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Abstract. In 2000, Dwork and Naor proved a very surprising result:
that there exist “Zaps”, two-round witness-indistinguishable proofs in
the plain model without a common reference string, where the Verifier
asks a single question and the Prover sends back a single answer. This left
open the following tantalizing question: does there exist a non-interactive
witness indistinguishable proof, where the Prover sends a single mes-
sage to the Verifier for some non-trivial NP-language? In 2003, Barak,
Ong and Vadhan answered this question affirmatively by derandomizing
Dwork and Naor’s construction under a complexity theoretic assumption,
namely that Hitting Set Generators against co-nondeterministic circuits
exist.
In this paper, we construct non-interactive Zaps for all NP-languages.
We accomplish this by introducing new techniques for building Non-
Interactive Zero Knowledge (NIZK) Proof and Argument systems, which
we believe to be of independent interest, and then modifying these to
yield our main result. Our construction is based on the Decisional Lin-
ear Assumption, which can be seen as a bilinear group variant of the
Decisional Diffie-Hellman Assumption.
Furthermore, our single message witness-indistinguishable proof for Cir-
cuit Satisfiability is of size O(k|C|) bits, where k is a security parameter,
and |C| is the size of the circuit. This is much more efficient than previous
constructions of 1- or 2-move Zaps.
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1 Introduction
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without a common reference string, where the Verifier asks a single question
and the Prover sends back a single answer. This left open the following tantaliz-
ing question: does there exist a non-interactive witness indistinguishable proof,
where the Prover sends a single message to the Verifier for some non-trivial NP-
language? Such zaps were shown to have a number of fascinating and important
applications, beyond the numerous applications of WI proofs already present in
the literature.

In this paper, we introduce new techniques for constructing Non-Interactive
Zero Knowledge (NIZK) Proofs and Arguments, based on the hardness of compu-
tational problems that arise in bilinear groups. Based on these new techniques,
we are able to construct non-interactive Witness-Indistinguishable proofs for
any NP relation, without any setup assumptions, based on a number-theoretic
computational assumption. Furthermore, our construction is significantly more
efficient than previous constructions of zaps, as we discuss below. We believe our
new techniques for NIZK will have a number of other applications, as well. In
the remainder of this introduction, we describe our setting and our results, and
present our results in the context of previous work.

Our setting. Throughout the paper we will make use of groups of prime order
equipped with non-trivial bilinear maps. In other words, we let G, GT be abelian
groups of order p, and let e : G×G→ GT be a non-degenerate bilinear map such
that e(ua, vb) = e(u, v)ab. Such groups have been widely used in cryptography
in recent years.

Our underlying security assumption is the Decisional Linear Assumption:
Given groups elements (g, f = gx, h = gy, fr, hs, gd) for x, y ← Z∗

p and r, s← Zp,
it is hard to distinguish between the case where d = r + s or d is random.
The assumption was introduced by Boneh, Boyen and Shacham in [BBS04].
The assumption gives rise to an ElGamal-like cryptosystem with public key
pk = (p, G, GT , e, g, f, h), where f = gx, h = gy and the secret key is sk = (x, y).
Encryption of m ∈ G is done by picking r, s ← Zp at random and letting the
ciphertext be (fr, hs, gr+sm). An encryption of 1 is called a linear tuple (with
respect to f, h, g).

Our techniques and results. The conceptual starting point for our work is
our recent work [GOS06], which constructed NIZK proofs and arguments for any
NP relation, based on a different computational assumption for bilinear groups
of composite order, called the Subgroup Decision Assumption. In that paper, we
gave a construction for NIZK proof systems, such that if the Common Reference
String (CRS) was of one form, it would be perfectly sound and computational
ZK; whereas if the CRS was of a different form, then the same construction
would yield a system that is computationally sound but perfectly ZK.

Our key idea for achieving non-interactive WI proofs without a CRS is as
follows: If we could somehow force the prover to produce a perfect soundness
CRS on its own, we would be done – but this is not possible. Instead, can we
somehow force a prover to produce two CRS’s, such that at least one is of the
perfect soundness type?



Unfortunately, in the original GOS proof system, the CRS’s that force per-
fectly sound proofs are negligibly rare, and are computationally indistinguishable
from CRS’s that give only computational soundness (and indeed these CRS’s
have trapdoors allowing proofs of false theorems).

The main technical contribution of our paper is to construct a new NIZK sys-
tem based on the Decisional Linear Assumption where perfect soundness CRS’s
are common, whereas computational soundness CRS’s are negligibly rare. Fur-
thermore, in our new system, we show that a simple operation – multiplication
of one element in the CRS by a generator – can always transform a compu-
tational soundness CRS into a perfect soundness CRS. (Roughly speaking, we
accomplish the following: if the CRS is a linear tuple, then we obtain a computa-
tionally sound proof system; whereas if the CRS is any non-linear tuple, then we
obtain a perfectly sound proof system.) This allows us to achieve non-interactive
WI proofs as follows: The prover can generate a CRS on its own, but it must
provide proofs under both the chosen CRS and the transformation of that CRS.
This forces perfect soundness. We show that the WI property still holds because
of a hybrid argument.

We note that our constructions yield NIZK proofs and non-interactive WI
proofs for Circuit Satisfiability where the proof size is O(k|C|) bits, where k is
the security parameter, and C is the size of the circuit. For NIZK proofs this
matches the previous best bound by [GOS06], which relies on the Subgroup
Decision assumption. Our NIZK proofs1 have the advantage of being realizable
in the Common Random String model, whereas the constructions of [GOS06]
required the Common Reference String Model. For WI proofs, as far as we know,
our proof size is a significant improvement over all previous constructions of zaps
for NP relations.

We believe our techniques and ideas for constructing NIZK proofs using the
Decisional Linear Assumption will have other applications, as well. In a compan-
ion paper, Groth [Gro06] constructs a wide variety of novel and efficient NIZK
proofs under the Decisional Linear Assumption, and uses these to obtain group
signatures and other important applications.

Previous Work and Context for our Work. NIZK proofs were intro-
duced by Blum, Feldman, and Micali [BFM88], following the introduction of in-
teractive Zero-Knowledge proofs by Goldwasser, Micali, and Rackoff [GMR89].
Witness-Indistinguishable protocols were introduced by Feige and Shamir [FS90].

Dwork and Naor [DN00] constructed 2-round WI proofs, called zaps2, for any
NP relation (assuming trapdoor permutations exist), and showed a wide variety
of applications for zaps. Furthermore, [DN00] showed that their constructions
allowed for the first message (from Verifier to Prover) to be reused – so that
between a particular pair of prover and verifier, only one message from verifier
to prover is required even if many statements are to be proven. Barak, Ong, and
Vadhan [BOV03] constructed the first non-interactive zaps for any NP relation

1 These are computational zero knowledge, perfectly sound proofs.
2 In the spirit of the name, we interpret zaps to mean WI proofs that require 2 rounds

or less.



by applying derandomization techniques to the construction of Dwork and Naor,
based on trapdoor permutations and the assumption that (very good) Hitting
Set Generators (HSG) against co-nondeterministic circuits exist. It is known that
such HSG’s can be built if there is a function in E that requires exponential-size
nondeterministic circuits – i.e. the assumption states that some uniform expo-
nential deterministic computations can (only) be sped up by at most a constant
power (Time 2cn becomes 2εn), when given the added power of nondeterminism
and advice specific to the length of the input.

We mainly wish to emphasize that our construction is completely differ-
ent and uses completely different, number-theoretic computational assumptions.
Furthermore, our construction is much more efficient than both the construc-
tions of Dwork-Naor and Barak-Ong-Vadhan (even when these constructions are
instantiated with very efficient NIZK proofs such as [GOS06]).

A further point of comparison would be to look more closely at the assump-
tions used, for instance in the context of Naor’s classification of assumptions
based on falsifiability [Nao03]. While our assumption, the Decisional Linear As-
sumption, is an “efficiently falsifiable” assumption according to Naor’s classi-
fication, it appears that the assumption about the existence of HSG’s against
co-nondeterministic circuits, or the assumption about functions in E with large
nondeterministic circuits, are “none of the above” assumptions according to
Naor’s classification, since we wouldn’t have time to actually “run” a suggested
nondeterministic (or co-nondeterministic) circuit that claims to break the as-
sumption.3

2 Definitions: Non-interactive Proofs

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x
the statement and w the witness. Let L be the language consisting of statements
in R.

A non-interactive proof system for a relation R consists of a CRS genera-
tion algorithm K, a prover P and a verifier V . The CRS generation algorithm
produces a common reference string σ. The prover takes as input (σ, x, w) and
produces a proof π. The verifier takes as input (σ, x, π) and outputs 1 if the

3 We note that there is some uncertainty as to how to interpret Naor’s classification
with respect to these derandomization-style assumptions. We take a view that we
think is consistent with the spirit of Naor’s classification by asking the question – if
the assumption is false, then is there necessarily a reasonably efficient (PPT) algo-
rithmic demonstration of the falsehood of this assumption? To us, it appears that
the answer is “Yes” for our assumption, but appears to be “No” for the [BOV03]
assumptions; this is simply because for the latter assumptions, it is important that
the breaking algorithm could be non-deterministic – and if it is, then how can we effi-
ciently verify that it indeed does break the assumption? It would be very interesting
if in fact there were a positive answer to this. Of course the question of falsifiability
is less important than the question of whether an assumption is actually true; alas,
we find ourselves unequipped to address this issue.



proof is acceptable and 0 if rejecting the proof. We call (K, P, V ) a proof system
for R if it has the completeness and soundness properties described below.
Perfect completeness. For all adversaries A we have

Pr
[
σ ← K(1k); (x,w)← A(σ);π ← P (σ, x, w) : V (σ, x, π) = 1 if (x,w) ∈ R

]
= 1.

Perfect soundness. For all adversaries A we have

Pr
[
σ ← K(1k); (x, π)← A(σ) : V (σ, x, π) = 0 if x /∈ L

]
= 1.

Computational zero-knowledge [FLS99]. We call (K, P, V ) an NIZK proof
for R if there exists a simulator S = (S1, S2) with the following zero-knowledge
property. For all non-uniform polynomial time adversaries A we have

Pr
[
σ ← K(1k) : AP (σ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1k) : AS(σ,τ,·,·)(σ) = 1

]
,

where S(σ, τ, x, w) = S2(σ, τ, x) for (x, w) ∈ R and both oracles output failure
if (x, w) /∈ R.

2.1 Witness Indistinguishablity

A prerequisite for NIZK proofs is the common reference string. However, many
times a witness indistinguishable proof is sufficient. Witness indistinguishability
means that an adversary cannot tell which of two possible witnesses w1, w2 that
has been used in constructing the proof. We will show how to construct a WI
proof system without any setup assumptions.
Computational witness indistinguishability. We call (K, P, V ) a non-
interactive zap for R or a non-interactive WI proof for R in the plain model
if for all non-uniform polynomial time interactive adversaries A we have

Pr
[
(x,w1, w2)← A(1k);π ← P (1k, x, w1) : A(π) = 1 and (x,w1), (x,w2) ∈ R

]
≈ Pr

[
(x,w1, w2)← A(1k);π ← P (1k, x, w2) : A(π) = 1 and (x,w1), (x,w2) ∈ R

]
.

A hybrid argument shows that this definition is equivalent to one where we
give the adversary access to multiple proofs using either witness w1 or w2. The
definition of perfect WI is similar, except there we require equality of the above
probabilities for all adversaries.

3 Bilinear groups

Bilinear groups. We use two cyclic groups G, GT of order p, where p is a
prime. We make use of a bilinear map e : G × G → GT . I.e., for all u, v ∈ G
and a, b ∈ Z we have e(ua, vb) = e(u, v)ab. We require that e(g, g) is a generator



of GT if g is a generator of G. We also require that group operations, group
membership and the bilinear map be efficiently computable.

Throughout the paper we let G be a randomized algorithm that takes a
security parameter as input and outputs (p, G, GT , e, g) such that p is prime,
G, GT are descriptions of groups of order p, e : G × G → GT is a bilinear map
as described above and g is a random generator of G.

Boneh and Franklin [BF03] give an example of a bilinear group. Let p =
2 mod 3 be a prime, and choose a small ` so q = `p− 1 is prime and p2 6 |q + 1.
Then the elliptic curve y2 = x3 + 1 over Zq has `p points. We can let G be the
order p subgroup of this curve and GT = F∗

q2 . The bilinear map is the modified
Weil-pairing. To get a random generator g for this group, pick x at random
such that x3 + 1 is a square and let y be a randomly chosen squareroot. Then
g = (x, y)` is a random generator for G provided g 6= 1.

We say the bilinear group is verifiable, if there is a verification algorithm that
outputs 1 if and only if (p, G, GT , e, g) is a bilinear group. The bilinear group
from [BF03] described above is verifiable, we just need to check that p = 2 mod 3
is a prime and g is a generator for G.

Definition 1 (Decisional Linear Assumption). We say the Decisional Lin-
ear Assumption holds for the bilinear group generator G if for all non-uniform
polynomial time adversaries A we have

Pr
[
(p, G, G1, e, g)← G(1k);x, y ← Z∗

p; r, s← Zp :

A(p, G, GT , e, g, gx, gy, gxr, gys, gr+s) = 1
]

≈ Pr
[
(p, G, G1, e, g)← G(1k);x, y ← Z∗

p; r, s, d← Zp :

A(p, G, GT , e, g, gx, gy, gxr, gys, gd) = 1
]
.

The Decisional Linear Assumption was first introduced by Boneh, Boyen and
Shacham [BBS04] and has since been used in several cryptographic constructions.
We call a tuple of the form (fr, hs, gr+s) a linear tuple with respect to (f, h, g).
When the basis (f, h, g) is obvious from context, we omit mention of it.

4 Homomorphic Encryption and Commitment from
Bilinear Maps

4.1 A Homomorphic Cryptosystem

We recall the homomorphic cryptosystem given by [BBS04]. It uses ideas similar
to ElGamal encryption, but since the Decisional Diffie-Hellman (DDH) problem
is easy in bilinear groups, we have to insert an extra element in the ciphertext.

Key generation:
1. (p, G, G1, e, g)← G(1k)



2. Let x, y ← Z∗
p; let f = gx, h = gy

3. Let pk = (p, G, GT , e, g, f, h)
4. Let sk = (pk, x, y)
5. Return (pk, sk)

Encryption: To encrypt m ∈ G, let r, s ← Zp, and return (u, v, w) =
E(m; r, s) = (fr, hs, gr+sm).

Decryption: To decrypt ciphertext (u, v, w) ∈ G3, return m = Dsk(u, v, w) =
u−1/xv−1/yw.

The cryptosystem (Kcpa, E, D) has several nice properties. The Decisional
Linear Assumption for G implies semantic security under chosen plaintext at-
tack. All triples (u, v, w) ∈ G3 are valid ciphertexts. Also, the cryptosystem is
homomorphic in the sense that

E(m1; r1, s1)E(m2, r2, s2) = E(m1m2; r1 + r2, s1 + s2).

4.2 A Homomorphic Commitment Scheme

We will use the cryptosystem to create a homomorphic commitment scheme
with the property that depending on how we generate the public key we get
either a perfectly hiding trapdoor commitment scheme or a perfectly binding
commitment scheme.

Perfectly hiding key generation:
1. (pk, sk)← Kcpa(1k)
2. ru, sv ← Zp

3. (u, v, w) = E(1; ru, sv) = (fru , hsv , gru+sv )
4. Return ck = (pk, u, v, w)

Perfectly binding key generation:
1. (pk, sk)← Kcpa(1k)
2. ru, sv ← Zp

3. (u, v, w) = E(m; ru, sv) = (fru , hsv , gru+svm), where m = g±1 can be
arbitrarily chosen

4. Return ck = (pk, u, v, w)
Commitment: To commit to message m ∈ Zp do

1. r, s← Zp

2. Return c = (c1, c2, c3) = com(m; r, s) = (umfr, vmhs, wmgr+s)
Trapdoor opening: Given a commitment c = com(m; r, s) under a perfectly

hiding commitment key we have c = com(m′; r−(m′−m)ru, s−(m′−m)sv).
So we can create a perfectly hiding commitment and open it to any value
we wish if we have the trapdoor key (ru, sv).

The semantic security of the cryptosystem implies that no polynomial time ad-
versary can distinguish between perfectly hiding keys and perfectly binding keys.
This implies that the perfectly binding commitment scheme is computationally
hiding, and the perfectly hiding commitment scheme is computationally binding.



5 NIZK proofs for Circuit Satisfiability

In this section, we show how to construct NIZK proofs for Circuit Satisfiability
based on the Decisional Linear Assumption. To do this, we follow but somewhat
change the general outline of the [GOS06] construction. We review this now:

In the GOS construction, and in ours, the overall approach is to commit4

to the value of all the wires in the circuit (including the input wires) using an
additively homomorphic commitment scheme, and then prove that for every gate
in the circuit (W.L.O.G. a NAND gate), the 3 wires incident to the gate obey
its rule. In [GOS06], we then showed how to reduce this task to just proving
that a committed value is either 0 or 1. This is done by way of the homomorphic
properties of the commitment scheme, together with the following simple obser-
vation: for three values b0, b1, b2 ∈ {0, 1}, we have that b0 + b1 + 2b2 − 2 ∈ {0, 1}
iff b2 = ¬(b0 ∧ b1).

In [GOS06], then all that was needed was a NIZK proof that a committed
value is either 0 or 1. Here, we look a little closer at the GOS methodology, and
take a slightly different route. This consists of two main observations:

1. First, we take a look at our homomorphic commitment scheme (given in the
last section), and observe the following: Given a commitment c = (c1, c2, c3),
the committed value being either 0 or 1 is equivalent to the following state-
ment: that either c is a commitment to 0, or that c′ = (c1/u, c2/v, c3/w)
is a commitment to 0. Further, we note that a commitment (c1, c2, c3) is a
commitment to 0 iff it forms a linear tuple. Thus, we can equivalently prove
that given two tuples, that either one or the other is a linear tuple, i.e., of
the form (fr, hs, gr+s).

2. Second, we take a closer look at the simulation strategy. The overall strat-
egy is as follows: The CRS consists of the parameters for the homomorphic
commitment scheme. As we have already observed, however, the Decisional
Linear Assumption implies that a CRS that leads to perfectly binding com-
mitments is indistinguishable from one that leads to perfectly hiding com-
mitments. If we want perfect soundness for our NIZK proof system, then
the “real-life” CRS should lead to perfectly binding commitments. The sim-
ulation can use a CRS of the perfectly hiding type, and the simulator can
remember the trapdoor information that allows it to produce equivocal com-
mitments that it can later open to any value.
A key observation we make here is that the homomorphic properties of the
commitment preserves equivocality: if one applies the homomorphic oper-
ations to multiple equivocal commitments, then the resulting commitment
is still equivocal. So, we observe that the simulation can simply produce
such equivocal commitments for each wire value, and then when it comes to

4 In [GOS06] we called this an encryption. The fact that it was an encryption and
not just a commitment is not important for the ZK property, and was used there
to achieve proofs of knowledge. We can also obtain NIZK proofs of knowledge, but
that is not our focus here.



proving that one of two commitments (that were generated via homomor-
phic operations) is a commitment to zero, the simulation will actually have
the necessary information to prove this for both commitments. What this
means is that we need the proof that one of two commitments is a commit-
ment to zero (i.e. that one out of two tuples is a linear tuple) to merely be
witness-indistinguishable rather than fully NIZK.

Before giving the NIZK proof for Circuit Satisfiability more formally, we first
construct a (perfect) WI proof for one out of two tuples being a linear tuple.

5.1 Perfect WI proof

Consider the following situation. We have two tuples (A1, A2, A3) and
(B1, B2, B3) with discrete logarithms (a1, a2, a3) and (b1, b2, b3) with respect to
(f, h, g), where f = gx and h = gy. We want to prove that a1 + a2 + a3 = 0
or b1 + b2 + b3 = 0. Note, this corresponds to (A−1

1 , A−1
2 , A3) or (B−1

1 , B−1
2 , B3)

being a linear tuple. We will do this by showing that

0 =
3∑

i=1

3∑
j=1

aibj = (a1 + a2 + a3)(b1 + b2 + b3).

We first give the intuition behind our scheme, and then the formal description
and proof of correctness. Using the bilinear map, we can compute

e(A1, B1) = e(f, f)a1b1 e(A1, B2)e(A2, B1) = e(f, h)a1b2+a2b1

e(A2, B2) = e(h, h)a2b2 e(A1, B3)e(A3, B1) = e(f, g)a1b3+a3b1

e(A3, B3) = e(g, g)a3b3 e(A3, B2)e(A2, B3) = e(h, g)a2b3+a3b2

The goal is to show that these six exponents sum to 0.
Consider the following matrix

M =

 e(A1, B1) e(f, h)te(A1, B2) e(f, g)−te(A1, B3)
e(h, f)−te(A2, B1) e(A2, B2) e(h, g)te(A2, B3)
e(g, f)te(A3, B1) e(g, h)−te(A3, B2) e(A3, B3)

 ,

with t← Zp chosen at random.
If both a1 + a2 + a3 = 0 and b1 + b2 + b3 = 0, then this matrix is distributed

identically to its transpose. To see this, we observe that since a1(b1 + b2 + b3) =
b1(a1+a2+a3) = 0, we have that a1b2−a2b1 = a3b1−a1b3. Similarly, we have that
a1b2−a2b1 = a2b3−a3b2. Therefore if we set t′ = t+(a1b2−a2b1) = t+(a3b1−
a1b3) = t+(a2b3− a3b2), but interchange the roles of a1, a2, a3 and b1, b2, b3, we
have the same matrix. This is what will give us witness indistinguishability. If
a1 + 23 + a3 6= 0 or b1 + b2 + b3 6= 0 we only have one witness and therefore we
automatically have witness indistinguishability.

So, W.L.O.G., assume that we know a1, a2, a3. We can rearrange the matrix
as  e(f,Ba1

1 ) e(f, htBa1
2 ) e(f, g−tBa1

3 )
e(h, f−tBa2

1 ) e(h, Ba2
2 ) e(h, gtBa2

3 )
e(g, f tBa3

1 ) e(g, h−tBa3
2 ) e(g,Ba3

3 )

 .



In our proof system, we will reveal the 9 right-hand-side inputs to the bilinear
maps for each entry of the matrix.

Observe, that we have e(Ai, Bi) = Mii, so Mii has exponent aibi. We also
have e(Ai, Bj)e(Aj , Bi) = MijMji, which has exponent aibj + ajbi for i 6= j.
The verifier can check these equations, meaning he knows the sum of all the
9 exponents of M is

∑3
i=1

∑3
j=1 aibj . We therefore just need to show that the

exponents of each of the 3 column vectors of M is 0.
Observe in the matrix above that for j = 1, 2, 3 we have M1jM2jM3j =

1. This means we do not need to reveal M3j , the verifier can compute it as
M3j = M−1

1j M−1
2j himself. This also corresponds to asserting the fact that the

column logarithms sum to 0: Taking discrete logarithms of these elements we
have m1j + m2j + m3j = 0.

These are the ideas in the WI proof, let us now write down the protocol.

Statement: A bilinear group (p, G, GT , e, g) and generators (f, h). The claim
is that at least one of two given tuples (c1, c2, c3) and (d1, d2, d3) is a linear
tuple with respect to f, h, g.

Witness: The witness is of the form (r, s) so c = (fr, hs, gr+s) or d =
(fr, hs, gr+s).

Proof: Define a1 = −r, a2 = −s, a3 = r + s. This means a1 + a2 + a3 = 0.
If the prover has a witness for c then let B1 = d−1

1 , B2 = d−1
2 , B3 = d3, else

let B1 = c−1
1 , B2 = c−1

2 , B3 = c3.
Choose t← Zp and let

π11 = Ba1
1 π12 = htBa1

2 π13 = g−tBa1
3

π21 = f−tBa2
1 π22 = Ba2

2 π23 = gtBa3
3

Return the proof π = (π11, π12, π13, π21, π22, π23).
Verification: Compute π3j = (π1jπ2j)−1 for j = 1, 2, 3. For sake of notation

consistent with the intuition above, let c̃1 = c−1
1 , c̃2 = c−1

2 , c̃3 = c3, d̃1 = d−1
1 ,

d̃1 = d−1
2 , and d̃1 = d3. Accept if and only if the bilinear group is correctly

formed, and

e(f, π11) = e(c̃1, d̃1) e(f, π12)e(h, π21) = e(c̃1, d̃2)e(c̃2, d̃1)
e(h, π22) = e(c̃2, d̃2) e(f, π13)e(g, π31) = e(c̃1, d̃3)e(c̃3, d̃1)
e(g, π33) = e(c̃3, d̃3). e(h, π23)e(g, π32) = e(c̃2, d̃3)e(c̃3, d̃2)

Theorem 1. The protocol described above is a non-interactive proof system for
one of (c1, c2, c3) or (d1, d2, d3) being a linear tuple with respect to f, h, g. It has
perfect completeness, perfect soundness and perfect witness-indistinguishability.
The proof consists of 6 elements from G.

Proof.

Perfect completeness: This follows by straightforward computation.



Perfect soundness: Define rc, sc, tc and rd, sd, td so c = (frd , hsd , gtc) and
d = (frd , hsd , gtd).
For i = 1, 2 let

mi1 = logf (πi1) mi2 = logh(πi1) mi3 = logg(πi3).

Let

m31 = −m11 −m21 m32 = −m12 −m22 m33 = −m13 −m23.

From the equalities we get

m11 = rcrd m12 + m21 = rcsd + scrd

m22 = scsd m13 + m31 = −rctd − tcrd

m33 = tctd. m23 + m32 = −sctd − tcsd

This means

(rc + sc − tc)(rd + sd − td)
= rcrd + rcsd + scrd + scsd + tctd − (rctd + tcrd + sctd + tcsd)

=
3∑

i=1

3∑
j=1

mij = 0.

We conclude
tc = rc + sc or td = rd + sd.

Perfect witness indistinguishability: For WI, we may assume that both tu-
ples are linear tuples. Define a1 = −r, a2 = −s, a3 = r + s and B1, B2, B3

as in the proof. We define b1, b2, b3 so B1 = f b1 , B2 = hb2 , B3 = gb3 , observe
that b1 + b2 + b3 = 0. In the proof we pick t← Zp. Interchanging the roles of
a1, a2, a3 and b1, b2, b3 and using t′ = t + (a1b2− a2b1) = t + (a3b1− a1b3) =
t + (a2b3 − a3b2) leads to exactly the same proof. ut

5.2 Circuit Satisfiability NIZK construction

Based on the intuition given earlier, we now give an NIZK proof for Circuit
Satisfiability, based on the (perfect) WI proof that one out of two tuples is a
linear tuple, given in the last section.

Common reference string:
1. (p, G, GT , e, g)← G(1k)
2. f, h random generators of G
3. u = fr0 , v = hs0 , and w = gr0+s0m, for random r0, s0 in Zp and m = g

or m = g−1. Note that the choice of m = g or m = g−1 is arbitrary.
4. Return σ = (p, G, GT , e, g, f, h, u, v, w).

Statement: The statement is a circuit C built from NAND-gates. The claim is
that there exist input bits w so C(w) = 1.



Proof: The prover has a witness w consisting of input bits so C(w) = 1.

1. Extend w to contain the bits of all wires in the circuit.
2. Commit to each bit wi as a tuple (c1 = uwifr, c2 = vwihs, c3 = wwigr+s)

with r, s← Zp chosen independently for each wire.
3. For the output wire, create a special commitment c∗ = (u, v, w) that can

easily be checked to be a commitment to 1, as required.
4. For each commitment c = (c1, c2, c3) to each wire value wi, generate a

commitment c′ = (c1/u, c2/v, c3/w), and give a WI proof that either c
or c′ is a linear tuple with respect to f, h, g. Note that if wi = 0, then c
is a linear tuple, and if wi = 1, then c′ is a linear tuple.

5. For all NAND-gates, do the following. We write the input commitments
tuples as a = (a1, a2, a3), b = (b1, b2, b3), and the output commitment
tuple as c = (c1, c2, c3). From these commitments, create two new tuples:
C = (C1 = a1b1c

2
1u

−2, C2 = a2b2c
2
2v

−2, C3 = a3b3c
2
3w

−2) and C ′ =
(C1/u, C2/v, C3/w). Note that either C or C ′ is a linear tuple iff the
values underlying the commitments a, b, c respect the NAND gate. Then
give a WI proof that either C or C ′ is a linear tuple, noting that the
witness for this can be derived from the wire values and randomness used
to prepare the commitments a, b, and c.

6. Return π consisting of all the commitments and WI proofs.

Verification: The verifier is given a circuit C and a proof π.

1. Check that all wires have a corresponding commitment tuple and that
the output wire’s commitment tuple is (u, v, w).

2. Check that all WI proofs showing that each wire has a committed value
in {0, 1} are valid.

3. Check that all WI proofs corresponding to NAND-gates are valid.
4. Return 1 if all checks pass, else return 0.

Remark. We note that in the common reference string, if p is a prime number,
then if we let g, f, h, u, v, w be randomly chosen elements of G, with overwhelming
probability they will form a viable CRS such that (u, v, w) are a non-linear
tuple with respect to (f, h, g), and therefore the resulting commitment scheme
is perfectly binding. If, for instance, the group is the one suggested by Boneh
and Franklin [BF03], then all that is needed to define G is the prime p. Thus, we
can implement our NIZK Proofs in the Common Random String model, where
the random string is first used to obtain a k-bit prime p using standard methods
(just dividing up the CRS into k-bit chunks and checking one-by-one if they
are prime will do), and then the remaining randomness is used to randomly
determine g, f, h, u, v, w (by picking random order p points on the curve). Such
an NIZK Proof will not have perfect soundness, but statistical soundness, since
the probability of (u, v, w) being a linear tuple is exponentially small in k. In
the common random string model this is optimal, since for any NIZK proof
system with a common random string there is a risk of accidentally selecting a
simulation string.



Theorem 2. The protocol above is an NIZK proof system for Circuit Satis-
fiability with perfect completeness, perfect soundness and computational zero-
knowledge if the Decisional Linear Assumption holds for the bilinear group gen-
erator G.

Proof sketch.
Perfect completeness and soundness are clear. We now argue that our NIZK

proof system is computational zero knowledge. We present this in two stages.
We first examine a hybrid in which the prover uses the witness to generate

a proof, but where the CRS is simulated so that (u, v, w) form a linear tuple,
instead of a non-linear tuple. We note that (by means of intermediate hybrid in
which (u, v, w) are random, and a reduction to the Decisional Linear Assump-
tion) this hybrid produces computationally indistinguishable proofs.

The simulator will now produce proofs that are distributed identically to the
hybrid above (assuming that the underlying WI proofs are perfectly WI). It
starts by choosing u = fr0 , v = hs0 , w = gr0+s0 , and remembering these values
r0, s0 ← Zp.

Now, for each wire w, the simulator picks a commitment c = (c1 = fr, c2 =
hs, c3 = gr+s) as a random linear tuple. Because (u, v, w) is a linear tuple, all
commitment strings are distributed identically as random linear tuples.

For generating the WI-proofs corresponding to the commitments for wires,
since the simulator directly has a witness for showing that the commitment is a
linear tuple, it uses this to complete the proof.

For generating the WI-proofs corresponding to NAND gates, we note that
for each NAND gate, if the 3 wire commitments are a = (fr1 , hs1 , gr1+s1),
b = (fr2 , hs2 , gr2+s2), and c = (fr3 , hs3 , gr3+s3), then the commitment C =
(fr1+r2+2r3−2r0 , hs1+s2+2s3−2s0 , g(r1+r2+2r3−2r0)+(s1+s2+2s3−2s0)), and therefore
we have a witness to C being a linear tuple, and we can use this to complete the
WI proof.

The only difference between how the simulator proceeds and how the honest
prover algorithm proceeds is the choice of which witnesses to use in the WI proof.
Therefore, the (perfect) indistinguishability of the simulation from the hybrid
follows from the (perfect) witness-indistinguishability of the WI proofs. ut

6 Non-Interactive Zaps for Circuit Satisfiability

We now give our construction of non-interactive zaps for Circuit Satisfiability,
following the intuition presented in the Introduction.

Statement: A circuit C.
Proof: The prover given 1k, C and input values w such that C(w) = 1 proceeds

as follows:
1. Generate a verifiable bilinear group (p, G, GT , e, g)← G(1k).
2. Choose a perfectly hiding CRS, namely generators f, h, and a linear tuple

(u, v, w).



3. Use the NIZK prover to obtain a proof π1 of the statement with respect
to the CRS (p, G, G1, e, g, f, h, u, v, w).

4. Use the NIZK prover to obtain a proof π2 of the statement with respect
to the CRS (p, G, G1, e, g, f, h, u, v, wg). Observe, we are using w′ = wg.

5. The resulting proof is π = (p, G, GT , e, g, f, h, u, v, w, π1, π2).
Verification: On input C and a proof π as described above, accept iff the

following procedure succeeds:
1. Use the verification algorithm to check that (p, G, GT , e, g) is a bilinear

group.
2. Verify that f 6= 1, h 6= 1, i.e., that f and h are generators of G.
3. Verify π1 with respect to the CRS (p, G, G1, g, f, h, u, v, w).
4. Verify π2 with respect to the CRS (p, G, GT , g, f, h, u, v, wg).

Theorem 3. The protocol described above is a non-interactive proof for Circuit
Satisfiability with perfect completeness, perfect soundness and computational wit-
ness indistinguishability if the Decisional Linear Assumption holds for the veri-
fiable bilinear group generator G.

Proof.

Perfect completeness: The protocol is perfectly complete because the NIZK
proofs for Circuit Satisfiability are perfectly complete.

Perfect soundness: Perfect soundness follows from the fact that at least one of
the two CRS’s – (p, G, GT , e, g, f, h, u, v, w) and (p, G, GT , g, f, h, u, v, wg) 1–
must have perfectly binding parameters for the commitment scheme. Per-
fect soundness of the corresponding NIZK proof implies that C must be
satisfiable.

Computational witness indistinguishability: We now argue (computa-
tional) witness indistinguishability assuming the Decisional Linear Assump-
tion, by means of a hybrid argument:
1. The first hybrid is simply the prover algorithm above using witness w1.

That is, it chooses a group (p, G, GT , e, g) and a public key (f, h) and a
random linear tuple (u, v, w), then uses the NIZK prover with witness
w1 to obtain π1, and uses the NIZK prover with witness w1 to obtain
π2.

2. The second hybrid proceeds as in the first, except that for π1, it uses the
NIZK prover with witness w2 to obtain π1 instead of using witness w1.
Hybrid 1 and Hybrid 2 are identically distributed, by means of an in-
termediate hybrid using the NIZK simulator for π1, and the fact that
the NIZK simulator is a perfect simulator in the case where the CRS is
based on a linear tuple.

3. The third hybrid proceeds as the second, except that it chooses random
generators (f, h, g), and a linear tuple (u, v, w′), and sets w = w′/g.
Note that now, (u, v, w) is a perfectly binding CRS, while (u, v, w′) is a
perfectly hiding CRS.
Hybrid 2 and Hybrid 3 are computationally indistinguishable by a re-
duction to the Decisional Linear Assumption. This is seen by means of
an intermediate hybrid in which (u, v, w) are set to a random tuple.



4. The fourth hybrid proceeds as the third, except that for π2, it uses the
NIZK prover with witness w2 to obtain π2 instead of using witness w1.
Hybrid 3 and Hybrid 4 are identically distributed for the same reasons
Hybrids 1 and 2 were identically distributed.

5. Finally, the fifth hybrid proceeds as the fourth, except that it chooses
random generators (f, h, g), and a linear tuple (u, v, w), and sets w′ =
wg. This is precisely the WI prover algorithm using witness w2.
Hybrid 4 and Hybrid 5 are computationally indistinguishable by a re-
duction to the Decisional Linear Assumption, by the same argument
showing that Hybrids 2 and 3 were computationally indistinguishable.

ut
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