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Abstract. In a seminal paper, Feldman and Micali (STOC ’88) show an
n-party Byzantine agreement protocol tolerating t < n/3 malicious par-
ties that runs in expected constant rounds. Here, we show an expected
constant-round protocol for authenticated Byzantine agreement assum-
ing honest majority (i.e., t < n/2), and relying only on the existence of
a secure signature scheme and a public-key infrastructure (PKI). Com-
bined with existing results, this gives the first expected constant-round
protocol for secure computation with honest majority in a point-to-point
network assuming only one-way functions and a PKI. Our key technical
tool — a new primitive we introduce called moderated VSS — also yields
a simpler proof of the Feldman-Micali result.

We also show a simple technique for sequential composition of protocols
without simultaneous termination (something that is inherent for Byzan-
tine agreement protocols using o(n) rounds) for the case of t < n/2.

1 Introduction

When designing cryptographic protocols, it is often convenient to abstract away
various details of the underlying communication network. As one noteworthy
example,1 it is often convenient to assume the existence of a broadcast channel
that allows any party to send the same message to all other parties (and all
parties to be assured they have received identical messages) in a single round.
With limited exceptions (e.g., in a small-scale wireless network), it is understood
that the protocol will be run in a network where only point-to-point communi-
cation is available and the parties will have to “emulate” the broadcast channel
by running a broadcast sub-protocol. Unfortunately, this “emulation” typically
increases the round complexity of the protocol substantially.

Much work has therefore focused on reducing the round complexity of broad-
cast or the related task of Byzantine agreement (BA) [30, 26]; we survey this work
? This research was supported by NSF Trusted Computing grant #0310751,
NSF CAREER award #0447075, and US-Israel Binational Science Foundation
grant #2004240.

1 Other “abstractions” include the assumptions of private and/or authenticated chan-
nels. For non-adaptive, computationally-bounded adversaries these can be realized
without affecting the round complexity using public-key encryption and digital sig-
natures, respectively. See also Section 2.



in Section 1.2. As discussed there, a seminal result of Feldman and Micali [17] is
a protocol for Byzantine agreement in a network of n parties tolerating t < n/3
malicious parties that runs in an expected constant number of rounds. This
resilience is the best possible — regardless of round complexity — unless addi-
tional assumptions are made. The most common assumption is the existence of a
public-key infrastructure (PKI) such that each party Pi has a public key pki for
a digital signature scheme that is known to all other parties (a more formal defi-
nition is given in Section 2); broadcast or BA protocols in this model are termed
authenticated. Authenticated broadcast protocols are known for t < n [30, 26, 13],
but all existing protocols that assume only a PKI and secure signatures require
Θ(t) rounds.2 Recent work of Fitzi and Garay [20] gives an authenticated BA
protocol beating this bound, but using specific number-theoretic assumptions;
see Section 1.2 for further discussion.

1.1 Our Contributions

As our main result, we extend the work of Feldman and Micali and show an
authenticated BA protocol tolerating t < n/2 malicious parties and running in
expected constant rounds. Our protocol assumes only the existence of signature
schemes and a PKI, and is secure against a rushing adversary who adaptively
corrupts up to t parties. For those unfamiliar with the specifics of the Feldman-
Micali protocol, we stress that their approach does not readily extend to the
case of t < n/2. In particular, they rely on a primitive termed graded VSS and
construct this primitive using in an essential way the fact that t < n/3. We
take a different approach: we introduce a new primitive called moderated VSS
(mVSS) and use this to give an entirely self-contained proof of our result.

We suggest that mVSS is a useful alternative to graded VSS in general, even
when t < n/3. For one, mVSS seems easier to construct: we show a generic
construction of mVSS in the point-to-point model from any VSS protocol that
relies on a broadcast channel, while a generic construction of this sort for graded
VSS seems unlikely. Perhaps more importantly, mVSS provides what we believe
to be a conceptually-simpler approach to the problem at hand: in addition to
our authenticated BA protocol for t < n/2, our techniques give a BA protocol
(in the plain model) for t < n/3 which is more round-efficient than the Feldman-
Micali protocol and which also admits a self-contained proof (cf. the full version
of this work [24]) that we believe is significantly simpler than that of [17].

Since mVSS is impossible for t ≥ n/2, our techniques do not extend to the
case of dishonest majority. It remains an interesting open question as to whether
it is possible to achieve broadcast for n/2 ≤ t < n in expected constant rounds.

As mentioned earlier, cryptographic protocols are often designed under the
assumption that a broadcast channel is available; when run in a point-to-point
network, these protocols must “emulate” the broadcast channel by running a

2 Feldman and Micali claim an expected O(1)-round solution for t < n/2 in the con-
ference version of their paper, but this claim no longer appears in either the journal
version of their work or Feldman’s thesis [15].



broadcast protocol as a sub-routine. If the original (outer) protocol uses multi-
ple invocations of the broadcast channel, and these invocations are each emulated
using a probabilistic broadcast protocol, subtle issues related to the parallel and
sequential composition3 of the various broadcast sub-protocols arise; see the de-
tailed discussion in Section 4. Parallel composition can be dealt with using exist-
ing techniques [4, 20]. There are also techniques available for handling sequential
composition of protocols without simultaneous termination [4, 28]; however, this
work applies only to the case t < n/3 [4] or else is rather complex [28]. As an
additional contribution, we show an extension of previous work [4] that enables
sequential composition for t < n/2 (assuming digital signatures and a PKI) in a
simpler and more round-efficient manner than [28]. See Section 5.

The above results, in combination with prior work [2, 12], yield the first ex-
pected constant-round protocol for secure computation in a point-to-point net-
work that tolerates an adversary corrupting a minority of the parties and is
based only on the existence of one-way functions and a PKI. (The constant-
round protocol of Goldwasser and Lindell [23], which does not assume a PKI,
achieves a weaker notion of security that does not guarantee output delivery.)

1.2 Prior Work on Broadcast/Byzantine Agreement

In a synchronous network with pairwise authenticated channels and no additional
set-up assumptions, BA among n parties is achievable iff the number of corrupted
parties t satisfies t < n/3 [30, 26]; furthermore, in this case the corrupted parties
may be computationally unbounded. In this setting, a lower bound of t+1 rounds
for any deterministic BA protocol is known [18]. A protocol with this round
complexity — but with exponential message complexity — was shown by Pease,
et al. [30, 26]. Following a long sequence of works, Garay and Moses [21] show a
fully-polynomial BA protocol with optimal resilience and round complexity.

To circumvent the above-mentioned lower bound, researchers beginning with
Rabin [32] and Ben-Or [3] explored the use of randomization to obtain better
round complexity. This line of research [6, 10, 16, 14] culminated in the work of
Feldman and Micali [17], who show a randomized BA protocol with optimal
resilience t < n/3 that runs in an expected constant number of rounds. Their
protocol requires channels to be both private and authenticated (but see foot-
note 1 and the next section).

To achieve resilience t ≥ n/3, additional assumptions are needed even if ran-
domization is used. The most widely-used assumptions are the existence of digi-
tal signatures and a public-key infrastructure (PKI); recall that protocols in this
setting are termed authenticated. Implicit in this setting is that the adversary is
computationally bounded (so it cannot forge signatures), though if information-
theoretic “pseudo-signatures” [31] are used security can be obtained even against

3 These issues are unrelated to those considered in [27] where the different executions
are oblivious of each other: here, there is an outer protocol scheduling all the broad-
cast sub-protocols. For the same reason, we do not consider concurrent composition
since we are interested only in “stand-alone” security of the outer protocol.



an unbounded adversary. Pease, et al. [30, 26] show an authenticated broadcast
protocol for t < n, and a fully-polynomial protocol achieving this resilience was
given by Dolev and Strong [13]. These works rely only on the existence of digital
signature schemes and a PKI, and do not require private channels.

The (t + 1)-round lower bound for deterministic protocols holds in the au-
thenticated setting as well [13], and the protocols of [30, 26, 13] meet this bound.
Some randomized protocols beating this bound for the case of n/3 ≤ t < n/2
are known [34, 6, 36], but these are only partial results:

• Toueg [34] gives an expected O(1)-round protocol, but assumes a trusted
dealer. After the dealing phase the parties can only run the BA protocol a
bounded number of times.

• A protocol by Bracha [6] implicitly requires a trusted dealer to ensure that
parties agree on a “Bracha assignment” in advance (see [16]). Furthermore,
the protocol only achieves expected round complexity Θ(log n) and tolerates
(slightly sub-optimal) t ≤ n/(2 + ε) for any ε > 0.

• Waidner [36], building on [6, 16], shows that the dealer in Bracha’s proto-
col can be replaced by an Ω(t)-round pre-processing phase during which a
broadcast channel is assumed. The expected round complexity (after the
pre-processing) is also improved from Θ(log n) to Θ(1).

The latter two results assume private channels.
Fitzi and Garay [20], building on [34, 7, 29], give the first full solution to

this problem: that is, they show the first authenticated BA protocol with opti-
mal resilience t < n/2 and expected constant round complexity that does not
require any trusted dealer or pre-processing (other than a PKI). Even assum-
ing private channels, however, their protocol requires specific number-theoretic
assumptions (essentially, some appropriately-homomorphic public-key encryp-
tion scheme) and not signatures alone. We remark that, because of its reliance
on additional assumptions, the Fitzi-Garay protocol cannot be adapted to the
information-theoretic setting using pseudo-signatures.

2 Model and Technical Preliminaries

By a public-key infrastructure (PKI) in a network of n parties, we mean that
prior to any protocol execution all parties hold the same vector (pk1, . . . , pkn)
of public keys for a digital signature scheme, and each honest party Pi holds
the honestly-generated secret key ski associated with pki. Malicious parties may
generate their keys arbitrarily, even dependent on keys of honest parties.

Our results are in the point-to-point model (unless otherwise stated), by
which we mean the standard model in which parties communicate in synchronous
rounds using pairwise private and authenticated channels. Authenticated chan-
nels are necessary for our work, but can be realized using signature schemes if
one is willing to assume a PKI. (Note that signatures are stronger than authen-
ticated channels since they allow third-party verifiability.) For static adversaries,
private channels can be realized using one additional round by having each party



Pi send to each party Pj a public key PKi,j for a semantically-secure public-key
encryption scheme (using a different key for each sender avoids issues of mal-
leability). For adaptive adversaries, more complicated solutions are available [1,
9] but we do not discuss these further. For simplicity, we assume unconditional
private/authenticated channels with the understanding that these guarantees
hold only computationally if the above techniques are used.

When we say a protocol (for Byzantine agreement, VSS, etc.) tolerates t
malicious parties, we always mean that it is secure against a rushing adversary
who may adaptively corrupt up to t parties during execution of the protocol and
coordinate the actions of these parties as they deviate from the protocol in an
arbitrary manner. Parties not corrupted by the adversary are called honest. Our
definitions always implicitly cover both the “unconditional” and “authenticated”
cases, in the following way: For t < n/3 we allow a computationally-unbounded
adversary (this is the unconditional case). For t < n/2 we assume a PKI and also
assume that the adversary cannot forge a new valid signature on behalf of any
honest party (this is the authenticated case). Using a standard hybrid argument
and assuming the existence of one-way functions, this implies that authenti-
cated protocols are secure against computationally-bounded adversaries. Using
pseudo-signatures, authenticated protocols can be made secure even against a
computationally-unbounded adversary (though in a statistical, rather than per-
fect, sense).

When we describe signature computation in authenticated protocols we often
omit for simplicity additional information that must be signed along with the
message. Thus, when we say that party Pi signs message m and sends it to
Pj , we implicitly mean that Pi signs the concatenation of m with additional
information such as: (1) the identity of the recipient Pj , (2) the current round
number, (3) an identifier for the message (in case multiple messages are sent
to Pj in the same round); and (4) an identifier for the (sub-)protocol (in case
multiple sub-protocols are being run; cf. [27]).

Byzantine agreement. We focus on Byzantine agreement, which readily im-
plies broadcast. The standard definitions of BA and broadcast follow.

Definition 1. (Byzantine agreement): A protocol for parties P1, . . . , Pn, where
each party Pi holds initial input vi, is a Byzantine agreement protocol tolerating

t malicious parties if the following conditions hold for any adversary controlling
at most t parties:

• All honest parties output the same value.
• If all honest parties begin with the same input value v, then all honest parties
output v.

If the {vi} are restricted to binary values, the protocol achieves binary Byzantine

agreement. ♦

Definition 2. (Broadcast): A protocol for parties P = {P1, . . . , Pn}, where a
distinguished dealer P ∗ ∈ P holds an initial input M , is a broadcast protocol

tolerating t malicious parties if the following conditions hold for any adversary
controlling at most t parties:



• All honest parties output the same value.

• If the dealer is honest, then all honest parties output M . ♦

3 Byzantine Agreement in Expected Constant Rounds

In this section, we construct expected constant-round protocols for Byzantine
agreement in both the unconditional (t < n/3) and authenticated (t < n/2)
settings. Our main result is the protocol for the case t < n/2 (which is the
first such construction assuming only a PKI and digital signatures); however,
we believe our result for the case t < n/3 is also interesting as an illustration
that our techniques yield a conceptually-simpler and more efficient protocol in
that setting as compared to [17]. We develop both protocols in parallel so as to
highlight the high-level similarities in each.

We begin by reviewing the notions of gradecast and VSS :

Gradecast. Gradecast, a relaxed version of broadcast, was introduced by Feld-
man and Micali [17]; below we provide a definition which is slightly weaker than
the one in [17, Def. 11], but suffices for our purposes.

Definition 3. (Gradecast): A protocol for parties P = {P1, . . . , Pn}, where a
distinguished dealer P ∗ ∈ P holds an initial input M , is a gradecast protocol

tolerating t malicious parties if the following conditions hold for any adversary
controlling at most t parties:

• Each honest party Pi eventually terminates the protocol and outputs both a
message mi and a grade gi ∈ {0, 1, 2}.

• If the dealer is honest, then the output of every honest party Pi satisfies
mi =M and gi = 2.

• If there exists an honest party Pi who outputs a message mi and grade
gi = 2, then the output of every honest party Pj satisfies mj = mi and
gj ≥ 1. ♦

The first result that follows is due to [17]. A proof of the second result can
be found in the full version of this paper [24].

Lemma 1. There exists a constant-round gradecast protocol tolerating t < n/3
malicious parties.

Lemma 2. There exists a constant-round authenticated gradecast protocol tol-
erating t < n/2 malicious parties.

Verifiable Secret Sharing (VSS). VSS [11] extends the concept of secret
sharing [5, 33] to the case of Byzantine faults. Below we provide what is essen-
tially the standard definition except that for technical reasons (namely, security
under parallel composition) we explicitly incorporate a notion of “extraction.”



Definition 4. (Verifiable secret sharing): A two-phase protocol for parties P =
{P1, . . . , Pn}, where a distinguished dealer P

∗ ∈ P holds initial input s, is a
VSS protocol tolerating t malicious parties if the following conditions hold for any
adversary controlling at most t parties:

Validity Each honest party Pi outputs a value si at the end of the second
phase (the reconstruction phase). Furthermore, if the dealer is honest then
si = s.

Secrecy If the dealer is honest during the first phase (the sharing phase), then
at the end of this phase the joint view of the malicious players is independent
of the dealer’s input s.

Extraction At the end of the sharing phase the joint view of the honest par-
ties defines a value s′ (which can be computed in polynomial time from this
view) such that all honest parties will output s′ at the end of the reconstruc-
tion phase. ♦

The first result that follows is well known (see, e.g., [22, 19]). The second
result follows readily from existing results; see the full version for a proof [24].

Lemma 3. There exists a constant-round VSS protocol tolerating t < n/3 ma-
licious parties that relies on a broadcast channel only during the sharing phase.

Lemma 4. There exists a constant-round authenticated VSS protocol tolerating
t < n/2 malicious parties that relies on a broadcast channel only during the
sharing phase.

3.1 Moderated VSS

We introduce a variant of VSS called moderated VSS, in which there is a dis-
tinguished party (who may be identical to the dealer) called the moderator.
Roughly speaking, the moderator “simulates” a broadcast channel for the other
parties. At the end of the sharing phase, parties output a boolean flag indicating
whether or not they trust the moderator. If the moderator is honest, all honest
parties should set this flag to 1. Furthermore, if any honest party sets this flag
to 1 then the protocol should achieve all the properties of VSS (cf. Def. 4). A
formal definition follows.

Definition 5. (Moderated VSS): A two-phase protocol for parties P = {P1, . . .,
Pn}, where there is a distinguished dealer P

∗ ∈ P who holds an initial input
s and a moderator P ∗∗ ∈ P (who may possibly be the dealer), is a moderated

VSS protocol tolerating t malicious parties if the following conditions hold for any
adversary controlling at most t parties:

• Each honest party Pi outputs a bit fi at the end of the first phase (the sharing

phase), and a value si at the end of the second phase (the reconstruction

phase).

• If the moderator is honest during the sharing phase, then each honest party
Pi outputs fi = 1 at the end of this phase.



• If there exists an honest party Pi who outputs fi = 1 at the end of the
sharing phase, then the protocol achieves VSS; specifically: (1) if the dealer
is honest then all honest parties output s at the end of the reconstruction
phase, and the joint view of all the malicious parties at the end of the sharing
phase is independent of s, and (2) the joint view of the honest parties at the
end of the sharing phase defines an efficiently-computable value s′ such that
all honest parties output s′ at the end of the reconstruction phase. ♦

We stress that if all honest parties Pi output fi = 0 at the end of the sharing
phase, then no guarantees are provided: e.g., honest parties may output different
values at the end of the reconstruction phase, or the malicious players may learn
the dealer’s secret in the sharing phase.

The main result of this section is the following, which holds for any t < n:

Theorem 1. Assume there exists a constant-round VSS protocol Π, using a
broadcast channel in the sharing phase only, which tolerates t malicious parties.
Then there exists a constant-round moderated VSS protocol Π ′, using a gradecast
channel, which tolerates t malicious parties.

Proof We show how to “compile”Π so as to obtain the desiredΠ ′. Essentially,
Π ′ is constructed by replacing each broadcast in Π with two invocations of
gradecast: one by the party who is supposed to broadcast the message, and one
by the moderator P ∗∗. In more detail, Π ′ is defined as follows: At the beginning
of the protocol, all parties set their flag f to 1. The parties then run an execution
of Π. When a party P is directed by Π to send message m to P ′, it simply sends
this message. When a party P is directed by Π to broadcast a message m, the
parties run the following “simulated broadcast” subroutine:

1. P gradecasts the message m.

2. The moderator P ∗∗ gradecasts the message it output in the previous step.

3. Let (mi, gi) and (m
′

i, g
′

i) be the outputs of party Pi in steps 1 and 2, respec-
tively. Within the underlying execution of Π, party Pi will use m

′

i as the
message “broadcast” by P .

4. Furthermore, Pi sets fi := 0 if either (or both) of the following conditions
hold: (1) g′i 6= 2, or (2) m

′

i 6= mi and gi = 2.

Party Pi outputs fi at the end of the sharing phase, and outputs whatever it is
directed to output by Π at the end of the reconstruction phase.

We now prove that Π ′ is a moderated VSS protocol tolerating t malicious
parties. First, note that if the moderator is honest during the sharing phase then
no honest party Pi ever sets fi := 0. To see this, note that if P

∗∗ is honest then
g′i = 2 each time the simulated broadcast subroutine is executed. Furthermore,
if Pi outputs some mi and gi = 2 in step 1 of that subroutine then, by definition
of gradecast, P ∗∗ also outputs mi in step 1. Hence m

′

i = mi and fi remains 1.
To show the second required property of moderated VSS, consider any ex-

ecution of the simulated broadcast subroutine. We show that if there exists an
honest party Pi who holds fi = 1 upon completion of that subroutine, then the
functionality of broadcast was achieved (in that execution of the subroutine). It



follows that if Pi holds fi = 1 at the end of the sharing phase, then Π
′ provided

a faithful execution of all broadcasts in Π and so the functionality of VSS is
achieved.

If Pi holds fi = 1, then g′i = 2. (For the remainder of this paragraph, all
variables are local to a particular execution of the broadcast subroutine.) Since
g′i = 2, the properties of gradecast imply that any honest party Pj holdsm

′

j = m′

i

and so all honest parties agree on the message that was “broadcast.” Further-
more, if the “dealer” P (in the simulated broadcast subroutine) is honest then
gi = 2 and mi = m. So the fact that fi = 1 means that m′

i = mi = m, and
so all honest parties use the message m “broadcast” by P in their underlying
execution of Π.

By applying the above theorem to the VSS protocol of Lemma 3 (resp.,
Lemma 4) and then instantiating the gradecast channel using the protocol of
Lemma 1 (resp., Lemma 2), we obtain:

Corollary 1. There exists a constant-round protocol for moderated VSS toler-
ating t < n/3 malicious parties.

Corollary 2. There exists a constant-round protocol for authenticated moder-
ated VSS tolerating t < n/2 malicious parties.

3.2 From Moderated VSS to Oblivious Leader Election

In this section, we construct an oblivious leader election (OLE) protocol based
on any moderated VSS protocol. The following definition of oblivious leader
election is adapted from [20]:

Definition 6. (Oblivious leader election): A two-phase protocol for parties P1,
. . ., Pn is an oblivious leader election protocol with fairness δ tolerating t malicious

parties if each honest party Pi outputs a value vi ∈ [n], and the following con-
dition holds with probability at least δ (over random coins of the honest parties)
for any adversary controlling at most t parties:

There exists a j ∈ [n] such that (1) each honest party Pi outputs vi = j,
and (2) Pj was honest at the end of the first phase.

If the above event happens, we say an honest leader was elected. ♦

Our construction of OLE uses a similar high-level approach as in the construc-
tion of an oblivious common coin from graded VSS [17]. However, we introduce
different machinery and start from moderated VSS. Intuitively, we generate a
random coin ci ∈ [n

4] for each party Pi. This is done by having each party Pj

select a random value cj,i ∈ [n
4] and then share this value using moderated VSS

with Pi acting as moderator. The cj,i are then reconstructed and ci is computed
as ci =

∑

j cj,i mod n
4. An honest party then outputs i minimizing ci. Since

moderated VSS (instead of VSS) is used, each party Pk may have a different
view regarding the value of the {ci}. However:



• If Pi is honest then (by the properties of moderated VSS) all honest parties
reconstruct the same values cj,i (for any j) and hence compute an identical
value for ci.

• If Pi is dishonest, but there exists an honest party Pj such that Pj outputs
fj = 1 in all invocations of moderated VSS where Pi acts as the moderator,
then (by the properties of moderated VSS) all honest parties compute an
identical value for ci.

Relying on the above observations, we devise a way such that all honest parties
output the same i (such that Pi is furthermore honest) with constant probability.

Theorem 2. Assume there exists a constant-round moderated VSS protocol tol-
erating t malicious parties. Then there exists a constant-round OLE protocol with
fairness δ = n−t

n
− 1

n2 tolerating t malicious parties. Specifically, if n ≥ 3 and
t < n/2 then δ ≥ 1/2.

Proof Each party Pi begins with trusti,j = 1 for j ∈ {1, . . . , n}.

Phase 1 Each party Pi chooses random ci,j ∈ [n
4] for 1 ≤ j ≤ n. The following

is executed n2 times in parallel for each ordered pair (i, j):

All parties execute the sharing phase of a moderated VSS protocol
in which Pi acts as the dealer with initial input ci,j , and Pj acts as
the moderator. If a party Pk outputs fk = 0 in this execution, then
Pk sets trustk,j := 0.

Upon completion of the above, let trustk
def
= {j : trustk,j = 1}.

Phase 2 The reconstruction phase of the moderated VSS protocol is run n2

times in parallel to reconstruct the secrets previously shared. Let ck
i,j denote

Pk’s view of the value of ci,j . (If a reconstructed value lies outside [n
4], then

cki,j is assigned some default value in the correct range.) Each party Pk sets

ckj :=
∑n

i=1
cki,j mod n

4, and outputs j ∈ trustk that minimizes c
k
j .

We prove that the protocol satisfies Definition 6. Following execution of the
above, define:

trusted =

{

k :
there exists a Pi that was honest at the end of phase 1

for which k ∈ trusti

}

.

If Pi was honest in phase 1, then i ∈ trusted. Furthermore, by the properties of
moderated VSS, if k ∈ trusted then for any honest Pi, Pj and any 1 ≤ ` ≤ n,

we have ci`,k = cj`,k and hence c
i
k = cjk; thus, we may freely omit the superscript

in this case. We claim that for k ∈ trusted, the coin ck is uniformly distributed
in [n4]. Let c′k =

∑

` : P` malicious in phase 1 c`,k mod n
4 (this is the contribution

to ck of the parties that are malicious in phase 1), and let Pi be honest. Since
k ∈ trusted, the properties of VSS hold for all secrets {c`,k}

n
`=1 and thus c

′

k is
independent of ci,k. (If we view moderated VSS as being provided uncondition-
ally, independence holds trivially. When this is instantiated with a protocol for



moderated VSS, independence follows from the information-theoretic security of
moderated VSS.4) It follows that ck is uniformly distributed in [n

4].
By union bound, with probability at least 1− 1

n2 , all coins {ck : k ∈ trusted}
are distinct. Conditioned on this event, with probability at least n−t

n
the party

with the minimum cj among the set trusted corresponds to a party which was
honest in phase 1. This concludes the proof.

Combining Theorem 2 with Corollaries 1 and 2, we obtain:

Corollary 3. There exists a constant-round protocol for OLE with fairness 2/3
tolerating t < n/3 malicious parties. (Note that when n < 4 the result is trivially
true.)

Corollary 4. There exists a constant-round protocol for authenticated OLE with
fairness 1/2 tolerating t < n/2 malicious parties. (Note that when n < 3 the
result is trivially true.)

3.3 From OLE to Byzantine Agreement

For the unconditional case (i.e., t < n/3), Feldman and Micali [17] show how
to construct an expected constant-round binary Byzantine agreement protocol
based on any constant-round oblivious common coin protocol. We construct a
more round-efficient protocol based on oblivious leader election. This also serves
as a warmup for the authenticated case.

Theorem 3. If there exists a constant-round OLE protocol with fairness δ =
Ω(1) tolerating t < n/3 malicious parties, then there exists an expected constant-
round binary Byzantine agreement protocol tolerating t malicious parties.

Proof We describe a protocol for binary Byzantine agreement, assuming the
existence of an OLE protocol tolerating t < n/3 malicious parties. Each party
Pi uses local variables bi ∈ {0, 1} (which is initially Pi’s input), locki (initially
set to ∞), and accepti (initially set to false).

Step 1 Each Pi sends bi to all parties. Let bj,i be the bit Pi receives from Pi.
(When this step is run at the outset of the protocol, a default value is used
if Pi does not receive anything from Pj . In subsequent iterations, if Pi does
not receive anything from Pj then Pi leaves bj,i unchanged.)

Step 2 Each party Pi sets S
b
i := {j : bj,i = b} for b ∈ {0, 1}. If |S0

i | ≥ t + 1,
then Pi sets bi := 0. If |S

0
i | ≥ n− t, then Pi sets locki := 0.

Each Pi sends bi to all parties. If Pi receives a bit from Pj , then Pi sets bj,i
to that value; otherwise, bj,i remains unchanged.

4 Formally, one could define an appropriate ideal functionality within the UC frame-
work [8] and show that any protocol for moderated VSS implements this function-
ality (relying on the extraction property in Definition 4); security under parallel
composition then follows. One could also appeal to a recent result showing security
of statistically-secure protocols under parallel self composition when inputs are not
chosen adaptively (as is the case here) [25].



Step 3 Each party Pi defines S
b
i as in step 2. If |S

1
i | ≥ t+1, then Pi sets bi := 1.

If |S1
i | ≥ n− t, then Pi sets locki := 0.

Each Pi sends bi to all parties. If Pi receives a bit from Pj , then Pi sets bj,i
to that value; otherwise, bj,i remains unchanged.
If locki =∞, then Pi sets accepti := true.

Step 4 Each party Pi defines S
b
i as in step 2. If |S

0
i | ≥ t+1, then Pi sets bi := 0.

If |S0
i | ≥ n− t, then Pi sets accepti := false.

Each Pi sends bi to all parties. If Pi receives a bit from Pj , then Pi sets bj,i
to that value; otherwise, bj,i remains unchanged.

Step 5 Each party Pi defines S
b
i as in step 2. If |S

1
i | ≥ t+1, then Pi sets bi := 1.

If |S1
i | ≥ n− t, then Pi sets accepti := false.

Each Pi sends bi to all parties. If Pi receives a bit from Pj , then Pi sets bj,i
to that value; otherwise, bj,i remains unchanged.

Step 6 All parties execute the OLE protocol; let `i be the output of Pi. Each Pi

does the following: if accepti = true, then Pi sets bi := b`i,i. If locki = 0,
then Pi outputs bi and terminates; otherwise, Pi goes to step 1.

We refer to an execution of step 1 through 6 as an iteration. First we claim
that if an honest Pi sets locki := 0 in step 2 or 3 of some iteration, then all
honest parties Pj hold bj = bi by the end of step 3 of that same iteration.
Consider the case when Pi sets locki := 0 in step 2. (The case when Pi sets
locki := 0 in step 3 is exactly analogous.) This implies that |S0

i | ≥ n − t and
hence |S0

j | ≥ n − 2t ≥ t + 1 and bj = 0. Since this holds for all honest players

Pj , it follows that in step 3 we have |S
1
j | ≤ t and so bj remains 1.

Next, we show that if — immediately prior to any given iteration — no
honest parties have terminated and there exists a bit b such that bi = b for
all honest Pi, then by the end of step 3 of that iteration all honest parties Pi

hold bi = b and locki = 0. This follows easily (by what we have argued in the
previous paragraph) once we show that there exists an honest party who sets
locki := 0 while holding bi = b. Consider the case b = 0 (the case b = 1 is
exactly analogous). In this case |S0

i | ≥ n − t in step 2 for any honest Pi. Thus,
any honest Pi sets locki := 0 and holds bi = 0 by the end of this step.

Arguing exactly as in the previous two paragraphs, one can similarly show:
(i) if — immediately prior to any given iteration — there exists a bit b such that
bi = b for all honest Pi, then by the end of step 5 of that iteration all honest
parties Pi hold bi = b, locki = 0, and accepti = false (and hence all honest
parties output b and terminate the protocol in that iteration). (ii) If an honest
party Pi sets locki := 0 in some iteration, then all honest parties Pj hold bj = bi
and acceptj = false by the end of step 5 of that iteration. (iii) If an honest
party Pi sets accepti := false in some iteration, then all honest parties Pj hold
bj = bi by the end of step 5 of that same iteration.

Next, we show that if an honest party Pi outputs bi = b (and terminates) in
some iteration, then all honest parties output b and terminate by the end of the
next iteration. Note that if Pj fails to receive bi from Pi, then Pi,j is unchanged;
thus, if Pi terminates with output bi = b, it can be viewed as if Pi keeps on
sending bi = b in the next iteration. (In particular, note that Pi must have sent



bi = b in step 5.) Hence it suffices to show that by the end of the (current)
iteration, bj = b for all honest parties Pj . But this is implied by (ii), above.

Finally, we show that if an honest leader5 P` is elected in step 6 of some
iteration, then all honest parties Pi terminate by the end of the next iteration.
By (i), it is sufficient to show that bi = b`,i = b` at the end of step 6 of the current
iteration. Consider two sub-cases: if all honest Pj hold acceptj = true then this
is immediate. Otherwise, say honest Pi holds accepti = false. By (iii), b` = bi
at the end of step 5, and hence all honest parties Pj have bj = bi by the end of
step 6.

If the OLE protocol elects an honest leader with constant probability, it
follows that the above protocol is an expected constant-round binary Byzantine
agreement protocol.

When t < n/3, any binary Byzantine agreement protocol can be transformed
into a (multi-valued) Byzantine agreement protocol using two additional rounds
[35]. In Section 4, we show how parallel composition can also be used to achieve
the same result without using any additional rounds. Using either approach in
combination with the above and Corollary 3, we have:

Corollary 5. There exists an expected constant-round protocol for Byzantine
agreement (and hence also broadcast) tolerating t < n/3 malicious parties.

For the authenticated case (i.e., t < n/2), Fitzi and Garay [20] show a con-
struction of expected constant-round binary Byzantine agreement based on OLE;
however, they do not explicitly describe how to achieve termination. We con-
struct a multi-valued Byzantine agreement protocol based on OLE and explic-
itly show how to achieve termination. In the proof below, we assume a gradecast
channel for simplicity of exposition; in the full version, we improve the round
complexity of our protocol by working directly in the point-to-point model.

Theorem 4. Assume there exist a constant-round authenticated gradecast pro-
tocol and a constant-round authenticated OLE protocol with fairness δ = Ω(1),
both tolerating t < n/2 malicious parties. Then there exists an expected constant-
round authenticated Byzantine agreement protocol tolerating t malicious parties.

Proof Let V be the domain of possible input values, let the input value for
party Pi be vi ∈ V , and let φ ∈ V be some default value. Each Pi begins with
an internal variable locki set to ∞.

Step 1 Each Pi gradecasts vi. Let (vj,i, gj,i) be the output of Pi in the gradecast
by Pj .

Step 2 For any v such that v = vj,i for some j, party Pi defines the sets S
v
i :=

{j : vj,i = v ∧ gj,i = 2} and S̃
v
i := {j : vj,i = v ∧ gj,i ≥ 1}. If locki = ∞,

then:

1. If there exists a v such that |S̃v
i | > n/2, then vi := v; otherwise, vi := φ.

2. If |Svi

i | > n/2, then locki := 1.

5 This implies that P` was uncorrupted in step 5 of the iteration in question.



Step 3 Each Pi gradecasts vi. Let (vj,i, gj,i) be the output of Pi in the gradecast
by Pj .

Step 4 For any v such that v = vj,i for some j, party Pi defines S
v
i and S̃

v
i as

in step 2. If locki =∞, then:

– If there exists a v such that |S̃v
i | > n/2, then vi := v; otherwise, vi := φ.

Pi sends vi to all parties. Let vj,i be the value Pi receives from Pj .

Step 5 All parties execute the OLE protocol; let `i be the output of Pi.

Step 6 Each Pi does the following: if locki =∞ and |Svi

i | ≤ n/2, then Pi sets
vi := v`i,i.

Step 7 If locki = 0, then Pi outputs vi and terminates the protocol. If locki =
1, then Pi sets locki := 0 and goes to step 1. If locki =∞, then Pi goes to
step 1.

We refer an execution of steps 1 through 7 as an iteration. An easy observation
is that once an honest party Pi sets locki := 1, then vi remains unchanged for
the remainder of the protocol and Pi outputs vi (and terminates) at the end
of the next iteration. We first claim that if — immediately prior to any given
iteration — there exists a value v such that vi = v for all honest Pi, then after
step 2 of that iteration vi = v and locki 6=∞ for all honest Pi. To see this, note
that in this case all honest parties gradecast v in step 1. Furthermore, by the
properties of gradecast, all honest parties will be in Sv

i and S̃
v
i for any honest Pi.

Assuming honest majority, it follows that vi = v and locki 6= ∞ for all honest
Pi after step 2, and the claim follows.

Consider the first iteration in which an honest party Pi sets locki := 1 (in
step 2), and let Pj be a different honest party. We show that vj = vi by the end
of that same iteration (regardless of the outcome of the OLE protocol). To see
this, note that by definition of gradecast Svi

j ⊆ S̃vi

i and so vj = vi after step 2
(whether or not Pj also sets lockj := 1 at this point). Since this holds for all
honest parties, every honest party gradecasts vi in step 3 and thus |S

vi

j | > n/2.
It follows that vj = vi at the end of that iteration.

Combining the above arguments, it follows that if an honest Pi sets locki := 1
in some iteration, then all honest Pj will have lockj 6= ∞ by the end of next
iteration, and all honest parties will output an identical value and terminate by
the end of the iteration after that.

What remains to show is that if an honest leader6 P` is elected in some
iteration, then all honest parties Pi will hold the same value vi by the end of
that iteration. By what we have argued already above, we only need to consider
the case where locki = ∞ for all honest parties Pi in step 4. Now, if in step 6
all honest Pi have |S

vi

i | ≤ n/2, it follows easily that each honest Pi sets vi :=
v`,i = v` (using the fact that P` was honest in step 4) and so all honest parties
hold the same value vi at the end of step 6. So, say there exists an honest party
Pi such that |S

vi

i | > n/2 in step 6. Consider another honest party Pj :

• If |S
vj

j | > n/2, then Svi

i ∩ S
vj

j 6= ∅ and (by properties of gradecast) vi = vj .

6 This implies that P` was uncorrupted in step 4 of the iteration in question.



• If |S
vj

j | ≤ n/2, then Pj sets vj := v`,j . But, using properties of gradecast,

Svi

i ⊆ S̃vi

` and so P` set v` := vi in step 4 (since P` was honest at that point).
Hence v`,j = v` = vi.

This concludes the proof.

Combining Lemma 2, Corollary 4, and Theorem 4 we obtain our main result:

Corollary 6. There exists an expected constant-round protocol for authenticated
Byzantine agreement tolerating t < n/2 malicious parties.

We refer the reader to the full version of this work [24] for an exact calculation
of the expected round complexities of our BA protocols.

4 Secure MPC in Expected Constant Rounds

Beaver, et al. [2] and Damg̊ard and Ishai [12] show computationally-secure
constant-round protocols Π for secure multi-party computation tolerating dis-
honest minority, assuming the existence of one-way functions and a broadcast
channel (the solution of [12] is secure against an adaptive adversary). To obtain
an expected constant-round protocol Π ′ in the point-to-point model (assuming
one-way functions and a PKI), a natural approach is to replace each invocation
of the broadcast channel in Π with an invocation of an expected constant-round
(authenticated) broadcast protocol bc; i.e., to setΠ ′ = Πbc. There are two subtle
problems with this approach that we must deal with:

Parallel composition. In protocol Π, all n parties may access the broadcast
channel in the same round; this results in n parallel executions of bc in protocol
Πbc. Although the expected round complexity of each execution of bc is constant,
the expected number of rounds for all n executions of bc to terminate may no
longer be constant.

A general technique for handling this issue is proposed by [4]; their solution
is somewhat complicated. In our case, however, we may rely on an idea of Fitzi
and Garay [20] that applies to OLE-based protocols such as ours. The main idea
is that when multiple broadcast sub-routines are run in parallel, only a single
leader election (per iteration) is required for all of these sub-routines. Using
this approach, the expected round complexity for n parallel executions will be
identical to the expected round complexity of a single execution. We defer to the
full version a detailed exposition of their method as applied to our protocol.

Sequential composition. A second issue is that protocol bc does not provide
simultaneous termination. (As noted in [28], this is inherent for any expected
constant-round broadcast protocol.) This may cause problems both in the un-
derlying protocol Π as well as in sequential executions of bc within Πbc.

Existing methods for dealing with this issue either apply only in the case
t < n/3 [4] or else are rather complex [28]. In the full version [24], we show a
simple way to deal with sequential composition for the case of t < n/2 (assuming
digital signatures and a PKI); a high-level overview is given in Section 5.



Taking the above into account, we obtain the following (security without
abort is the standard notion of security in the case of honest majority; see [23]):

Theorem 5. Assuming the existence of one-way functions, for every probabilis-
tic polynomial-time functionality f there exists an expected constant-round pro-
tocol for computing f in a point-to-point network with a PKI. The protocol is
secure without abort, and tolerates t < n/2 adaptive corruptions.

5 Sequential Composition

We have already noted that certain difficulties arise due to sequential compo-
sition of protocols without simultaneous termination (see also the discussion in
[28]). As an example of what can go wrong, assume protocol Π (that relies on a
broadcast channel) requires a party Pi to broadcast values in rounds 1 and 2. Let
bc1, bc2 denote the corresponding invocations of broadcast within the composed
protocol Πbc (which runs in a point-to-point network). Then, because honest
parties in bc1 do not terminate in the same round, honest parties may begin
execution of bc2 in different rounds. But security of bc2 is no longer guaranteed
in this case!

At a high level, we can fix this by making sure that bc2 remains secure as long
as all honest parties begin execution of bc2 within a certain number of rounds.
Specifically, if honest parties are guaranteed to terminate bc1 within g rounds
of each other, then bc2 must remain secure as long as all honest parties start
within g rounds. We now show how to achieve this for an arbitrary number of
sequential executions of bc, without blowing up the round complexity too much.

Let us first formally define the staggering gap of a protocol:

Definition 7. A protocol Π has staggering gap g if any honest parties Pi, Pj

are guaranteed to terminate Π within g rounds of each other.

Let rc(Π) denote the round complexity of a protocol Π. A proof of the following
appears in the full version [24]:

Lemma 5. Let bc be a protocol for (authenticated) broadcast with staggering
gap g. Then for any constant c ≥ 0 there exists a protocol Expand′(bc) which
achieves the same security as bc as long as all honest parties begin execution of
Expand′(bc) within c rounds of each other. Furthermore,

rc
(

Expand′(bc)
)

= (2c+ 1) · rc(bc) + 1,

and the staggering gap of Expand′(bc) is 1.
This result holds unconditionally for the case of t < n/3 malicious parties,

and under the assumption of a PKI and secure digital signatures for t < n/2.

To see that the above solves our problem, suppose we want to sequentially
compose protocols bc1, . . . , bc`, each having staggering gap g. We simply run `
sequential executions of bc′i = Expand′(bci) (setting c = 1) instead. Each bc′i



has staggering gap 1, meaning that honest parties terminate within 1 round of
each other. But each bc′i+1 is secure as long as honest parties begin execution
within 1 round of each other, so things are ok.

Applying this technique to compile a protocol Π (which uses a broadcast
channel in each of its ` rounds) to a protocol Π ′ (running in a point-to-point net-
work), we obtain rc(Π ′) = ` · (3 · rc(bc) + 1). This can be improved slightly [24].
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