
On Combining Privacy with Guaranteed Output
Delivery in Secure Multiparty Computation?

Yuval Ishai1, Eyal Kushilevitz1, Yehuda Lindell2??, and Erez Petrank1

1 Technion ({yuvali,eyalk,erez}@cs.technion.ac.il)
2 Bar-Ilan University (lindell@cs.biu.ac.il)

Abstract. In the setting of multiparty computation, a set of parties
wish to jointly compute a function of their inputs, while preserving se-
curity in the case that some subset of them are corrupted. The typical
security properties considered are privacy, correctness, independence of
inputs, guaranteed output delivery and fairness. Until now, all works in
this area either considered the case that the corrupted subset of parties
constitutes a strict minority, or the case that a half or more of the parties
are corrupted. Secure protocols for the case of an honest majority achieve
full security and thus output delivery and fairness are guaranteed. How-
ever, the security of these protocols is completely compromised if there
is no honest majority. In contrast, protocols for the case of no honest
majority do not guarantee output delivery, but do provide privacy, cor-
rectness and independence of inputs for any number of corrupted parties.
Unfortunately, an adversary controlling only a single party can disrupt
the computation of these protocols and prevent output delivery.
In this paper, we study the possibility of obtaining general protocols for
multiparty computation that simultaneously guarantee security (allowing
abort) in the case that an arbitrary number of parties are corrupted and
full security (including guaranteed output delivery) in the case that only
a minority of the parties are corrupted. That is, we wish to obtain the
best of both worlds in a single protocol, depending on the corruption case.
We obtain both positive and negative results on this question, depending
on the type of the functionality to be computed (standard or reactive)
and the type of dishonest majority (semi-honest or malicious).

1 Introduction

1.1 Background

Secure multiparty computation (MPC) [43, 28, 6, 13] allows a set of mutually
distrusting parties to compute a function in a distributed way while guaranteeing
(to the extent possible) the privacy of their local inputs and the correctness of
the outputs. To be more exact, security is typically formulated by comparing a
real execution of a protocol to an ideal execution where the parties just send

? Research supported by grant 36/03 from the Israel Science Foundation.
?? Much of this work was carried out while the author was visiting the Technion.



their inputs to a trusted party and receive back their outputs. A real protocol
is said to be secure if an adversary can do no more harm in a real execution
than in an ideal execution (which is secure by definition). The main security
properties that have been identified, and are implied by this formulation, are:
privacy (parties learn nothing more than their output), correctness (the outputs
are correctly computed), independence of inputs (parties must choose their inputs
independently of the other parties), fairness (if one party receives its output, all
parties receive their output), and guaranteed output delivery (the honest parties
are guaranteed to successfully complete the computation).

The vast body of research in this area can be divided into two, almost disjoint,
lines of work: one dealing with the case of an honest majority and another dealing
with the case of no honest majority. There are inherent differences between the
two settings both in terms of the type of security guarantees one can hope
to obtain and in terms of the techniques used for implementing protocols. We
elaborate on this below.

Secure computation with honest majority. If a majority of the participants
are honest, then it is possible to obtain the strongest type of security one could
hope for (including all of the properties described above). In fact, it is even pos-
sible to obtain this level of security unconditionally, without relying on unproven
complexity assumptions (as long as we do assume secure point-to-point channels
and either the existence of a broadcast channel [41] or of a trusted preprocess-
ing phase [40]1). Protocols for the honest-majority case include unconditionally
secure protocols from [6, 13, 41, 3, 17, 23, 15, 31] and computationally secure
protocols from [28, 5, 18, 19, 20, 25]. In this setting, n parties can compute an
arbitrary polynomial-time computable function of their inputs, while providing
unconditional security against s < n/2 malicious parties [41, 15]. Moreover, set-
tling for computational security, the same can be done in a constant number
of rounds (assuming that one-way functions exist) [5, 20]. It is known that the
bound s < n/2 is tight even for simple functionalities such as coin-flipping [14]
and even if one settles for computational security. We refer to protocols with
security against s < n/2 malicious parties as being of type Pn/2.

Secure computation with no honest majority. If a half or more of the
participants may be corrupted, then it is impossible to construct protocols that
guarantee (full) fairness, let alone output delivery. Rather, all protocols must al-
low the adversary to abort the protocol (possibly, even after first learning its out-
put, but before the honest parties receive their output) [14].2 We will refer to this
type of security as “security with abort” (and will sometimes call security for the
case of an honest majority full security in order to clarify which level of security
is discussed). Unlike the honest majority case, protocols in the case of no honest
majority can only guarantee computational security and need to rely on crypto-

1 The assumptions of broadcast or trusted preprocessing are not needed in the case
where more than two thirds of the parties are honest [6, 13].

2 In fact, the protocols can guarantee that the latter fairness problem occurs only if
some specified distinguished party, say the first, is corrupted (cf. [27, 30]).



graphic assumptions. Accordingly, the techniques used for obtaining such pro-
tocols involve cryptographic tools such as zero-knowledge proofs, commitment,
and oblivious transfer. Protocols in this setting include the two-party protocols
of [43, 28, 36, 39, 33] and the multi-party protocols of [28, 4, 29, 34, 30, 12, 38, 2].
In this setting, n parties can compute any polynomial-time computable function
of their inputs, while providing security with abort against t < n malicious par-
ties [43, 28] (assuming enhanced trapdoor permutations exist).3 This can also
be done in a constant number of rounds (assuming that trapdoor permutations
and collision-resistant hash functions exist) [36, 34, 38]. We refer to protocols
that are secure with abort against t < n malicious parties as being of type Pn.
We stress that, although output delivery and fairness are not guaranteed, there
is no compromise on privacy, correctness and independence of inputs.

A major qualitative advantage of type Pn protocols is that they provide
security (albeit with abort) against an arbitrary number of corrupted parties. In
particular, each party is assured that the privacy of its input is maintained even
if all the rest of the world conspires against it (the same holds for correctness
and independence of inputs as well). Thus, the privacy of each party is entirely
in its own hands. On the other hand, a major qualitative disadvantage of type
Pn protocols is that they fail to be resilient even against a single malicious party.
In particular, a single malicious party can abort the protocol and prevent honest
parties from receiving any outputs. This disadvantage becomes more severe as
the number of parties grows, to the point of rendering the guarantee of security
with abort essentially useless in a system with many parties. (Consider, for
instance, a voting system in which each voter can disrupt the elections.)

The above state of affairs raises the following natural question:

Is it possible to construct a single protocol for general MPC that will
provide security with abort (or even just privacy) in the case that an ar-
bitrary number of parties are corrupted and, simultaneously, will provide
full security (including guaranteed output delivery) in the case that only
a minority (or even just one) of the parties are corrupted?

In other words, is it possible to combine the main qualitative advantages of the
two types of protocols? To the best of our knowledge, the above fundamental
question has not been studied before. This is a major gap in our current under-
standing of the feasibility of secure computation.

1.2 Our Results

We initiate the study of the above question, obtaining both negative and posi-
tive results. We distinguish between standard and reactive secure computation

3 Here too, one either needs to rely on the availability of a broadcast channel, or
alternatively rely on some setup assumption such as PKI. Another alternative is to
relax the requirement of a unanimous abort, allowing a situation where only some
of the honest parties abort [30, 22].



tasks. A standard (or non-reactive) functionality receives a single input from ev-
ery party and provides a single output to every party. This corresponds to the
usual notion of secure function evaluation. In contrast, a reactive functionality
can receive inputs and provide outputs in multiple rounds, maintaining a state
information between subsequent invocations. (For example, a commitment func-
tionality is reactive because it has distinct “commit” and “reveal” phases.) We
also distinguish between two main variants of the above question, depending on
the type of adversary that is present. We will consider semi-honest and malicious
adversaries. A semi-honest adversary follows the protocol specification but may
try to infer additional information about the honest parties’ inputs from what
it sees. In contrast, a malicious adversary may instruct the corrupted parties
under its control to arbitrarily deviate from the protocol specification. In or-
der to strengthen our negative results, we will relax the requirements and allow
the protocol to achieve only privacy in the case of no honest majority (without
requiring the full definition of security-with-abort).

A negative result for reactive functionalities. We observe that the answer
to the above question is negative for the case of reactive functionalities. This
is proved by considering a type of commitment or secret-sharing functionality
and showing that it is impossible to achieve the requirements for this specific
functionality. The intuition behind this result is that if a secret is to be shared
between n parties with maximal privacy (i.e., so that no strict subset of the
parties can recover the secret), then even a single party can prevent a subse-
quent reconstruction of the secret. This is due to the fact that any one party
can just withhold its share and refuse to participate in the secret reconstruc-
tion phase. Since the remaining n− 1 parties should not be able to recover the
secret in the case that they are corrupted, they cannot recover it when they
are honest here as well. Thus, it is impossible to construct a protocol for secret
sharing that achieves security (or security with abort) against n−1 semi-honest
(and of course malicious) parties, and full security (including guaranteed output
delivery) against just a single malicious party. Our proof is motivated by the
above-described intuition, but the details are somewhat different. In particular,
our proof uses a non-standard formalization of secret-sharing as a reactive func-
tionality. We note that some standard formulations of verifiable secret-sharing
from the literature (e.g., the one from [27]) are non-reactive, and our proof does
not hold for these formulations.

A positive result for standard functionalities. In light of the above, we
restrict our attention from now on to the evaluation of standard (non-reactive)
functionalities. In this case, we show the following positive result: any n-party
functionality f can be computed by a protocol that simultaneously achieves the
following two security properties: (1) full security in the presence of any minority
of malicious parties; and (2) full security in the presence of any number of semi-
honest parties (we obtain full security here even in the case of no honest majority
because the adversary is semi-honest and so never aborts). Moreover, such a
protocol can be implemented in a constant number of rounds. (The above results
can be based on standard cryptographic assumptions.) Thus, in contrast to the



case of reactive functionalities, our main question can be answered affirmatively
for the case where privacy is only required to hold against semi-honest parties.

The above positive result is shown via the following simple protocol: first,
the parties use a type Pn protocol to evaluate a randomized functionality f̂
that outputs an authenticated secret-sharing of the output of f for which the
shares of < n/2 colluding parties yields no information about the secret. If
this stage terminates successfully (without aborting), then the parties exchange
their outputs of f̂ , from which they can recover the output of f . In case the
adversary aborted the computation of f̂ , the parties use a protocol of type Pn/2

to evaluate f . This combination of the two types of protocols combines their
relative advantages (in the sense discussed above), but falls short of providing
privacy against t < n malicious parties. We also describe an interesting variant of
this protocol that can provide a relaxed form of full privacy even in the malicious
case. Specifically, in addition to security against s < n/2 malicious parties, it can
be guaranteed that any coalition of t < n malicious parties can learn no more
information than is implied by t + 1 invocations of the functionality. For some
natural functionalities (like a voting functionality), this relaxed notion of privacy
is equivalent to the standard notion of privacy (see the end of Section 3 for
discussion). Thus, in some interesting cases, our main question can be answered
affirmatively even for malicious adversaries, as long as only privacy (and not
security) is sufficient.

A negative result for standard functionalities. We finally turn to the most
challenging remaining case of standard functionalities and where the adversary
can be malicious both in the case of an honest majority and in the case of no
honest majority. Arguably, as far as the corruption model is concerned, this is
the most interesting case. Unlike the previous cases, here we do not completely
settle the question. Instead, we prove that there do not exist constant round
protocols for general secure multiparty computation that are secure for the case
of an honest majority and private in the case of no honest majority (we actually
show that the number of rounds must grow with the security parameter). We
note that constant-round protocols do exist for type Pn/2 protocols and for
type Pn protocols alone, as well as for the setting of our above positive result.
Thus, our negative result here provides a nontrivial separation in terms of round
complexity. We leave open the possibility of protocols that require a non-constant
number of rounds in this setting.

Summary. We stress that all of our results apply to the computational model of
security. They are also quite insensitive to whether or not a broadcast primitive
is given. In particular, all negative results apply even when a broadcast channel
is assumed, and a variant of the positive results (replacing s < n/2 by s < n/3)
can be obtained also without broadcast or any setup assumptions. Finally, we
stress again that we strengthen our negative results by showing that even privacy
alone (rather than security-with-abort) cannot be achieved. Our main results are
summarized in Table 1.



Standard Reactive
functionalities functionalities

Privacy against t < n semi-honest Yes No
parties and security against (constant-round)
s < n/2 malicious parties Theorem 1 Theorem 4

Privacy against t < n malicious No No
parties and security against constant-round
s < n/2 malicious parties Theorem 2 Theorem 4

Table 1. Summary of main results: the existence and non-existence of protocols that si-
multaneously guarantee security against s < n/2 malicious parties and privacy against
t < n malicious or semi-honest parties. Negative results apply whenever s+ t ≥ n, and
in particular when s = 1 and t = n− 1. Our positive result actually provides security
for the semi-honest case.

1.3 Related Work

There is a significant body of work that deals with extending the basic feasibility
results for MPC in various directions. We mention some of this work below and
explain the differences from ours.

Multi-threshold MPC. Several previous works consider the possibility of re-
fining known feasibility results for MPC by allowing different security thresholds
for different types of corruption [23, 22, 24]. The focus of these works is very
different from ours. In particular, they all fall into the setting of an honest ma-
jority, while we study the situation where honest majority cannot be guaranteed.
Moreover, in contrast to [23, 24], in this work we only deal with computational
security and do not insist on any kind of unconditional security.

Fair MPC. Recall that a secure MPC protocol is said to be fair if at the end
of the protocol either all parties learn the output or no party learns the output.
(See [30] a for a comprehensive discussion of fairness and its variants.) It is known
that even simple functionalities such as coin-flipping or xor cannot be fairly
computed in the case of no honest majority [14]. In contrast, in this work, in the
setting of no honest majority we settle for privacy or security-with-abort which
do not imply fairness. Thus, our negative results are not implied by impossibility
results that relate to fairness. In light of the fact that “full fairness” cannot be
achieved without an honest majority, there has been a considerable amount of
work suggesting possible alternatives. The gradual release technique [21, 7, 26]
can guarantee the following partial form of fairness: if the adversary quits the
protocol early, then the adversary and the honest parties must invest comparable
amounts of time in order to recover the outputs. This approach departs from
traditional cryptographic protocols in that it does not set an a-priori bound on
the resources invested by honest parties. In contrast, in this work, we consider
the traditional setting in which the running time of honest parties is bounded by
some fixed polynomial in the security parameter. Other approaches for getting
around the impossibility of fairness involve relaxed notions of fairness [37, 4, 29],
or employing semi-trusted third parties or physical assumptions [1, 8, 35]. None
of these approaches applies to the standard model we consider here.



Organization. In Section 2, we provide some necessary definitions. In Section 3,
we present our positive result for the case of standard (non-reactive) functional-
ities. In Section 4, we present a negative result for standard functionalities and,
in Section 5, we present stronger negative results for the case of reactive func-
tionalities. Due to lack of space, some of the material (including proofs) were
omitted from this extended abstract and can be found in the full version.

2 Preliminaries

The Model. Our default network model consists of n parties, P1, . . . , Pn, who
interact in synchronous rounds via authenticated secure point-to-point channels
and a broadcast medium. We note, however, that the question we consider and
our results are quite insensitive to the network model and in particular to the
availability of broadcast, as discussed in the end of Section 1.2. Similarly, our
positive results hold even when the adversary is allowed rushing (i.e., sending
its messages at a given round only after receiving all messages sent by honest
parties in the same round), whereas our negative results hold even if all messages
of a given round are delivered simultaneously. This should be contrasted with
the known impossibility result for coin-flipping [14], which crucially depends on
the adversary’s rushing capability. Indeed, flipping coins becomes a trivial task
if the network can enforce simultaneous message exchange.

Throughout the paper, we consider computational security against compu-
tationally bounded adversaries. The security parameter will be denoted by k.
We assume for simplicity that the adversary is static, namely that the set of
corrupted parties is chosen at the onset of the protocol in a non-adaptive man-
ner. This strengthens our negative results, and is not essential for our positive
results.

Finally, we consider both malicious adversaries, who have total control over
the behavior of corrupted parties and may thus arbitrarily deviate from the pro-
tocol specification, and semi-honest adversaries, who can record all information
viewed by corrupted parties but do not otherwise modify their behavior. We
will sometimes also refer to fail-stop adversaries which can only deviate from
a semi-honest behavior by aborting, namely stopping to send messages. Unless
stated otherwise, adversaries are assumed to be malicious.

Defining security. We assume some familiarity of the reader with the basic
simulation-based approach for defining secure computation, as described in detail
in [9, 27]. Generally speaking, this definitional approach compares the real-life
interaction of an adversary with the protocol and its interaction with an ideal
function evaluation process in which a trusted party is employed. Security is
then defined by requiring that whatever can be achieved in the real model could
have also been achieved (or simulated) in the ideal model. In other words, for
every adversary A attacking the real execution of the protocol there exists an
adversary A′, sometimes referred to as a simulator, which can “achieve the same
effect” by attacking the ideal function evaluation process. The two main types
of security considered in this work differ in how the ideal model is defined.



Ideal Model – without abort. This variant of the ideal model corresponds
to the strong notion of security (with guaranteed output delivery) that is achieved
by type Pn/2 protocols. In this case, the interaction of the simulator A′ with the
ideal evaluation of f is very simple:

– Honest parties send their input xi to the trusted party. Corrupted parties
may send the trusted party arbitrary inputs as instructed by A′. Denote by
x′i the value sent by party Pi. In the case of a semi-honest adversary, we
require that x′i = xi.

– The trusted party computes f(x′1, . . . , x
′
n) = (y1, . . . , yn) and sends the value

yi to party Pi. (If f is randomized, this computation involves random coins
that are generated by the trusted party.) Any missing or “invalid” value x′i
is substituted by a valid default value (say 0) before evaluating f .

Ideal Model – with abort. In this case, a malicious (or even a fail-stop) ad-
versary can abort the computation in the ideal model after learning its outputs.4

We use ⊥ to represent the output of honest parties resulting from the adversary
aborting the protocol and let I ⊂ [n] denote the set of corrupted parties. The
following definition of the ideal model follows that of [34]:

– The parties send their inputs to the trusted party. As before, we let x′i denote
the (possibly modified) value sent by party Pi.

– The trusted party computes f(x′1, . . . , x
′
n) = (y1, . . . , yn) and sends to each

corrupted party Pi, i ∈ I, its output yi.
– Based on the values (yi)i∈I , received in the previous step, the adversary

chooses whether to continue the ideal function evaluation process or to abort.
In the former case, the trusted party sends to each uncorrupted party Pi,
i /∈ I, its output value yi. In the latter case, each party Pi such that i /∈ I
receives the special value ⊥ indicating that the adversary chose to abort.

When referring to constant-round protocols, we allow simulators to run in ex-
pected polynomial time (cf. [34]); our negative results hold even if the simulator’s
running time is unbounded.

Security versus privacy. In the literature on secure computation, privacy
is often synonymous with security against a semi-honest adversary. Here we
also refer to privacy against malicious adversaries, in which case we consider
the privacy property in isolation. Privacy requires that the adversary’s view
when attacking the real model can be simulated in the ideal model. This should
be contrasted with the (stronger) standard security definitions, which consider
the joint distribution of the adversary’s view and the outputs of uncorrupted
4 It is possible to realize a somewhat stronger notion of security in which the adversary

can abort the protocol after learning the outputs only if it corrupts some predefined
party, say P1. In this case, the adversary should be given the opportunity to abort the
protocol before learning the output even when the corrupted parties do not include
P1. Since the distinction between these two variants does not effect our results, we
prefer the simpler notion.



parties in both the real and ideal models. We note that considering privacy on
its own is often not sufficient. In particular, as discussed in [9], privacy alone
for randomized functionalities does not capture our intuition of what privacy
should mean. Moreover, privacy against a malicious adversary (in contrast to
privacy against a semi-honest adversary) does not compose. Nevertheless, it is
a meaningful notion of security that captures the adversary’s inability to learn
more than it should about the inputs of the honest parties. Furthermore, in this
work we mainly use privacy for our negative results, thereby strengthening them.

Authenticated secret sharing. Our positive results will make use of authenti-
cated secret sharing [41, 16] (also known as “honest-dealer VSS” or “weak VSS”).
An s-secure authenticated secret sharing scheme allows an honest dealer to dis-
tribute a secret σ among n players such that an adversary corrupting up to s
players learns nothing about σ from its shares. Moreover, even by modifying its
shares, the adversary cannot prevent honest players from later reconstructing
the correct value σ, except with negligible probability. An authenticated secret
sharing scheme is defined by a pair S = (D,R) of efficient algorithms, where
D(1k, 1n, σ) is a randomized secret distribution algorithm outputting an n-tuple
of shares, and R(σ1, . . . , σn) is a reconstruction function recovering the secret
from the (possibly modified) shares. We will also need to rely on the existence
of an efficient share completion algorithm which, given a secret σ and a set of
s′ ≤ s shares, can sample the remaining n − s′ shares conditioned on the given
information. A formal definition of authenticated secret-sharing can be found in
the full version. We rely on the following fact.

Fact 1 (implicit in [41]) There exists an s-secure n-party authenticated secret
sharing scheme for any s < n/2.

3 Positive Result for Standard Functionalities

In this section, we present a protocol demonstrating the possibility of obtaining
the best of both worlds for standard (non-reactive) functionalities, as long as the
adversary is semi-honest in the case of no honest majority. That is, we obtain a
protocol that provides full security against a minority of malicious parties, and
full security against any number of semi-honest parties.

Theorem 1. Assume the existence of enhanced trapdoor permutations. Then,
for any probabilistic polynomial-time computable (non-reactive) functionality f ,
there exists a single protocol π such that:

1. π securely computes f in the presence of an s-bounded malicious adversary,
for any s < n/2;

2. π securely computes f in the presence of a t-bounded semi-honest adversary,
for any t < n.

Furthermore, if collision resistant hash functions exist, the protocol π can be
constructed with just a constant number of rounds.



We prove the theorem by presenting a protocol that achieves the desired
security features. Assume, without loss of generality, that the (possibly random-
ized) functionality f has a single output that is given to all parties (see Remark 1
below). We also assume without loss of generality that the output length of f ,
denoted by `, is determined by k. We use the fact that known protocols that
securely compute f with abort in the presence of an (n−1)-bounded malicious
adversary are fully secure in the presence of an (n−1)-bounded semi-honest
adversary. Our protocol proceeds as follows.

Protocol 1 multiparty computation secure against a minority of malicious par-
ties and against any number of semi-honest parties:

– Inputs: Each party Pi, 1 ≤ i ≤ n, has an input xi. All parties hold a security
parameter k.

– Output: Each party Pi would like to obtain y = f(x1, . . . , xn).
– Parameters: Security thresholds s = b(n− 1)/2c < n/2 and t = n− 1.
– The protocol:

Phase I:
1. The parties begin by computing an authenticated secret-sharing of

f(x1, . . . , xn). Specifically, let S = (D,R) be an s-secure authenti-
cated secret sharing scheme (see Section 2), and let f̂ be the random-
ized functionality defined by

f̂(1k, x1, . . . , xn) = D(1k, 1n, f(x1, . . . , xn)).

Let πn be a protocol that securely computes f̂ with abort in the pres-
ence of t-bounded malicious adversaries (and is fully secure in the
presence of t-bounded semi-honest adversaries). The parties invoke
πn on their inputs xi, obtaining local outputs yi.

2. If Phase I terminated successfully (with honest parties outputting
values yi 6= ⊥), each party Pi sends yi to all other parties and outputs
y = R(y1, . . . , yn). Otherwise (if Phase I terminated with “abort”),
proceed to Phase II below.

Phase II:
Let πn/2 be protocol that securely computes f in the presence of s-bounded
malicious adversaries. The parties invoke πn/2 on their original inputs
xi, and output their outputs in this invocation.

Notice that even a single malicious party can abort the computation of πn in
the first phase. However, in such a case all the honest parties output yi = ⊥ and
proceed to the next phase where the protocol is fully secure in the presence of
s-bounded malicious adversaries. The key observation used in constructing the
protocol is that either the adversary is semi-honest, in which case the protocol
will terminate in phase I, or the adversary is malicious, but then we know that
it is s-bounded. Thus, it will learn nothing in the first phase, and the protocol
in the second phase will yield the desired result.



Remark 1 (Single output vs. multiple outputs). In Protocol 1, we assume that
the functionality f has a single output y which is given to all parties. To handle
general functionalities, we can use the standard reduction where the output
includes a concatenation of n values yi ⊕ ri, where yi is the local output of Pi,
and ri is a mask randomly selected by Pi and included in its input. It is not
difficult to show that this reduction is secure for any number of corruptions.

In the full version of this paper, we prove the following:

Lemma 1. Protocol 1 is secure against semi-honest t-bounded adversaries for
any t < n.

Lemma 2. Protocol 1 is secure against malicious s-bounded adversaries, for
any s < n/2.

To conclude the proof of Theorem 1, we note that protocols πn/2, πn as needed
indeed exist. That is, we can take πn/2 to be the protocol of [28] and πn to be
the protocol of [41] (obtaining a non-constant number of rounds), or we can take
πn/2 to be the protocol of [38] and πn to be the protocol of [5] (obtaining a
constant number of rounds, but additionally requiring the existence of collision-
resistant hash functions). ut

In the full version we discuss extensions of Theorem 1 to the cases of adaptive
security and UC security.

Remark 2 (On strengthening semi-honest security). In the case of no honest
majority (n/2 ≤ t < n), Theorem 1 only refers to security against a semi-honest
adversary. However, the security guarantee provided by Protocol 1 in this case
is somewhat stronger. In particular, for any non-aborting adversary (i.e., an
adversary that does not cause the honest parties to abort), the computation will
be completed in Phase I, and privacy is thus preserved in this case. Since an
adversary that aborts may be identified as misbehaving, real adversarial parties
may have a lot to lose by causing an abort in Phase I. Note, however, that
Protocol 1 does not generally satisfy security-with-abort, or even privacy, against
t < n malicious parties. Indeed, a malicious majority can learn the entire input
in Phase II. In Section 4 we show that a similar type of insecurity is inherent to
constant-round protocols.

An interesting protocol variant. A useful property of most known protocols
of type Pn (e.g., the protocols in [27] or [34]) is that if the protocol aborts, then
a corrupted party is identified (where the same corrupted party is identified by
all honest parties). This feature gives rise to the following variant of Protocol 1,
that obtains a meaningful notion of security even against a majority of malicious
parties (in addition to full security against a minority of malicious parties):

Repeatedly run Phase I, disqualifying a bad party at each iteration until
no aborts occur. (If a party is disqualified, its input is replaced by a
default value.) Then, all remaining parties exchange their authenticated
shares and reconstruct the output of f as in Step 2 of Protocol 1.



We first note that this protocol may run at most t + 1 iterations, as one cor-
rupted party is eliminated in each repetition. For this variant of Protocol 1, an
interesting security guarantee can be made. First, similarly to Protocol 1, the
protocol is secure against s < n/2 malicious parties. Moreover, even if a ma-
licious adversary corrupts t < n parties, this adversary can be simulated in a
relaxed ideal model where the simulator can invoke the functionality up to t + 1
times. In each such invocation, the simulator gets to learn the outputs first, and
then decides whether to abort (and continue to the next invocation) or to deliver
the outputs to the uncorrupted parties (in which case the protocol terminates).
If it gets to invocation t + 1, then it must deliver the output.

For many natural functionalities the above type of security is quite reason-
able, and in particular may imply privacy. For instance, in the case of the ba-
sic voting functionality (sum of 0/1 values), the above protocol is fully private
against a malicious adversary, because t invocations of the functionality are
equivalent to a single invocation in terms of the information learned by the sim-
ulator. This holds because in a single invocation the adversary can learn exactly
how many honest parties voted 1 and how many voted 0. Future invocations,
where the adversary changes the votes of the corrupted parties, will yield no
additional information. Thus, using this approach, we actually get a voting pro-
tocol with security against s < n/2 and privacy against t < n malicious parties.
We stress that even for this specific functionality the above protocol falls short of
providing full security, or even security with abort, against a malicious majority.
For instance, corrupted parties can force the vote tally to be even, or force a tie
between the candidates. Note, however, that obtaining such an unfair advantage
is possible only when a majority of the voters are maliciously corrupted. In such
a case, protecting the privacy of the honest minority is typically the most im-
portant concern. This concern is completely resolved by our protocol, without
compromising full security in the (more likely) case of a malicious minority.

4 Negative Result for Standard Functionalities

In this section we prove our main negative result for standard (non-reactive)
functionalities. Specifically, we demonstrate the existence of a 3-party function-
ality for which there does not exist any constant-round protocol that is both
secure against one malicious party and private against two malicious parties. (A
generalization to n parties is presented later.) The proof of this result is quite
subtle; we first describe the general idea at a high level.

Denote the 3 parties by A,B, C and their respective inputs by a, b, c. We
consider a functionality f which, on randomly chosen inputs, allows a coalition
of B and another party (A or C) to learn partial information about the input of
the remaining party, but not everything. Let q be a round number such that the
following holds: After q rounds, A and B can learn from the honest execution of
the protocol the maximal amount of information about c allowed by the the ideal
evaluation of f . On the other hand, after q− 1 rounds B and C can only obtain
a substantially smaller amount of information about a. (If no such such q exists,
we can exchange the roles of A and C and the rest of the argument proceeds



symmetrically.) An adversary corrupting A and B can now break the privacy of
the protocol as follows. It acts honestly for the first q − 1 rounds. Starting from
round q, it makes A stop sending any messages but keeps B acting honestly. At
this stage, the adversary has already learned the maximal amount of information
about c allowed by the ideal model. However, the protocol must continue as if
only A is corrupted, in which case the outputs of B and C should correspond to
substituting the input of A by some default value. (Here we use the fact that the
protocol should be fully secure in the case that only A is corrupted.) The crucial
point is that B and C do not have enough information about a to guarantee that
it is always used as the default value. Thus, with some noticeable probability, B
learns an output of f on (a′, b, c) for some a′ 6= a. This new information can be
used by the adversary to learn more about c than is allowed in the ideal model.

We now proceed with the formal statement of the result and its proof.

Theorem 2. There exists a finite 3-party functionality f for which there is no
constant-round protocol π such that:

– π securely computes f in the presence of a malicious adversary corrupting
one party;

– π privately computes f in the presence of a malicious adversary corrupting
two parties.

This holds even if the malicious adversary is restricted to be of a fail-stop type.

The proof of Theorem 2 relies on a technical definition of information yielding
defined below. We will consider honest executions of the protocol on random
inputs, and would like to measure the “amount of information” some partial
view yields on an input. For this, it will be convenient to use the following
measurement. Intuitively, it measures the maximal probability of guessing the
input correctly without being wrong (except with probability that tends to 0 as
k tends to infinity), but possibly outputting “don’t know”.

Definition 1 Let (X(k), V (k)) be an ensemble of (possibly) correlated random
variables and let 0 ≤ p ≤ 1 be a constant. We say that V yields X with probability
(at least) p if there exists a polynomial-size prediction algorithm P such that
Pr[P (V (k)) = X(k)] ≥ p−ε(k), and Pr[P (V (k)) 6∈ {X(k), “don’t know”}] ≤ ε(k)
for some ε(k) that tends to 0 as k tends to infinity.

In the following proof we will use Definition 1 with X being an input to
a protocol and V a corresponding view obtained by running the protocol with
security parameter k. (In our specific example, X will not depend on k.)

Proof Sketch: We prove Theorem 2 by exhibiting a specific functionality f
as required. This functionality involves three parties, A, B, C, where A’s input
is denoted a, C’s input is c and B has no input. The functionality is defined
by f(a,⊥, c) = (⊥, out,⊥), where out = c if a = c, and out = ∗ otherwise.
The inputs a, c are taken from the set {0, 1, 2}. We will argue that there is



no constant-round protocol that computes f with full security against a single
malicious party and privacy against two malicious parties.

Suppose, by way of contradiction, that π is a protocol for f that obtains both
privacy against two parties and security against one. Now, consider the honest
execution of π on inputs a and c that are selected uniformly and independently
at random in the domain {0, 1, 2}. For an honest run of the protocol, we denote
by qAB the first round after which the view of the coalition of A and B on the
protocol yields c (in the sense of Definition 1) with probability 1/3. We know
that qAB > 0, since initially it is impossible for A and B to guess c without error.
We also know that qAB is no larger than the (constant) number of rounds in the
protocol, since eventually even the view of B alone must yield c with probability
1/3. Thus, qAB is well defined. Define qBC symmetrically, i.e., the first round in
which the view of B and C yields a with probability 1/3. Assume, without loss
of generality, that qAB ≤ qBC . In other words, A and B learn c at no later than
B and C learn a. The proof for the case qAB ≥ qBC proceeds symmetrically.

Let q = qAB , i.e., after q rounds the joint views of A and B yields c with
probability p1 = 1/3, where the probability is taken over the choice of a, c and the
random coin tosses of all parties. Let P be a corresponding prediction algorithm
(of c from the view of A and B), and denote by G1 the event that P does not
output “don’t know”, given the view of A and B after q rounds. By the definition
of q and P , and relying only on the fact that Pr[P (V (k)) = X(k)] ≥ p− ε(k), it
follows that

Pr[G1] ≥ 1/3− ε(k) (1)

After q − 1 rounds, the view of B and C does not yield the value of a with
probability 1/3. This means that, for any poly-size predictor P ′ that is wrong
with probability at most ε′(k) (for some ε′ that tends to 0 as k tends to infinity),
there is some constant p2 < 1/3 and infinitely many k’s such that the probability
that P ′’s output is not “don’t know”, based on the view of B and C in the first
q − 1 rounds, is at most p2. (To be consistent with Definition 1, note that p2

equals some p′ − ε′(k) where p′ < 1/3.)
Note that the assumption that p2 is bounded away from 1/3 is where we

use the assumption that the protocol has a constant number of rounds. A more
fundamental reason for the restriction on the number of rounds is the following.
We will need the information obtained in round q to be significantly better than
the information obtained in round q − 1, and furthermore will need the differ-
ence between the two amounts of information to be bigger than the difference
between round q and the maximal amount of information. The difficult case
of non-constant-round protocols, for which the above property cannot be met,
is when after m rounds the view yields the input with probability 1/3 − 2−m.
This suggests that our general proof approach cannot go beyond a logarithmic
number of rounds.

From here on, we consider the following experiment. Pick the two inputs a, c
uniformly and independently at random. The adversary attacks the protocol,
when invoked on uniformly random inputs, as follows. It corrupts A and B, and
after q − 1 rounds makes A abort. (That is, the last message sent by A is that



sent in Round q − 1.) Define the event G1 as above, based on the view of A
and B in the first q rounds (note that the joint view of A and B depends only
on C’s messages to A and B in the first q rounds and these are all obtained
even though A halts after q − 1 rounds). We now define another event G2 on
the probability space induced by the same execution of the protocol. By the
security guarantee, and since B is still following the protocol, the protocol must
continue as if only A is corrupted. In particular, B should eventually output c
with probability (roughly) 1/3. Let G2 denote the event that B outputs some
value in {0, 1, 2} (in which case, as follows from the definition of f , it also learns
the value of the input c). Note, however, that there is no guarantee that when
G2 occurs, the output of B is necessarily equal to a (since A is corrupted).

In the following, ε(k) should be interpreted as some function that tends to 0
as k tends to infinity (not necessarily negligible in k) as in Definition 1. Using
the above notations, the following facts can now be deduced. First,

Pr[G1 and a 6= c] < ε(k). (2)

This is because when a 6= c then even the full view does not allow A and B to
predict c with “small” error (where from here on, small error means with error
ε(k) for some function ε(·) that tends to 0 as its input tends to infinity). Thus,
in the ideal model, it is impossible to predict with small error. This means that
if Eq. (2) did not hold, then the assumed predictor could be used to distinguish
the output of the adversary in a real protocol execution from its output in an
ideal one.

In addition to the above, we have that in the ideal model B must output c
with probability 1/3. Thus, by the security guarantee

Pr[G2] ≥ 1/3− ε(k). (3)

(Note that Eq. (3) actually holds for a negligible function ε(k). Nevertheless, it
suffice to use a function ε(k) that tends to 0 as k tends to infinity.) Finally, we
claim that the probability that B generates output in {0, 1, 2}, but the predictor
outputs “don’t know” is at most ε(k); that is:

Pr[G2 and not(G1)] ≤ ε(k). (4)

This last inequality is shown by way of contradiction. If Equation 4 does not hold,
then there is some constant p > 0 such that Pr[G2 and not(G1)] > p for infinitely
many k. If that happens, we can derive a contradiction to the guaranteed privacy
of the protocol π. To show that privacy does not hold, we show that there is
some constant p′ > 1/3 such that the adversary (that corrupts A and B) can
guess c with probability greater than p′ for infinitely many k’s (while outputting
a wrong guess with vanishingly small probability). This cannot happen in the
ideal model. The adversary uses the following strategy: Corrupt A and B; Run
the protocol normally for q − 1 rounds; Invoke the predictor P on the partial
view of A and B, and if it outputs some value c then output the same value and
halt; Otherwise, pretend as if A is dead and continue to run the protocol until
it terminates (with B acting honestly); If B outputs some value c then output
the same value and halt; Otherwise, output “don’t know”. Note that a guess c
output by the algorithm is wrong with only small probability, and the event of



outputting some value c is the union of G1 and G2 which, using Equation 1 and
the assumption above, is at least 1/3− ε(k) + p for infinitely many k’s. Since p
is a positive constant and ε(k) goes to zero, we obtain a contradiction.

So, we assume Equation 4 does hold and obtain a contradiction to the prop-
erty of round q; i.e., to the fact that the view of B and C does not yield the
value a with probability 1/3 after q − 1 rounds. We construct a new predictor
that yields the value of a from the view of B and C at round q − 1 in the fol-
lowing manner. It takes the view of B and C and continues to run the protocol
until the end assuming that A aborted. Since A is not involved from Round q
and on, this can be done based on the partial view of B and C alone (in the
first q− 1 rounds). Note that this run is distributed exactly like the experiment
previously described, where A aborts and B and C continue to run the protocol
on their own. The experiment and distribution remain identical even though we
previously thought of A and B as trying to obtain the value c and now we think
of B and C as trying to obtain the value a. The predictor outputs whatever B
outputs. By Equation 3, the probability that B outputs a value in {0, 1, 2} is
roughly 1/3. By Equation 4, whenever this happens it is almost always the case
that G1 occurs. Namely, if we had run the predictor P on the view of A and B, it
would have predicted the value c correctly. But if G1 occurs then, by Equation 2,
we get that a = c. To sum up, the output of B generated from the view of B
and C in round q − 1 yields a with probability (almost) 1/3 and is wrong with
only small probability, contradicting the definition of the round q. ut
Note that while we allow the simulator an arbitrary malicious behavior in the
ideal world, the real-world adversary described above is only a fail-stop one. This
strengthens our result.

Using standard player-partitioning arguments, the result for the above 3-
party functionality f can be generalized to rule out general constant-round pro-
tocols for any s, t such that s + t ≥ n.

Theorem 3. Let n, s, t be such that s + t ≥ n. Then there is an n-party func-
tionality for which there is no constant-round protocol that is simultaneously:

– secure against an s-bounded malicious adversary;
– private against a t-bounded malicious adversary.

5 Negative Result for Reactive Functionalities

For the case of reactive functionalities, we obtain the following strong negative
result.

Theorem 4. There exists a finite, reactive 3-party functionality f for which
there does not exist a protocol π such that:

– π securely computes f in the presence of a malicious adversary corrupting
one party;

– π privately computes f in the presence of a semi-honest adversary corrupting
two parties.



This holds even if the malicious adversary is restricted to be of a fail-stop type.

In the full version of the paper we prove Theorem 4 using a two-phase func-
tionality, which roughly corresponds to the task of committing to a secret and
later decommitting it. Similarly to Theorem 3, this negative result can also be
generalized to any s, t such that s + t ≥ n.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital
Signatures (Extended Abstract). In Proc. EUROCRYPT 1998, pages 591-606.

[2] B. Barak, and A. Sahai. How To Play Almost Any Mental Game Over The
Net - Concurrent Composition via Super-Polynomial Simulation. In Proc. of 46th
FOCS, pp. 543-552, 2005.

[3] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a con-
stant number of rounds. In Proc. 8th ACM PODC, pages 201–209, 1989.

[4] D. Beaver, S. Goldwasser. Multiparty Computation with Faulty Majority. In
Proc. of FOCS 1989, pp. 468-473.

[5] D. Beaver, S. Micali and P. Rogaway. The Round Complexity of Secure Protocols.
In 22nd STOC, pages 503–513, 1990.

[6] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages
1–10, 1988.

[7] D. Boneh and M. Naor. Timed Commitments. In CRYPTO 2000, pp. 236-254.
[8] C. Cachin and J. Camenisch. Optimistic Fair Secure Computation. In Proc.

CRYPTO 2000, pages 93-111.
[9] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.

Journal of Cryptology, 13(1):143–202, 2000.
[10] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic

Protocols. FOCS 2001: 136-145.
[11] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Multi-Party

Computation. In 28th STOC, pages 639-648, 1996.
[12] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-

Party and Multi-Party Computation. In 34th STOC, pages 494–503, 2002.
[13] D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party Unconditionally Secure

Protocols. In 20th STOC, pages 11–19, 1988.
[14] R. Cleve. Limits on the Security of Coin Flips when Half the Processors Are

Faulty. In Proc. of STOC 1986, pp. 364-369.
[15] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient Mul-

tiparty Computations Secure Against an Adaptive Adversary. In Proc. EURO-
CRYPT 1999, pages 311-326.

[16] R. Cramer, I. Damg̊ard, and S. Fehr. On the Cost of Reconstructing a Secret, or
VSS with Optimal Reconstruction Phase. In Proc. CRYPTO 2001, pages 503-523.

[17] R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In EUROCRYPT ’00, pp. 316-334.

[18] R. Cramer, I. Damg̊ard, and J. Nielsen. Multiparty computation from threshold
homomorphic encryption. In EUROCRYPT ’01 , pp. 280-299.

[19] I. Damg̊ard and J. Nielsen. Multiparty Computation from Threshold Homomor-
phic Encryption. CRYPTO 2003: 247-264.



[20] I. Damg̊ard and Y. Ishai. Constant-Round Multiparty Computation Using a
Black-Box Pseudorandom Generator. In CRYPTO 2005, pp. 378–394.

[21] S. Even, O. Goldreich and A. Lempel. A Randomized Protocol for Signing Con-
tracts. In Communications of the ACM, 28(6):637–647, 1985.

[22] M. Fitzi, M. Hirt, T. Holenstein, and J. Wullschleger. Two-Threshold Broadcast
and Detectable Multi-party Computation. EUROCRYPT 2003: 51-67.

[23] M. Fitzi, M. Hirt, and U. M. Maurer. Trading Correctness for Privacy in Uncon-
ditional Multi-Party Computation (Extended Abstract). CRYPTO 1998: 121-136

[24] M. Fitzi, T. Holenstein, and J. Wullschleger. Multi-party Computation with Hy-
brid Security. EUROCRYPT 2004: 419-438

[25] J. A. Garay, P. D. MacKenzie, and K. Yang. Efficient and Universally Composable
Committed Oblivious Transfer and Applications. TCC 2004.

[26] J. A. Garay, P. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource Fair-
ness and Composability of Cryptographic Protocols. Proc. 3rd TCC, 2006. Also
appears in Cryptology ePrint Archive, Report 2005/370.

[27] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cam-
bridge University Press, 2004.

[28] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In 19th STOC, pages
218–229, 1987. For details see [27].

[29] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. In CRYPTO ’90, pp. 77–93.

[30] S. Goldwasser, and Y. Lindell. Secure Multi-Party Computation without Agree-
ment. J. Cryptology 18(3): 247-287 (2005). Preliminary version in DISC 2002.

[31] M. Hirt and U. M. Maurer. Robustness for Free in Unconditional Multi-party
Computation. CRYPTO 2001: 101-118.

[32] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In Proc. 41st FOCS, pp.
294–304, 2000.

[33] J. Katz and R. Ostrovsky. Round-Optimal Secure Two-Party Computation. In
CRYPTO 2004, pages 335-354.

[34] J. Katz, R. Ostrovsky, and A. Smith. Round Efficiency of Multi-party Computa-
tion with a Dishonest Majority. In EUROCRYPT 2003, pages 578-595.

[35] M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and
coalition-safe cheap talk. In Proc. PODC 2004, pages 1-10.

[36] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-
tation. J. Cryptology 16(3): 143-184 (2003). Preliminary version in Crypto 2001.

[37] M. Luby, S. Micali, and C. Rackoff. How to Simultaneously Exchange a Secret
Bit by Flipping a Symmetrically-Biased Coin. In 24th FOCS, pp. 11-21, 1983.

[38] R. Pass. Bounded-Concurrent Secure Multi-Party Computation With a Dishonest
Majority. In Proc. STOC 2004, pages 232-241.

[39] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in
a Constant Number of Rounds. In Proc. FOCS 2003., pp. 404-413, 2005.

[40] B. Pfitzmann and M. Waidner. Information-Theoretic Pseudosignatures and
Byzantine Agreement for t ≥ n/3. IBM Research Report RZ 2882 (#90830),
IBM Research Division, Zurich, 1996.

[41] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols
with Honest Majority. In Proc. 21st STOC, pages 73–85. ACM, 1989.

[42] A. Shamir. How to share a secret. Commun. ACM, 22(6):612–613, June 1979.
[43] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167,

1986.


