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Abstract. We address the issue of encrypting data in local storage using
a key that is derived from the user’s password. The typical solution in
use today is to derive the key from the password using a cryptographic
hash function. This solution provides relatively weak protection, since
an attacker that gets hold of the encrypted data can mount an off-line
dictionary attack on the user’s password, thereby recovering the key and
decrypting the stored data.
We propose an approach for limiting off-line dictionary attacks in this
setting without relying on secret storage or secure hardware. In our pro-
posal, the process of deriving a key from the password requires the user
to solve a puzzle that is presumed to be solvable only by humans (e.g, a
CAPTCHA). We describe a simple protocol using this approach: many
different puzzles are stored on the disk, the user’s password is used to
specify which of them need to be solved, and the encryption key is derived
from the password and the solutions of the specified puzzles. Completely
specifying and analyzing this simple protocol, however, raises a host of
modeling and technical issues, such as new properties of human-solvable
puzzles and some seemingly hard combinatorial problems. Here we ana-
lyze this protocol in some interesting special cases.

1 Introduction

The motivation for this work is the common situation where we need to protect
local storage that is physically readable by anyone, and moreover the only source
of secret key material are the human users of the system. For example, think of
a multi-user system where each user has an account, and where a browser lets
users store personal information and site-specific passwords on the shared disk
under the protection of a password. Another example is a laptop whose disk is
searchable when captured and access to data is protected by a password. The
common solution for this case is to derive a cryptographic key from the user-
supplied password (possibly together with a public, locally stored salt), and use
that key to encrypt the information (see e.g. [Kal00]).

This practice is quite problematic, however, since an attacker can perform
dictionary searches for the correct password. In contrast to the case of password-
based key exchange where off-line dictionary attacks can be effectively mitigated
using cryptographic tools, here the lack of any secret storage seems to make such
attacks inevitable. Thus, typical applications use a key-derivation-function such



as SHA1 repeated a few thousand times to derive the key from the password, in
the hope of slowing down off-line dictionary attacks. Although helpful, this ap-
proach is limited, as it entails an eternal cat-and-mouse chase where the number
of iterations of SHA1 continuously increases to match the increasing comput-
ing powers of potential attackers. (This approach can be thought of as a naive
instantiation of the “pricing via processing” paradigm of [DN92].)

This work aims to improve the security of local storage by relying on the hu-
man user for more than just supplying the initial password. Namely, we envision
an interactive key-generation process involving a human user and the automated
program, at the end of which a key is generated. Specifically, we propose to make
use of puzzles that are easily solvable by humans but are hard to solve for com-
puters, as in [Naor96,vAB+03]. That is, the user would supply a password, then
it would be asked to solve some puzzles, and the key would be derived from both
the password and the solutions of these puzzles.

One approach for combining puzzles and passwords was proposed by Pinkas
and Sandler [PS02] in the context of a client-server interaction. In their solution
the server asks the client to solve some puzzles, and if the client solves these
puzzles correctly then the password is used in the usual way. This approach
cannot be used in our setting, however, since it requires the server to keep the
correct answers in storage for the purpose of comparing them with the solutions
provided by the user. In our setting there is no server that can check the user’s
answers, and no secret storage to keep the solutions to the challenge puzzles.

Another potential solution, proposed by Stubblefield and Simon [SS04], is to
use puzzles (called Inkblots) to which each individual has its own personal and
repeatable answers that are unpredictable even by other humans. Then, a (hope-
fully) high entropy key can be derived from the user’s solutions. In essence, this
method uses the answers to the puzzles as a high-entropy password. If feasible,
such an enhanced password generation mechanism is indeed very attractive, but
the strong unpredictability requirements severely limit the class of potentially
appropriate puzzles.

We combine the traditional password mechanism with human-solvable puz-
zles in a different way: At system setup, a large number of puzzles are generated
and stored, without their solutions. The user-supplied password is then used to
choose a small number of puzzles out of the stored ones. The user is asked to
solve these puzzles, and the key is derived from the password and the solutions to
the puzzles. The point here is to force the adversary to solve a considerable num-
ber of puzzles per each password guess, thus limiting its power to exhaustively
search for the password.

The class of puzzles that are useful for our scheme is rather broad. We only
need to be able to automatically generate puzzles, have individual human users
answer these puzzles in a consistent way across time, and have the answer be
unpredictable to a computer. In particular, there is no need to generate puzzles
together with their answers, as required in the case of CAPTCHAs [vAB+03]. In
fact, there need not even exist a single “correct” answer; each individual might
have its own answer, as long as it is repeatable. On the other hand, there is no



need that answers by one human are unpredictable by other humans, as required
for Inkblots. We call this class of puzzles by the generic term human-only solvable
puzzles (HOSPs). The Appendix suggests ideas for HOSPs that are neither good
CAPTCHAs nor good Inkblots but might be suitable for our scheme.

As simple as this scheme sounds, analyzing it (or even completely specifying
it) takes some work. For starters, one needs to determine how many puzzles
to store on the disk and how many of these should the legitimate user solve
in order to get access to the encrypted data. Also, one needs to specify the
function thats map user passwords to sets of puzzles and the function that maps
puzzle-solutions to cryptographic keys. (We call the first function Expand and
the second function Extract. These suggestive names are motivated later.) Still
more difficult questions are what hardness properties we need of the puzzles in
use for this scheme to be secure, or even what attack model should be considered
here. We elaborate on these issues below.

1.1 Formalizing the attack model

The overall goal of the scheme is to generate a pseudorandom key, meaning that
feasible attackers should only have small advantage in distinguishing the key from
random. The term “feasible” is typically defined as probabilistic polynomial time
(PPT), so it is tempting to define security in the standard way:
Security, first attempt: A scheme is secure if given everything that is stored on

the disk and a candidate key, no PPT algorithm can distinguish between
the case where the key is generated by the scheme and the case where the
key is chosen at random (except perhaps with small advantage).

However, this definition ignores the fact that the attacker may have access to
humans that can solve puzzles for it. Indeed, a known attack against systems
that deploy CAPTCHAs is for the attackers to ship the same CAPTCHAs to
their own web sites, asking their visitors to solve them. We thus need to extend
the model, allowing the attacker to recruit some humans for help.

Devising a rigorous model that captures attackers with human help raises
various issues, both technical and philosophical. Indeed, we do not even have
good models for describing honest human participants in our protocols, let alone
potentially malicious human attackers. For instance, should human help be re-
stricted to solving puzzles? If so, how to model the quality of the answers? Are
they always “correct”, in the sense that one human can predict the answers of
another human? Does it make sense to restrict the attacker to ask for solutions
of puzzles that are actually used in the scheme, or can it queries for solutions
to other puzzles as well? Is it legitimate to use a human in order to determine
which puzzles to ask solutions for? The problem becomes even more intricate
when one wishes to somehow quantify the amount of human help involved.

This work takes a rather simplistic approach, assuming that humans are
only accessed as puzzle-solving oracles. This assumption can be justified to some
extent if we view the attacker’s human helpers not as malicious but rather as
basically honest users that were tricked into helping the attack. Still, one should



keep in mind that this model is not completely realistic. We further simplify the
model by assuming that the oracle always returns the “correct” answer provided
by the legitimate user. Furthermore, we only count the overall number of puzzles
that the attacker asks to solve, not differentiating between “hard” and “easy”
ones. That is, our notion of security has the following flavor:

Security, better attempt: A scheme is secure if given everything that is stored
on the disk and a candidate key, and given limited access to puzzle-solving
humans, no PPT algorithm can distinguish between the case where the
key is generated by the scheme and the case where the key is chosen at
random (except perhaps with small advantage).

An additional simplifying assumption we make is that the adversary only
queries its oracle on puzzles that are explicitly used in the scheme (i.e., puzzles
that are written on the disk). That is, we do not consider the possibility that
an adversary may be able to modify a puzzle z to obtain a puzzle z′, so that
the solution of the original puzzle may be easier to find given the solution for
z′. (Indeed, with existing CAPTCHAs one may slightly change the puzzle with-
out changing the solution at all.) Following [DDN00], we refer to this concern
as malleability of puzzles. Intuitively, a useful puzzle systems should be “non-
malleable”, in the sense that any query to the human oracle can help in solving
at most a single puzzle out of the puzzles used in the system.

This seems to be the first time that such malleability issues are raised in the
context of human-solvable puzzles (in fact, in the context of any non-interactive
puzzle system), and that formalizing reasonable non-malleability properties for
puzzles is an interesting challenge. This is a topic for future research.
Computational hardness of puzzles. The assumption that we make on the
hardness of puzzles is that given a random puzzle z (And without any help from
humans), it is hard to distinguish the real solution of z from a “random solution”
taken from some distribution. (Clearly, this is stronger than just assuming that
computing solutions is hard.)

In a little more details, a puzzle is essentially a samplable distribution of
problems with the additional property that humans can associate a solution
with each problem in a repeatable way across time. This last property is cap-
tured in the model by having a puzzle-solving oracle H (for Human), which is
an arbitrary deterministic function. The solution to a puzzle z is then defined
as H(z). The hardness assumption is formulated roughly by saying that given a
random puzzle z, no PPT algorithm (that has no oracle access) can distinguish
the “right solution” H(z) from a “random solution” that is drawn from some
distribution. The amount of hardness is measured in terms of the min-entropy
of this distribution, denoted µ. See more discussion in Section 2.1.
A generic attack. We illustrate the capabilities of the attacker in our model
by describing a generic attack against our scheme. Assume that there is an
algorithm that given a puzzle generates a set of M “plausible solutions” that
is guaranteed to include the right solution. (Hence this attack treats the puzzle
system as if it has µ = log M bits of pseudo-entropy.) Also, assume that the
attacker has a dictionary D that is guaranteed to include the user’s password.



The attacker gets an alleged key k∗ and some n puzzles z1, . . . , zn, and it
needs to decide if the key is “real” or “random”. It goes over the entire dictionary,
expanding each password into the corresponding set of puzzles. Then it goes over
all plausible solutions to each puzzle, extracts the corresponding key from each
vector of plausible solutions, and keeps a list of all the solution-vectors that yield
the input key k∗. These are the “consistent solutions”.

The attacker then uses its human oracle in order to narrow down this list
of consistent solutions. It adaptively queries the human oracle for solutions to
puzzles, purging from the list all the vectors that contain a wrong solution to any
puzzle. (The puzzles to be queried are chosen so as to maximize the information
obtained by each query, e.g. by querying puzzle that appears in the most con-
sistent solution vectors.) Finally, the attacker checks how many remaining con-
sistent solutions are left for each password, and applies the maximum-likelihood
decision rule to determine whether these numbers are more likely to be gener-
ated for a random key or for the “real key”. The statistical advantage of this
attack stems from the fact that for a “real” key k∗ we expect to have one more
consistent solution than for a “random” key (i.e., the actual solution).

It can be seen that to have significant advantage, the attacker must query
its oracle on all but at most m/ log M puzzles indexed by the actual password.
Our analysis indicates that this is not just a property of this particular attack;
we get essentially the same bound on the advantage of any attack.

1.2 Towards a fully specified scheme

Below we elaborate on how to determine the functions Expand (mapping pass-
words to puzzles) and Extract (mapping solutions and passwords to keys). This
involves fixing a number of parameters, namely the number n of puzzles stored
on the disk, the number ` of puzzles that a user is required to solve to obtain
access to the data, and the length m of the generated key.
The Expand function. The resilience of the scheme against exhaustive pass-
word search comes from the need of the adversary to solve many puzzles (using
its human oracle) in order to check each password guess. To this end, Expand
must ensure that no large set of passwords are mapped a small set of puzzles.

Let q be a bound on the number of puzzle queries that the attacker can make,
and let µ be the assumed hardness of the puzzle system. It is clear that to have
many “missed puzzles”, the attacker must only be able to query its oracle on a
small fraction of the stored puzzles, so we must store on the disk n� q puzzles.
Let I = {i1, i2, . . . , iq} be the indexes of puzzles that the attacker queries to
its puzzles solver. We say that I “fully covers” a specific password pw if all the
indexes in Expand(pw) are in the set I, and we say that I “almost covers” pw if
at least ` − (m/µ) of the indexes in Expand(pw) are in I. Our goal is to design
the function Expand so that the attacker cannot have a small set of indexes that
“almost covers” too many passwords.

This property is related to the quality of Expand as an expander graph: Con-
sider a bipartite graph with passwords on the right and (indexes of) puzzles on
the left, and where a password pw is connected to all the indexes in Expand(pw).



Then a good expansion from right to left means that there is no large set of pass-
words that are fully covered by a small set of indexes (i.e., all their neighbors
are included in a small set of indexes). The property that we need is stronger,
namely that there is no large set of passwords that are even “almost covered”
by a small set of indexes. It terms of expansion, we need that any subgraph of
Expand (with the same set of nodes) in which the degree of nodes on the right
is `− dm/µe also has good expansion from right to left.

In Section 3.2 we analyze the cover properties of a truly random Expand
function (which essentially tells us what is the best that we can expect from any
function) and also briefly discuss plausible explicit constructions for Expand.
The Extract function. Intuitively, the main property needed from function
Extract is good randomness extraction, namely to compute a pseudorandom
key from a set of solutions that is somewhat unpredictable to the attacker.
When using the above modeling of hardness of puzzles, namely that the “right
solutions” to the puzzles are indistinguishable from “random solutions” that
are drawn from a distribution with sufficient min-entropy, this intuition can be
formalized in a straightforward way: namely as long as the input to Extract has
sufficient min-entropy, the output should be random. Thus, it is sufficient if the
function Extract is a (strong) randomness extractor [NZ96].

1.3 Security analysis

We provide two different analyses for the security of our construction. In each
of these analyses we bound the advantage of an attacker as a function of the
number of queries that it makes to its puzzle-solving oracle. (This is somewhat
similar to the case of interactive password-based protocols where the advantage
of an attacker is bounded as a function of the amount of interaction between the
attacker and the honest participants.) In both analyses we reduce the security
of the scheme to the assumption that an attacker cannot distinguish the “right
solution” to random puzzles from “random solutions”.

The first analysis (Section 4) uses a notion of security that follows the game-
based approach for defining security of keys [BR93,BPR00]. The second analysis
(Section 5) is done in the UC security model [Can01]. The “ideal functionality”
that we present in this analysis follows the approach of [CHK+05], in that it
lets ideal-world adversary make only a limited amount of password queries. This
analysis requires some additional properties from the puzzles and an additional
“invertibility” property from Extract; see details within.
Organization. Section 2 defines key-generation and recovery schemes (KGR)
and human-only solvable puzzles. Section 3 presents the scheme and provides
some combinatorial analysis of the properties of Expand. Sections 4 and 5 contain
the two analyses of the scheme as described above, Section 6 has a concrete
instantiation of the scheme, and Section 7 lists some open research problems.
Appendix A suggests some potential implementations of human-solvable puzzles.
Throughout, proofs are omitted for lack of space.



2 Password-Based Key Generation and Recovery Using
Puzzles

Our goal is to generate a random encryption key that is recoverable by the
legitimate user but still looks random to an attacker. Namely, we have two
procedures: key-generation and key recovery, where the former can potentially
store on the disk some information that the latter can use for recovery. In our
setting, both of these procedures take as input the user’s password (which should
be thought of as a “weak secret”). Also, we allow them to interact with the
legitimate user, modeled as a puzzle-solving oracle. The formal definition of the
needed functionality proceeds as follows:

Definition 1 (Key Generation and Recovery). A key generation and re-
covery scheme consists of two PPT algorithms with oracle access, (kGen, kRec):

(key, S)← kGenH(1m, pw, aux). The randomized procedure kGen takes as input
the security parameter and a password (and potentially also some other aux-
iliary input). It is given access to a human puzzle-solver and it outputs a key
and (typically) some additional storage S.

key← kRecH(1m, pw, S). The procedure kRec takes as input the security param-
eter, a password, and the additional storage S. It is given access to the ora-
cle H and it returns the key.

The pair (kGen, kRec) is correct with respect to a specific oracle H if for every k ∈
IN, pw ∈ {0, 1}∗ and every (key, S) in the support of kGenH(1m, pw) it holds that
kRecH(1m, pw, S) = key. In this case we sometime call the triple (kGen, kRec,H)
a Key-Generation-and-Recovery system (KGR for short).

The key generation stage can be partitioned to a system set-up stage, which
would include the generation of puzzles and is common to all users, and an
actual generation stage where the key is generated from the password provided
by the user. We do not formally enforce this partitioning to allow for potential
optimizations that involve the user in the generation of the puzzles. We also note
that the auxiliary input to the key-generation procedure is meant to allow the
user to provide some personal input that might help generate (or “personalize”)
the puzzles; see discussion in the Appendix.

2.1 Human-Only Solvable Puzzles

For our purposes, a puzzle is a randomized puzzle-generation algorithm G with
the additional property that random puzzles are solvable in a mostly consistent
way by most humans. That is, the same person gives the same answer to a
given puzzle at different times (although this consistent answer may vary from
person to person). To enable asymptotic analysis, we let the puzzle generation
algorithm G take as input the security parameter and also quantify the hardness
of the resulting puzzles as a function of the security parameter.



Definition 2 (Puzzles). A puzzle-system is a pair (G, H), where G is a ran-
domized puzzle generator that takes as input 1m (with m the security parameter)
and outputs a puzzle, z ← G(1m), and H is a solution function. That is, the
value a = H(z) is the solution of the puzzle z.

In order to be useful for our application, we need the puzzle system to be
consistently-solvable by humans but not easily solvable by computers. The spe-
cific hardness assumption that we make is that efficient algorithms cannot distin-
guish the right solution H(z) from “random”. We call this hardness assumption
the solution indistinguishability of the puzzle system, and quantify it by the
amount of randomness in the “random” solution.

Definition 3 (Solution indistinguishability). Let µ = µ(m) be a function of
the security parameter. A puzzle system (G, H) has µ bits of pseudo-entropy if for
every puzzle z in the support of the output of G(1m) there is a distribution R(z)
with min-entropy at least µ(m) such that the correct solution is indistinguishable
from a solution taken randomly from R(z), even when given both correct and ran-
dom solution to polynomially many other puzzles. That is, for every polynomial
n = n(m) the following two ensembles are computationally indistinguishable:{

(z1, a1, (z2, a2, a
′
2), . . . , (zn, an, a′n)) :

z1, . . . , zn
$← G(1m), a1 ← H(z),

ai ← H(zi), a′i
$← R(zi) (i = 2 . . . n)

}
m

and{
(z1, a

′
1, (z2, a2, a

′
2), . . . , (zn, an, a′n)) :

z1, . . . , zn
$← G(1m), a′1

$← R(z),

ai ← H(zi), a′i
$← R(zi) (i = 2 . . . n)

}
m

We note that if the puzzle system is a CAPTCHA where the puzzles can be
generated together with their solution, and if the distributions R(z) are efficiently
samplable given z, then there is no need for the tuples (zi, ai, a

′
i). Also, a simple

hybrid argument shows that t-fold repetition of (G, H) multiplies the pseudo-
entropy by t:

Observation 1 Let µ, t be functions of the security parameter where t is poly-
nomially bounded. Let (G, H) be a puzzles system, and let (Gt,Ht) be the t-fold
repetition of it, where t puzzles are generated and solved independently. If (G, H)
has µ bits of pseudo-entropy then (Gt,Ht) has tµ bits of pseudo-entropy. ut

Finally, we reiterate that the security models that are described in subsequent
sections give the adversary access to the same oracle H that is used by the
scheme. This represents the fact that, for analyzing security, we make the worst-
case assumption that all humans provide the same answer to the same question,
thus the adversary can employ other humans to reproduce the answers provided
by the legitimate user. One can possibly model the case where people predict
the answers of each other only in a “partial”, or “noisy” way. Still, it is stressed
that for the correctness of the scheme we only need that the same user answers
consistently with itself.



3 The Scheme

The scheme uses a puzzle system (G, H) as above, where G is used directly by
the key-generation procedure and H is assumed to be available as an oracle at
both key-generation and key-recovery time. The scheme depends on two internal
parameters: the number of puzzles that are stored on the disk (denoted n) and
the number of puzzles that the user needs to solve (denoted `). We think of `
as a constant or a slowly increasing function, and n = poly(k). In addition, we
have a universe W of passwords (e.g., W = {0, 1}160 if using SHA1 to hash
the real password before using it.) W should not be confused with the potential
dictionary D ⊂ W from which passwords are actually chosen, which is not
known when the scheme is designed. The scheme uses two randomized functions,
Expandr1

: W → [n]` and Extractr2 : {0, 1}∗ → {0, 1}m, that are discussed later
in this section. Given all these components, denote n = n(m) and ` = `(m), and
the scheme works as follows:

kGenH(1m, pw). Generate n puzzles, zi ← G(1m), i = 1, 2, . . . , n, and choose
the keys r1, r2 for Expand and Extract at random. (This can perhaps be
carried out off-line at system setup.) Then set 〈i1, ...i`〉 ← Expandr1

(pw) and
query the oracle H for the solutions, setting aij

← H(zij
) for j = 1, . . . , `.

Finally, compute key← Extractr2(ai1 , . . . , ai`
, pw) and then all the solutions

are discarded. The “additional storage” that is saved to the disk consists of
the puzzles 〈z1, z2, . . . , zn〉 and the keys r1, r2.

kRec(1m, pw, 〈z1, . . . , zn〉 , r1, r2). Compute the indexes 〈i1, ...i`〉 ← Expandr1
(pw),

query the oracle H for the solutions aij
← H(zij

) for j = 1, . . . , `, and re-
cover the key as key← Extractr2(ai1 , . . . , ai`

, pw).

We remark that if the puzzle system in use is in fact a CAPTCHA system (where
puzzles are generated together with their solution) then the key-generation pro-
cedure need not query the oracle H. Also, if the puzzle system is such that
puzzles remain hard to solve even when the randomness of G is known (and
Expand is a random oracle) then the puzzles need not be stored at all. Instead,
the value Expand(pw) can be used as the randomness to G, thus generating the
puzzles “on the fly”.

3.1 The function Extract

The role of Extract is to extract an m-bit pseudorandom key from the pseudo-
entropy in the human solutions to the puzzles. Given our solution indistinguisha-
bility assumption (cf. Definition 3), this can be achieved by using a strong ran-
domness extractor [NZ96] for the function Extract, as long as we are willing to live
with some loss of pseudo-entropy (since to get a close-to-random m-bits output
from an extractor you need m′ > m bits of min entropy in the input). Below and
throughout the analyses, we therefore assume that Extract is a strong extractor
(e.g., a pairwise-independent hash function) and denote by m′ the amount of
min-entropy that is needed in the input to Extract in order for the output to be
close to a uniform m-bit string.



3.2 The function Expand

The role of the function Expand is to map passwords to indexes of puzzles in such
a way that the attacker would have to solve many puzzles (i.e., invoke the puzzle-
solving oracle H many times) to check each new password guess. Specifically,
our goal is to make sure that as long as the attacker does not make too many
queries to its puzzle-solving oracle, most passwords would have enough unsolved
puzzles to get m′ > m bits of pseudo-entropy. (Recall that m′ is the amount of
min-entropy that is needed in the input to Extract in order for the output to be
close to a uniform m-bit string.)

To make this more precise, fix the randomness r1 and think of the function
E = Expandr1

as a bipartite graph with the password universe W on the right
and the indexes {1, ..., n} on the left, and where each pw ∈ W is connected to
all the indexes in E(pw). If the puzzle system has µ bits of pseudo-entropy then
we denote by `∗

def= dm′/µe the number of puzzles that the attacker should miss
in order for the key to be pseudo-random.

We say that a set I of indexes on the left almost covers a password pw ∈ W
on the right if pw has no more than `∗ neighbors that are not in I. (I.e., pw has
at least `−`∗ neighbors in I.) The almost-cover of a set I relative to mapping E,
dictionary D and parameter `∗ is:

acvrSet`∗(I, E, D) def= {pw ∈ D : |E(pw) \ I| ≤ `∗}.

What we want is that for any set of q � n puzzles zi1 , ..., ziq
that the attacker

has solutions for, and any (large enough) potential dictionary D ⊂ W , the set
I = {i1, ..., iq} only covers a small fraction of the passwords in D. We denote
by acvr`∗(q, E, D) the cover number of E, namely the fraction of passwords in D
that can be almost-covered by q puzzles:

acvr`∗(q, E, D) def=
max
|I|=q

∣∣∣∣acvrSet`∗(I, E, D)
∣∣∣∣

|D|
We would like the expected cover-number of Expandr1

(over the choice of r1) to
be sufficiently small . The property of having a small cover number is related
to the expansion of the graph E (from right to left): We want any large enough
subset of the nodes on the right to have more than q neighbors on the left, even
when removing `∗ edges from every node. In other words, every subgraph of E
where the degree of nodes on the right is `− `∗ should be a good expander.

To get a sense of the obtainable parameters, we first provide an analysis
in the random-oracle model (i.e., assuming that Expand is a random function).
Later we discuss solutions based on limited independence and speculate about
other plausible constructions.
The cover number of a random function. The following technical lemma
bounds the probability of having a very large cover number in terms of various
parameters of the system. This lemma depends on many parameters so as to
make it applicable in many different settings. We later give an example of some
specific setting.



Lemma 2. Fix `, `∗, n, q ∈ IN such that q < n and `∗ = (1−α)` for some α > 0,
and also fix some finite set D ⊂ W . Denote ε

def= 2H2(α)(q/n)α where H2 is the
binary entropy function. If ε` is small enough so that there exists ρ > 0 for which

e · (ε`)ρ/(1+ρ) <
(1 + ρ)H2(q/n)
log (1/ε`) |D|/n

then for any δ > 0 we have

Pr
E

[
acvr`∗(q, E,D) > (1 + δ)

(1 + ρ)H2(q/n)
log (1/ε`) |D|/n

]
< 2−nδH2(q/n)

where the probability is taken over choosing a random function E : D → [n]`.
ut

An example. Assume that we have q/n = 0.01, |D| = n, ` = 8 and `∗ = 4.
In this case we have α = (` − `∗)/` = 1/2 and therefore ε = 2H2(α)(q/n)α =
2
√

q/n = 0.2, and H2(q/n) ≈ 0.0808. One can verify that in this case e log(1/ε`)/
H2(q/n) ≈ 625 = 1/ε`/2 which means that the requirement in the assertion of
Lemma 2 is satisfied for ρ = 1. Plugging these values for ρ, ε, ` and H2(q/n) in
the expression from Lemma 2 we get for any δ > 0

Pr
E

[acvr`∗(q, E,D) > (1 + δ) · 0.0087] < 2−nδ/12.38

It follows that the expected value of acvr over the random choice of E is at most
(1 + δ) · 0.087 + 2−nδ/12.38. Assuming large enough value for n (e.g., n > 4000)
and plugging a small enough value for δ, this expected value is no more than
0.9%.

Note that the trivial way of “almost covering” passwords in this case will be
for the attacker to make four queries for each password, and since we assume that
there are n passwords and we have q/n = 0.01 then the fraction of passwords
that will be almost covered this way will be 0.01/4=0.25%. Hence, in this case
the upper bound tells us that the attacker cannot do better than four times the
obvious attack.
Limited independence. Storing a completely random function from the
password universe W to the set of puzzle indexes [n] is not realistic in most cases.
A first attempt at obtaining a concrete construction is to replace a completely
random mapping with an X-wise independent mapping for some X. (In terms
of storage on the disk, it is acceptable to store a description of an O(n)-wise
independent function, since we anyway need O(n) storage to store the n puzzles.)

When Expand is `t-wise independent then one can use the t-moment inequal-
ity instead of Chernoff bound. The bound that we get for any δ > 0 is

Pr
E

[acvr`∗(q, E,D) > τ + δ] <

(
n

q

)
· τ

δt|D|t/2
,

where again we have ε
def= 2H2(α)(q/n)α. Using an `n-wise independent mapping

(so t = n) and setting δ = 2/
√
|D| we get

Pr
E

[
acvr`∗(q, E,D) > τ +

2√
|D|

]
<

(
n

q

)
· τ

2n
< 2q log n−n



We thus get:

Lemma 3. Fix `, `∗, n, q ∈ IN such that `∗ = (1 − α)` for some α > 0 and
q < n/(4 log n), and fix a finite set D such that |D| > n.

The expected value of acvr`∗(q, E, D) over the choice of E as an `n-wise
independent mapping from W to [n] is at most ε` + 2/

√
|D| + 2q log n−n where

ε
def= 2H2(α)(q/n)α. ut

More efficient constructions. Although feasible, the solution of using `n-
wise independent mapping is far from being satisfactory, as it entails very large
storage and computational cost. Providing more efficient constructions that are
provably good is an open problem.

One possible direction here is to extend for our purposes the result of Alon et
al. [ADM+99]. In that work they considered a mapping from n balls to n buckets,
and analyzed the size of the largest bucket. They proved that although “generic
pairwise independent function” cannot ensure anything smaller than n1/2, using
a random linear mapping (over the binary field) has expected largest bucket
of only Õ(log n). This can be thought of as a very special case of our appli-
cation with ` = q = 1, `∗ = 0 and |D| = n. We thus speculate that perhaps
using ` independent linear maps could give us a reasonable bound also for our
application.

4 Game-Based Security Analysis

In this section we analyze the security of our scheme with respect to a “game-
based” notion of security (as in [BR93]). In the formulation below the key genera-
tion scheme is run on a password pw that was randomly chosen from a dictionary.
The adversary is then given the generated storage, plus a value that is either the
real generated key or a random value of the same length. In addition, the ad-
versary is given oracle access to H. The adversary’s advantage in distinguishing
between the two cases is measured as a function of the number of H-queries (q),
and the size of the dictionary from which the passwords are chosen (d):

Definition 4 (Game-based security definition). Let α : IN × IN → [0, 1] be
a function, let (kGen, kRec,H) be a key-generation and recovery system, and let
C be a class of attackers with oracle access.

We say that (kGen, kRec,H) is secure up to α with respect to C if for any
attacker A ∈ C, any polynomially related d, m, q ∈ IN and any D ⊂ W, |D| = d,
the following two probabilities differ by at most α(d, q) + negl(m), where negl is
a negligible function:

preal(A) def= Pr[pw ∈R D, (key, S)← kGenH(1m, pw) : AHq (key, S) = 1]
prand(A) def= Pr[pw ∈R D, (key, S)← kGenH(1m, pw),

key′ ∈R {0, 1}|key| : AHq (key′, S) = 1]

where Hq answers the first q queries as H does, and answers later queries by ⊥.



Conservative adversaries. For our analysis to go through, we need to restrict
the attacker to only query its puzzle-solving oracle H on puzzles that explicitly
appear in the storage S of the scheme. This is done to prohibit “puzzle mauling
attacks” as discussed in Section 2.1. Essentially, this restriction reflects the as-
sumption that each H-query helps in answering only a single puzzle, and that
getting an H-answer to a puzzle does not help solving another puzzle.

Definition 5 (Conservative adversaries). An adversary against our KGR
scheme is called conservative if it only queries its oracle on puzzles that are ex-
plicitly included in the “additional storage” output of the key-generation routine.

Security statement. We are now ready to state our main result concerning the
security of our scheme. Let m be the security parameter and let δ, µ, d, `,m′, n, q
be other parameters (that may be functions of the security parameter), and
denote `∗

def= dm′/µe. Below we assume that that
(

`
`∗

)
is polynomial in m. (Recall

that ` is the number of puzzles that the honest user needs to solve, so we typically
think of it as a constant or log m, hence assuming that

(
`
`∗

)
is polynomial in m

is reasonable.)
Let Expandr1

be a randomized mapping of passwords to indexes and let
Extractr2 be a strong randomness extractor [NZ96], extracting m bits that are δ
away from uniform given any distribution with m′ bits of min-entropy. Lemma 4
below essentially asserts that as long as there are at least m′ bits of pseudo-
entropy in the puzzles that are mapped to the right password but are not
queried by the attacker, the attacker cannot have any significant advantage in
distinguishing real from random. Specifically, we show that the advantage of the
attacker is essentially the fraction of passwords in the dictionary that are almost
covered by its queries to the puzzle-solving oracle.

Lemma 4. Under the conditions from above, the scheme from Section 3 using
Expand and Extract is secure up to α with respect to the class of conservative
adversaries, where α is defined as

α(d, q) def= δ + max
|D|=d

Er1

[
acvr`∗(q, Expandr1

, D)
]
.

Comment. We note that the solution indistinguishability assumption and
the use of strong extractor can be replaced with the more specific assump-
tion that the output of Extract is pseudorandom. Namely, we can assume di-
rectly that given `∗ puzzles without their solution and ` − `∗ puzzles with so-
lution and given r2 and key, an attacker cannot tell if the key was computed
as Extractr2(a1, a2, . . .) or was chosen at random. The proof under this (weaker)
assumption is very similar to the proof of Lemma 4.

5 UC security analysis

In our second security analysis we use the UC security framework [Can01], and
the presentation here assumes familiarity with this framework. We incorporate



the human oracle H in the model by providing the adversary and the parties
running the protocol with access to H. The environment is not given direct access
to H; rather, it has access to H only via the adversary. This restriction represents
the assumption that the puzzles used in an instance of the protocol are “local”
to that instance, in the sense that they are generated within that instance, and
furthermore the corresponding solutions are not affected by external events.

In addition, as in Section 4 we focus on conservative adversaries that ask
H only on puzzles that were directly provided by the protocol. This techni-
cal restriction represents the “meta-assumption” that the puzzles are such that
obtaining a solution for one puzzle does not help in solving a different puzzle.
(Admittedly, this assumption may not always hold, and somewhat restricts the
pool of potential implementations.)

The ideal password-based key generation and recovery functionality.
We define the ideal functionality representing the security specification that
we wish to obtain. The functionality, Fpkgr, is presented in Figure 1. Fpkgr is
parameterized by a dictionary D of possible passwords, the maximum number p
of allowable password queries by the adversary, and the length m of the generated
key. At the first activation Fpkgr expects the user to provide a password pw,
along with a session identifier sid. (Formally, the sid may specify the identities
of the user and the computer.) Fpkgr then generates a random m-bit key key
and outputs it to the computer. Finally, it notifies the adversary that a key was
generated. If pw is not in the dictionary then it also gives it to the adversary in
full. (Formally this means that no security is guaranteed for passwords not in
the dictionary. But note that the scheme itself does not depend on the actual
dictionary, so we can always let the parameter D be the set of passwords that
are “actually used by users”.)

Next, whenever Fpkgr receives a password pw′ together with a request to
recover the key, it outputs the key to the computer only if pw′ is the same as the
stored password. This request may come from anyone, not only the legitimate
user. Finally, Fpkgr answers up to p password guesses made by the adversary.

The main security guarantee of Fpkgr is that the adversary can make only p
password guesses. If none of these guesses succeeds, then the key is indistinguish-
able from a truly random m-bit key. For reasonable values of m, this provides
strong cryptographic security. Also, Fpkgr makes no mention of puzzles. Indeed,
puzzles are treated as part of the implementation, geared toward limiting the
number of password guesses.

Note that Fpkgr obtains the password directly from the environment. This
formulation (which follows the formulation in [CHK+05]) provides some strong
guarantees. First, there is no a-priori assumption on the distribution from which
the password is taken, as long as it is taken from D. In fact, this distribution
may not even be efficiently generatable, since it may depend on the initial input
of the environment. Second, we are guaranteed that in any scheme that realizes
Fpkgr the local storage of the computer cannot be correlated in any way with
the password and the key.



The fact that Fpkgr is parameterized by D, and furthermore provides no
security for passwords not in D, is a limitation that comes from our simulation
procedure. Ideally, we would like to guarantee that Fpkgr does not depend on D
at all and provides security for any password string. Realizing such a function-
ality is an interesting future challenge.

Functionality Fpkgr(D, p, m)

1. At the first activation, receive from the user U an input
(password, sid, pw), choose a random m-bit key key, output (sid, key) to
the computer V , and notify the adversary that a key has been generated.
If pw /∈ D then also send pw to the adversary.

2. When receiving input (key-recovery, sid, pw′) from anyone, do: If pw′ =
pw then output key to V . Else output an error message to V .

3. When receiving input (password-query, sid, pw′) from the adversary, do:
If the adversary already made p password queries then ignore. Else, if
pw′ = pw then return key to the adversary. Else return Wrong-Guess to
the adversary.

Fig. 1. The ideal functionality Fpkgr, parameterized by a dictionary D, the maximum
number p of password queries, and the length m of the generated key.

Invertibility of Extract. In order to show that the scheme realizes Fpkgr we
need to make an additional “invertibility” assumption on function Extract with
respect to solutions of puzzles: What we need is that given an m-bit key key
and given ` − `∗ solution to ` puzzles, one can efficiently compute `∗ plausible
solutions to the remaining puzzles that would map the entire solution vector to
the given key, Extract(. . .) = key.

Below let (G, H) be a puzzle system with µ bits of pseudo-entropy, where
the right solution for each puzzle z is indistinguishable from a solution drawn
from R(z), let fr be a randomized function, and let ` ≥ `∗ be integers.

Definition 6. We say that f is strongly invertible w.r.t. the puzzle system (G, H)
and the parameters `, `∗ if there exists an efficient inversion algorithm I that
given randomness r, key key, any string pw, ` puzzles z1, ..., z` generated via G,
and a set of ` − `∗ solutions a`∗+1, ..., a` such that ai ∈ R(zi), outputs values
a1, ..., a`∗ such that ai ∈ R(zi) and fr(a1, ..., a`, pw, ) = key.

Furthermore, for random r, key, z1, . . . , z` and any pw and a`∗+1, ..., a`, the
output of I is indistinguishable from sampling at random ai ∈ R(zi) for i =
1, . . . , `∗ subject to the constraint fr(a1, ..., a`, pw, ) = key.

If the distributions R(z) are efficiently samplable given z and m is small
enough (so that 2m is polynomial in the relevant efficiency parameters) then
I can simply sample the solutions a1, ..., a`∗ from the appropriate distributions
until it find a solution vector that match the given key. Alternatively, if we have
a puzzle-system for which R(z) = {0, 1}k for some k and Extract is a linear



function (e.g., a linear universal hash function) then inversion is possible even
for large m via linearity.
UC-security of our scheme. Consider the scheme from Section 3 with
parameters n, `, and m, and let D be the dictionary used by the user. Assume
that (G, H) be a puzzle system with µ bits of pseudo-entropy, assume that Extract
extracts m bits that are negligibly close to uniform from any distribution with
m′ > m bits of min-entropy, and let `∗ = dm′/µe. Finally assume that Extract
is strongly invertible w.r.t. (G, H) with parameters `, `∗. Then we have

Lemma 5. Under the conditions above, the scheme from Section 3 UC-realizes
Fpkgr(D, p, m) relative to conservative adversaries that makes at most q queries
to H, where p = Cover(Expand, D, q).

6 A concrete example

We describe a concrete instantiation of our scheme for a “medium security”
application. The example builds on the numeric example in Section 3.2. Consider
trying to get an 64-bit key using our scheme, while relying on a CAPTCHA
system whose assumed hardness is (say) 16 bits of pseudo-entropy per instance.
In terms of our analysis, we therefore have the parameters m = 64 and µ = 16 (so
`∗ = 64/16 = 4). Assuming that each puzzle takes about 4KB to encode (which
is the case for common CAPTCHAs) and restricting ourselves to number of
puzzles that fit on a single 4.7GB DVD-R, we would like to store about n = 106

puzzles.
We assume that the odds of the attacker guessing a weak password are one

in a million (per guess) so we assume the dictionary size is |D| = 106. Also, we
would like the legitimate user to solve no more than ` = 8 puzzles to access the
encrypted data, and we assume that the attacker cannot get a human to solve for
it more than q = 104 puzzles. (This seems like a safe assumption in most settings,
but maybe not all of them.) In Section 3.2 it is shown that with this setting of
the parameters, and when modeling Expand as a random function, we should
expect the cover-number to be no more than 0.9%. Namely, an attacker that
makes up to 10,000 puzzle-solving queries has at most 0.9% chance of “almost
covering” the actual password. (Note that the obvious way of “almost covering”
passwords yields success probability of 0.25%.)

A simple heuristic instantiation of the scheme for this setting of the pa-
rameters would be to use a cryptographic hash function to implement both
the Expand and Extract functions. More specifically, to generate the key, choose
(say) two 128-bit salt values r1 and r2, get the user’s password pw and com-
pute h ←HMAC-SHA1r1(pw). Parse the 160 bits of h as eight 20-bit indexes
i1, . . . , i8 ∈ [220]. Generate 220 CAPTCHAs and store then together with r1, r2

on the disk (or on a DVD-R). Then obtain the solutions to the eight relevant
puzzles aij

= H(zij
), j = 1 . . . 8, compute h′ ←HMAC-SHA1r2(ai1 | . . . |ai8 |pw),

and take as many bits of h′ as needed for the key. To make use of the common
practice for slowing down brute-force attacks, replace SHA1 with the iterated
function SHA1k for some reasonable k, say k = 65536.



Although this scheme allows the key to be longer than 64 bits, the above anal-
ysis only shows that with probability more than 99.1% we get “64-bit strength”.
(One can similarly calculate the probability of getting “80-bit strength” which
happens when the attacker misses five of the eight puzzles that are mapped to
the user’s password, or the probability of getting “128-bit strength” when the
attacker misses all the puzzles, etc.)

7 Future Work

This work investigates a new approach for deriving cryptographic keys from hu-
man passwords, improving the resistance against off-line dictionary attacks by
having the user solve some puzzles and using the solutions in the key-generation
process. Still, the analysis is quite preliminary and many questions remain unan-
swered, regarding constructions, modeling, and analysis. Below we list a few of
these questions.
Building Puzzles. Perhaps a first challenge is to actually construct puzzle
systems that are useful for schemes such as the one described in this paper.
Of particular interest for our scheme would be puzzles that remain hard even
when the attacker knows the randomness that was used to generate them. (As
mentioned above, using such puzzle-systems we can forgo storing any puzzles
on the disk, instead using the value Expand(pw) as randomness for the puzzle
generation system.)

As discussed in the introduction, another important property of puzzles is
“non-malleability”, namely preventing the adversary from using the solution to
one puzzle to solve other puzzles. This question is interesting both on the level of
designing puzzles that will make it hard for the adversary to “maul” them while
maintaining solvability, and on the level of mathematical formalization. On the
design level, a potentially interesting approach might be to use watermarking
techniques to embed in the puzzle a message to the human reader that urges to
not solve the puzzle outside a certain context.
Improving the scheme. One obvious challenge is to find different construc-
tions that will improve various characteristics of the current scheme (e.g., use
less storage, improve security, etc.) An immediate question is to have an efficient
explicit construction for Expand that provably has a small expected cover num-
ber (maybe by extending the work of Alon et al. [ADM+99]). Another direction
is to split the key-generation process to two parts, where the first part generates
a large amount of storage which is the same for all users and the second adds
a small amount of user-specific storage that may depend on the password or
on other information provided by the user. Another direction is to have a more
interactive key recovery process, where the user’s answer to the current question
effects the questions that it is asked next.
Improving the analysis. The analysis can be improved in a number of ways.
First, the hardness assumption on puzzles may be reduced to allow for non-
negligible distinguishing probability between the real solution and a random



one. Furthermore, one might want to assume only that computing the correct
answer is hard.

Another immediate set of goals is to improve the current analysis (especially
the one in the UC framework), and to find ways to relate the game-based security
and the UC security notions.

Also, it would be nice to be able to formally model and argue about non-
conservative adversaries, namely adversaries that query the human oracle on
puzzles different than the ones used in the scheme. What security properties can
be guaranteed against such adversaries?

Another plausible extension of our security model is to consider an attacker
that can modify the storage on the disk and then watch the output of the key-
recovery procedure with this modified storage. (This seems related to the issue
of puzzle malleability that we mentioned above.)

Also, it may be useful to have an algorithm to compute (or bound) the cover
number of a given Expand function with respect to a given dictionary. This seems
harder than computing/bounding the expansion of a graph, since here we need
to compute/bound the expansion of any subgraph of a given degree.

A more speculative research direction is to try and obtain reasonable general
models for human users (or even human attackers) in systems such as the ones
described in this work.
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A Possible implementations of puzzles

The notion of puzzles used in our scheme is rather relaxed, and consequently has
a large number of potential implementations. One set of implementations are the
existing and potential implementations of CAPTCHAs, e.g. the ones described
in [Naor96,vAB+03]. These implementations, however, require that the solutions
to puzzles are uniquely defined and generatable together with the puzzles. This
seems like a strong limitation on implementations. Another set of implementa-
tions are the potential implementations of Inkblots, described in [SS04]. These
implementations, however, are required to be “private”, in the sense that the
solution given by one human is unpredictable (and, in fact, pseudorandom) even
to other humans. Again, this seems to be a strong limitation on implementations.

Below we list some potential approaches for implementation that are not
included in any of these classes. That is, the answers to these puzzles are some-
what subjective and not necessarily unique. Still, answers of different individuals
may be similar. As pointed out in [NP97] in a different context, validity of these
proposals should be evaluated by testing on human individuals.

Personal ranking: Puzzles may include pictures of different persons, to be
ranked by coolness, or age, or taste in clothing. Alternatively, puzzles may
include different pictures or descriptions of food, to be ranked by tastiness,
spiciness, etc.. Alternatively, a puzzle may depict several randomly generated
drawings to be ranked by personal liking, an audio puzzle may sound several
short melodies to be ranked by liking, etc.

Face recognition: Puzzles may include pictures of several faces, and the ques-
tion is which if these faces most resemble people known to the user (e.g.,
parents or other family members). Furthermore, puzzles can be “personal-
ized” by asking the user to provide, at system set-up, pictures of close family
members. These pictures might then be mixed with random pictures to gen-
erate puzzles. (This proposal takes advantage of the fact that recognizing
faces is one of the most highly specialized visual capabilities of humans.)

Personal clustering: Puzzles may include a bunch of various unrelated ob-
jects, and the question is which three objects “go together” the best, or
are the most “closely related” or “look alike”. The objects can be people,
household items, cartoons, or a mix of all categories. (This implementation
approach was proposed by Ronitt Rubinfeld.)

Imaginative inferring: Puzzles may portray a scene and ask questions about
what happened a minute ago, or what will happen in a minute. Alternatively,
questions can be asked regarding what happens outside the borders of the
picture.

Personal association: Puzzles may depict an object (e.g., a person) and ask
which familiar objects (persons) does the object in the picture remind.

Finally, we note that to prevent “mauling attacks,” the puzzle generator
must make sure that randomly generated puzzles are “different enough” from
each other so that a solution to one randomly generated puzzle will not help in
solving another randomly generated puzzle.


