover, according to Proposition 1:

|S(G,φ)(a0,a
′)| = |Aut(G,φ)(a

′)| = |S(G,φ)(a1,a
′)|.

Therefore, Pr[φ(Σ,a0) = a′ ] = Pr[a1(xΣ) = a′ ], and thus:

Pr[φ(Σ,aψ) = a′ |ψ = 0] = Pr[φ(Σ,aψ) = a′ |ψ = 1].

According to the Bayes formula:

Prψ = 0 |φ(Σ,aψ) = a′] =
Pr[ψ=0]Pr[φ(Σ,aψ)=a

′ |ψ=0]

Pr[φ(Σ,aψ)=a′]

=
Pr[ψ=1] Pr[φ(Σ,aψ)=a

′ |ψ=1]

Pr[φ(Σ,aψ)=a′]

= Pr[ψ = 1 |φ(Σ,aψ) = a′].

Finally:

Pr[ψ = 0 |φ(Σ,aψ) = a′] =
Pr[ψ=0]Pr[φ(Σ,aψ)=a

′ |ψ=0]

Pr[φ(Σ,aψ)=a′]

= Pr[ψ=1] Pr[φ(Σ,a0)=a
′]

Pr[φ(Σ,aψ)=a′]

=
Pr[ψ=1] Pr[Σ∈S(G,ψ)(a

′,a0) ]

Pr[Σ∈S(G,φ)(aψ,a′)]
= 1

2 .

ut

It follows that no prover – no matter what its strategy is – can guess i with
probability greater than 1

2 . Finally, using a classical result of R. B. Boppana, J.
Hastad, and S. Zachos [7], we get that:

Corollary 1. If the polynomial hierarchy does not collapse then IP, 2PLE, and
IP1S are not NP-Hard.

Proof. We sketch the proof for IP1S. Note that for all g ∈ AGLn(Fq), one can
compute φIP1S(g,a′) in polynomial-time. Let LIP be the language associated
to IP1S (i.e. the set of instances of IP admitting a solution). We study now
the number of trials in PI

(

AGLn(Fq), φIP1S

)

. Recall that more than 1/4 of the
matrices of Mn,n(Fq) are invertible. Therefore for IP1S, we haveG = AGLn(Fq),



E = Mn,n(Fq) × F
n
q , and Pr[g ∈ G | g ∈ E ] ≥ 1

4 . By setting C = 10, we get that
no prover can guess i with probability greater than

1

2
+

(

3

4

)10

<
1

2
+

1

16
=

9

16
,

where
(

3
4

)10
< 1

16 is the probability of not obtaining an element of AGLn(Fq)
after ten trials. By repeating the protocol two times, we obtain that no prover
can fool the verifier into accepting a0 6≡(AGLn(Fq),φIP1S) a1 with a probability

greater than
(

9
16

)2
< 1

2 . The protocol PI
(

AGLn(Fq), φIP1S

)

is then an interactive
proof for the complementary language of LIP1S (i.e. {0, 1}∗\LIP1S), where at
most 4 messages are exchanged between the verifier and the prover. We do
not detail the proof, but one can easily check that the same result holds for
PI

(

AGLn(Fq) ×AGLu(Fq), φIP

)

and PI
(

GLn(Fq) ×GLu(Fq), φ2PLE

)

.
The corollary then follows from a result of [7], stating that if the complementary
of a language admits a constant round interactive protocol, then this language
can not be NP-Complete, unless the polynomial hierarchy collapses. ut

The new formalism introduced in this part allows to upper bound the theoretical
hardness of IP, 2PLE, and IP1S. More generally, it provides a new insight on the
complexity of “IP-like” problems. The previous corollary can be indeed easily
adapted to any instance of the Polynomial Equivalence problem. An “IP-like”
problem is then intrinsically not NP-Hard. Furthermore, we believe that our
formalism is of independent interest. It indeed procures a general framework for
studying “IP-like” problems. However, this is out of the scope of this paper. We
investigate now another aspect of these problems.

4 An Algorithm for Solving 2PLE

We study here the practical hardness of a particular Polynomial Equivalence
problem, namely 2PLE. Precisely, we present a new algorithm for solving this
problem. We emphasize that – as explained in 1.1 – it is usually sufficient to
consider this problem rather than its affine variant IP. Besides, any algorithm
solving 2PLE can be transformed into an algorithm solving IP [11, 12].

4.1 A First Attempt: Evaluation and Linearization

Instead of directly describing the details of our method, we present the different
steps that yielded to this algorithm. Anyway, most of the intermediate results
that we are going to present will be used in our final algorithm, but differently.
Our earliest idea for solving 2PLE was based on the following remark. If b(x) =
a(xS)U , for (S,U) ∈ GLn(Fq) ×GLu(Fq), then:

b(p)U−1 = a(pS), for all p ∈ F
n
q . (1)

We hence obtain, for each p ∈ F
n
q , u non-linear equations in the n2 +u2 compo-

nents of the matrices S and U−1. We point out that the coefficients of U−1 only



appear linearly in these equations. This is the advantage of considering the in-
verse of U rather than simply U in (1). The number of equations obtained is then
significantly bigger than the number of unknowns. In this situation, one can sim-
ply use a linearization method (i.e. associating a new variable to each monomial)
for solving the algebraic system. Unfortunately, our experiments rapidly revealed
that the equations generated in this way are not all linearly independent. Be-
sides, it also appeared that the number of unknowns is significantly bigger than
the number of linearly independent equations. The use of a linearization method
is then clearly no longer relevant. Let us explain this phenomenon.

Lemma 3. Let y = (y1,1, . . . , y1,n, . . . , yn,1, . . . , yn,n), and z = (z1,1, . . . , z1,u, . . .
, zu,1, . . . , zu,u). For each i, 1 ≤ i ≤ u, there exists a subset Si ⊆ F

n
q and polyno-

mials pα,i ∈ Fq[y, z], such that the following equality holds:

(

b(x)U−1 − a(xS)
)

i
=

∑

α∈Si

pα,i(S,U
−1)xα, (2)

pα,i(S,U
−1) being the evaluation of pα,i on S = {si,j}1≤i,j≤n, U−1 = {u′

i,j}1≤i,j≤u.

Proof. The polynomial
(

b(x)U−1 − a(xS)
)

i
can be regarded as an element of:

Fq[s1,1, . . . , s1,n, . . . , sn,1, . . . , sn,n, u′
1,1, . . . , u

′
1,u, . . . , u′

u,u, . . . , u′
u,u][x1, . . . , xn], (3)

i.e. a polynomial with unknowns x1, . . . , xn and whose coefficients are polyno-
mials in the components of S and U−1. In this setting, the polynomials pα,i
exactly correspond to the coefficients of the monomials (in x1, . . . , xn) occurring
in

(

b(x)U−1 − a(xS)
)

i
. Lastly Si = {α ∈ F

n
q : pα,i 6= 0}. ut

The cost of generating the polynomials pα,i is proportional to the number of
monomials occurring in

(

b(x)U−1 − a(xS)
)

i
viewed as a polynomial of (3), i.e.

O(n2D). Note also that each pα,i is by construction the sum of a polynomial in
y, plus a linear polynomial in z. Furthermore, the maximal total degree reached
by a monomial in the variables y is equal to D.
From (2), we obtain that for all i, 1 ≤ i ≤ u:

(

b(p)U−1−a(pS)
)

i
=

∑

α∈Si

pα,i(S,U
−1)pα1

1 · · · pαnn , for all p = (p1, . . . , pn) ∈ F
n
q .

It follows that, for all p ∈ F
n
q , the equations procured by (1) are linear combi-

nations of the pα,i(S,U
−1). The number of polynomials pα,i is limited by the

number of monomials occuring in
(

b(p)U−1 − a(pS)
)

i
. Thus, u · CDn+D bounds

from above the number of linearly independent equations provided by linearizing
(1). On the other hand, the number of unknowns in the linearized system is equal
to the number of monomials in the variables y of degree smaller than D, plus the
u2 variables corresponding to z. Using a rough bound, the linearization method
yields a linear system of at most O(u · nD) linearly independent equations with
O(u · n2D) unknowns.



4.2 The 2PLE algorithm

The linearization can thus not be employed for solving efficiently 2PLE. However,
Gröbner basis procures another method for solving the algebraic system given by
(1). From a practical point of view, this approach is quite promising. Indeed, the
system obtained by evaluating b(x)U−1 = a(xS) on several vectors is overde-
termined. Nevertheless, all the equations derived from b(p)U−1 = a(pS) are
according to (2) linear combinations the polynomials pα,i. It is hence sufficient
to only consider the system formed by these equations. Formally:

Proposition 2. Let I = 〈pα,i : for all i, 1 ≤ i ≤ u, and for all α ∈ Si〉 ⊂
Fq[y, z] be the ideal generated by the polynomials pα,i defined as in Lemma 3,
and V (I) be the following variety:

V (I) =
{

s ∈ F
n2+u2

q : pα,i(s) = 0, for all i, 1 ≤ i ≤ u, and for all α ∈ Si
}

.

If b(x) = a(xS)U , for some (S,U) ∈ GLn(Fq) ×GLu(Fq), then:

(

φ1(S), φ2(U
−1)

)

∈ V (I),

with:

φ1 : Mn,n(Fq) → F
n2

q , S = {si,j}1≤i,j≤n 7→ (s1,1, . . . , s1,n, . . . , sn,1, . . . , sn,n), and

φ2 : Mu,u(Fq) → F
u2

q , U
−1 = {u′i,j}1≤i,j≤u 7→ (u′1,1, . . . , u

′
1,u, . . . , u

′
u,1, . . . , u

′
u,u).

Proof. For all, i, 1 ≤ i ≤ u:

(

b(x)U−1 − a(xS)
)

i
=

∑

α∈Si

pα,i(S,U
−1)xα = 0.

Thus, pα,i(S,U
−1) = 0, ∀i, 1 ≤ i ≤ u, and ∀α ∈ Si, i.e.

(

φ1(S), φ2(U
−1)

)

∈ V (I).
ut

In other words, if b = a(xS)U , for some (S,U) ∈ GLn(Fq)×GLu(Fq), then the
variety V (I) contains the components of the matrices S and U−1. The system
associated to I has n2+u2 variables and is of degreeD. Once again, we recall that
the variables of z only appear linearly in this system. The number of equations
of the system is equal to the number of monomials occurring in the polynomials
of a, i.e. O

(

u · CDn+D

)

. The system is then overdetermined.

Remark 2. In order to guarantee that V (I) ⊆ F
2n
q , we must generally join the

field equations to the initial system. The fields considered in our case can be rela-
tively large, leading then to a significant increase of the system’s degree. This can
artificially render impracticable the computation of a Gröbner basis. Fortunately,
our systems are overdetermined and it is not necessary in practice to include the
field equations. In our experiments the elements of V (I) were indeed – without
including these equations – all the times in F

2n
q . It implies in particular that the

hardness of 2PLE is not related to the size of the field. This is an important
remark since the current security bound for 2PLE depends on this size.



The next proposition is fundamental to understand the practical behaviour of
our approach. This result permits furthermore to improve the efficiency of our
method.

Proposition 3. Let d be a positive integer, and Id ⊂ Fq[y, z] be the ideal gen-
erated by the polynomials pα,i of maximal total degree smaller than d. Let also
V (Id) be the variety associated to Id. If b(x) = a(xS)U , for some (S,U) ∈
GLn(Fq) ×GLu(Fq), then:

(

φ1(S), φ2(U
−1)

)

∈ V (Id), for all d, 0 ≤ d ≤ D,

φ1 and φ2 being defined as in proposition 2.

The proof is obviously deduced from the following result:

Lemma 4. Let (S,U) ∈ GLn(Fq) ×GLu(Fq). We have:

b(x) = a(xS)U ⇐⇒ b(d)(x) = a(d)(xS)U, for all d, 0 ≤ d ≤ D,

b(d)
(

resp. a(d)
)

being the homogeneous components of degree d (i.e. the sum of
the terms of total degree d) of the polynomials of b (resp. a).

The systems associated to I1 and I0 only contain linear equations in the com-
ponents of S and U−1. Indeed, let 0n be the null vector of F

n
q , and A ∈

Mn,u(Fq)
(

resp. B ∈ Mn,u(Fq)
)

be the matrix representation of a(1)
(

resp. b(1)
)

,

i.e. xA = a(1)(x)
(

resp. xB = b(1)(x)
)

. According to Lemma 4:

b = a(xS)U, for (S,U) ∈ GLn(Fq)×GLu(Fq) =⇒

{

b(0)(0n)U−1 = a(0)(0n),

BU−1 = SA.

That is, we get linear dependencies between the components S and U−1. More
precisely, we obtain u(n+1) linear equations in the n2+u2 components of the ma-
trices solution. Anyway, we can not solve 2PLE just by using these equations. On
the other hand, it is not necessary to consider the system formed by all the poly-
nomials pα,i. According to Proposition 3, we can actually restrict our attention
on Id0 , with d0 being the smaller integer rendering the system overdetermined.
This d0 can be defined in function of a. Indeed, d0 ≈ min{d > 1 : a(d) 6= 0u}.
In practice, it is usually sufficient to take d0 = 2. The hardness of an instance
of 2PLE is then related to d0 rather than to the maximal total degree D of this
instance. It is also an important remark since the maximal degree of an instance
is taken into account in the security estimate of 2PLE given by J. Patarin [28,
29]. Our algorithm for solving this problem is as follows:

Input: (a,b) ∈ Fq[x]u × Fq[x]u

Let d0 = min{d > 1 : a(d) 6= 0u}
Construct the polynomials pα,i of max. total deg. smaller than d0

Compute V (Id0) using the F5 algorithm
Find an element of V (Id0) corresponding to a solution of 2PLE
Return this solution



The system associated to Id0 is overdetermined by its very construction
(

u2 +n2

unknowns, and O
(

u · Cd0n+d0

)

equations
)

. The variety V (Id0) is then very likely
reduced to a solution of 2PLE (this has been indeed verified in our experiments).
The complexity of this algorithm is (theoretically) dominated by the Gröbner ba-
sis computation. It is difficult to obtain a complexity bound really reflecting the
practical behavior of the F5 algorithm. We therefore carry out now experimental
results illustrating the practical efficiency of our approach.

4.3 Experimental Results

We present in this part experimental results obtained with our algorithm. Before
that, we provide the conditions of our experiments.

Generation of the instances
We have only considered instances (a,b) of 2PLE admitting a solution. We
constructed the instances in the following way:
(1) Choose the polynomials of a
(2) Randomly choose (S,U) ∈ GLn(Fq) ×GLu(Fq)
(3) Return

(

a(x),b(x) = a(xS)U
)

Precisely, we constructed the polynomials of a in two different ways. The first one
simply consists in randomly choosing – w.r.t. a given maximal total degree D –
the polynomials of a. Precisely, each polynomial is a random linear combination
of all the monomials of total degree smaller (or equal) to D. Note that we obtain
in this way dense polynomials. We shall call random instance, an instance of
2PLE generated in this manner. In the second method, a corresponds to the
public key of a C∗ scheme [26]. An instance of 2PLE generated in this way will
be named C∗ instance.

Programming language – Workstation
The experimental results have been obtained with an Opteron bi-processors 2.4
Ghz, with 8 Gb of Ram. The systems associated to an instance of 2PLE have
been generated using the Magma software[25]. We used our own implementation
(in language C) of F5 for computing the Gröbner bases. However, for the sake of
comparison, we sometimes used the last version of Magma (i.e. 2.12) for obtaining
these bases. This version includes an implementation of the F4 algorithm.

Table Notations
The following notations are used in the tables below:
– n, the number of variables,
– q, the size of the field,
– deg, the maximal total degree of the considered instance,
– TGen, the time needed to construct the system,
– TF5 , the time of our algorithm for finding a solution of 2PLE (using the F5

algorithm for computing the Gröbner bases,
– T , the total time of our algorithm, i.e. T = TF5 + TGen,
– TF4/Mag , the time of our algorithm for recovering a solution of 2PLE, using
Magma v. 2.12 for computing Gröbner bases,



– qn/2 (resp. qn), the security bound given in [11, 12] for instances of deg = 2
(resp. deg > 2).

Practical Results – Random Instances
We present here the results obtained on random instances of 2PLE. We empha-
size that this family of instances is the one employed in the authentication and
signature schemes based on 2PLE proposed by J. Patarin at Eurocrypt’96 [28,
29]. He suggested to use u = n in practice. Since our main motivation is to study
the security of these schemes, we can restrict our attention on the case u = n.

n q deg TGen TF5 TF4/Mag/TF5 T qn/2

8 216 2 0.35 s. 0.14 s. 6 0.49 s. 264

10 216 2 1.66 s. 0.63 s. 10 2.29 s. 280

12 216 2 7.33 s. 2.16 s. 16 9.49 s. 296

15 216 2 48.01 s. 10.9 s. 23 58.91 s. 2120

17 216 2 137.21 s. 27.95 s. 31 195.16 s. 2136

20 216 2 569.14 s. 91.54 s. 41 660.68 s. 2160

10 65521 2 1.21 s. 0.44 s. 10 1.65 s. ≈ 280

15 65521 2 35.58 s. 8.08 s. 23 43.66 s. ≈ 2120

20 65521 2 434.96 s. 69.96 s. 41 504.92 s. ≈ 2160

23 65521 2 1578.6 s. 235.92 s. 1814 s. ≈ 2184

Remark 3. Our implementation of F5 is faster than the Gröbner basis algorithm
available in Magma 2.12. For n = 20, F5 is for instance 41 times faster than
Magma. To fix ideas, u = n = 8, and u = n = 16 were two challenges proposed at
Eurocrypt’96 [29]. We obtained exactly the same results as the ones quoted in the
previous table for random instances of deg > 2. On the other hand, the security
estimate for these instances is at least equal to 2128(n = 8). The maximal total
degree of the systems is indeed the same as for instances of deg = 2, i.e. d0

is equal to 2 independently of D. In other words, increasing the maximal total
degree of a random instance will not change its practical hardness. We observe
the same behavior for the size of the field, that is increasing q does not really
change the hardness of a random instance. This will indeed modify only the cost
of the arithmetic operations in the different steps our algorithm.

Interpretation of the results
In all these experiments, the varieties computed were reduced to one element, i.e.
the components of the matrices solution of 2PLE. Furthermore, we observe in
practice that the complexity of our algorithm is dominated by the time required
to construct the system, and not by the Gröbner basis computation. This is
surprising, but it clearly highlights that the systems considered here can be eas-
ily solved in practice. The generation of the systems being polynomial, we then
conclude experimentally that our algorithm solves random instances of 2PLE
in polynomial-time. This conclusion is supported by the fact that in all these
experiments, the matrices generated by F5 (see the Appendix) were of size at
most equal to n3. Experimentally, we deduce a complexity of (n3)3 = n9 for our
algorithm on random instances of 2PLE.



Practical Results – C∗ Instances
We now present the results obtained on C∗ instances (a,b) of degree D. We
highlight that these instances are used in the traitor tracing scheme described
in [5]. In this context, we also have u = n. The polynomials of a correspond to
the public-key of a C∗ scheme [26]. Precisely, these polynomials are the “multi-
variate representation” of a univariate monomial (see [5] for details concerning
the generation of this multivariate representation). The univariate monomial has

the following shape:m1+qθ1+qθ2+···+qθD−1
, with θ1, θ2, · · · , θD−1 ∈ N

∗.

n q deg TGen TF5 TF4/Mag/TF5 T qn

5 216 4 0.2 s. 0.13 s. 45 0.33 s. 280

6 216 4 0.7 s. 1.03 s. 64 1.73 s. 296

7 216 4 1.5 s. 6.15 s. 90 7.65 s. 2112

8 216 4 3.88 s. 54.34 s. 112 58.22 s. 2128

9 216 4 5.43 s. 79.85 s. 145 85.28 s. 2144

10 216 4 12.9 s. 532.33 s. 170 545.23 s. 2160

Remark 4. n = 5 , and deg = 4 is the first challenge proposed at Asiacrypt’03
[5]. Similarly to random instances, we observed that the size of the field does not
really change the practical hardness of the C∗ instances. We can conclude that
it is a general behaviour of 2PLE instances.

Interpretation of the results and Future work.
Our algorithm is no longer polynomial for C∗ instances. The systems obtained
for these instances are indeed harder to solve than the random ones. We be-
lieve that it is due to the fact that the systems are here sparser. The equality
b(0n) = a(0n)U does not provide any information

(

b(0n) = a(0n) = 0n in the

C∗ case
)

. It is not clear yet but it seems that C∗ instances with n = 19 (the
second challenge proposed in [5]), can not be solved with our approach.
More generally, we think that d0 = min{d ≥ 0 : a(d) 6= 0u} provides a rele-
vant measure of the practical hardness of 2PLE instances. It seems actually that
this practical difficulty increases in function of d0. Indeed, for random instances
of 2PLE, d0 = 0 and our algorithm solves 2PLE efficiently. For C∗ instances,
dmin = 1 and there is a change of complexity class. We also checked that the
practical complexity increases for homogeneous instances of degree 2, i.e. d0 = 2.
To summarize, for d0 = 0 it is relatively clear that our algorithm solves 2PLE
efficiently (likely in polynomial-time). For d0 ≥ 1, we conjecture that our algo-
rithm is subexponential in n, and will depend on d0. This anyway needs further
investigations. It is an open problem to precisely determine, as a function of d0,
the asymptotic complexity of our algorithm. It could be possible that techniques
presented in [3, 4] provide an answer.
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Zero-Dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic
Computation, 16(4), pp. 329–344, 1993.

20. P. Felke On certain Families of HFE-type Cryptosystems. Proceedings of
WCC’05, International Workshop on Coding and Cryptography, March 2005.

21. S. Fortin. The Graph Isomorphism problem. Technical Report 96-20, University
of Alberta, 1996.

22. M. R. Garey, and D. B. Johnson. Computers and Intractability. A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

23. W. Geiselmann, R. Steinwandt, and T. Beth. Attacking the Affine Parts of
SFLASH. Cryptography and Coding, 8th IMA International Conference, vol.
2260, Springer–Verlag, pp. 355-359, 2001.

24. M. Hoffman. Group-theoretic algorithms and Graph Isomorphism. Lecture
Notes in Computer Science, vol. 136, Springer–Verlag, 1982.

25. http://magma.maths.usyd.edu.au/magma/
26. T. Matsumoto, and H. Imai. Public Quadratic Polynomial-tuples for effi-

cient signature-verification and message-encryption. Advances in Cryptology
– EUROCRYPT 1988, Lecture Notes in Computer Science, vol. 330, Springer–
Verlag, pp. 419–453, 1988.

27. https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf.
28. J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials

(IP): two new families of Asymmetric Algorithms. Advances in Cryptology –
EUROCRYPT 1996, Lecture Notes in Computer Science, vol. 1070, Springer-
Verlag, pp. 33–48, 1996.

29. J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of Asymmetric Algorithms – Extended Version. Avail-
able from http://www.minrank.org/hfe/.

30. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88. Advances in Cryptology – CRYPTO 1995, Lecture Notes in
Computer Science, Springer-Verlag, vol. 963, pp. 248-261, 1995.


