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Abstract. The problem of perfectly secure message transmission con-
cerns two synchronized non-faulty processors sender (S) and receiver (R)
that are connected by a synchronous network of n ≥ 2t + 1 noiseless 2-
way communication channels. Their goal is to communicate privately and
reliably, despite the presence of an adversary that may actively corrupt
at most t of those channels. These properties should hold information
theoretically and without error.
We propose an asymptotically optimal solution for this problem. The
proposed protocol consists of two communication rounds, and a total of
O(`n) bits are exchanged in order to transmit a message of ` bits. Earlier,
at CRYPTO 2004, an equally optimal solution has been claimed. How-
ever, we give a counter-example showing that their result is not perfectly
reliable. The flaw seems to be fundamental and non-trivial to repair. Our
approach is overall entirely different, yet it also makes essential use of
their neat communication efficient technique for reliably transmitting
conflict graphs.
What distinguishes our approach from previous ones is a technique that
allows to identify all actively corrupted channels, initially trading it off
against privacy. A perfectly secure and reliable secret key is then distilled
by privacy amplification.

Keywords: reliable and private transmission, information theoretic security,
zero-error protocols, communication efficiency.

1 Introduction

The problem of perfectly secure message transmission (PSMT) was first in-
troduced in [2]. In its more general description, it concerns two synchronized
non-faulty processors sender (S) and receiver (R) that are connected by a syn-
chronous network of n noiseless 2-way communication channels. The goal is for
S to communicate a secret message M , drawn from a finite field K, to R. This
should be done in such a way that for any set of at most t channels that is
controlled and coordinated by an active adversary (A), the adversary is neither



able to disrupt the transmission of M to R, nor is he able to obtain any new
information about M . Moreover, these properties should hold information the-
oretically and without error. Of course S and R have no a priori knowledge of
which particular channels are under the control of A.

In general, such perfect communication is not possible for every selection of t
and n. The good values for t and n depend on whether communication is 1-way
(only from S to R) or 2-way (S and R converse). It has been established that
n ≥ 3t + 1 is necessary and sufficient for 1-way communication and n ≥ 2t + 1
is necessary and sufficient for 2-way communication [2].

The efficiency of any protocol solving the PSMT problem is typically mea-
sured in three parameters; the number of channels t that can be controlled by
the adversary, the number of rounds4 r of the protocol and the number of bits
sent to reliably and privately communicate one bit of actual message from S to
R. The last parameter is also known as the communication complexity of the
protocol.

Clearly a protocol which can tolerate the strongest adversary, uses the min-
imum number of rounds and which has a minimal communication complexity is
preferred. For r = 1 and n = 3t + 1, a protocol with optimal communication
complexity is known [2, 5]. On the other hand, no protocol with optimal com-
munication complexity for r > 1 and n = 2t + 1 is known. In this paper we
give an asymptotically optimal protocol for r = 2 and n = 2t + 1. The authors
of an earlier paper [5] claim to have found an optimal protocol for r = 2 and
n = 2t + 1, but as we note in Section 3.3 the protocol of [5] is not perfectly
reliable and therefore not a perfectly secure message transmission protocol.5

1.1 Organization of the paper

In Section 2 we isolate some of the known basic techniques that are used through-
out the paper. In Section 3, we give an overview of prior work in this area and
in particular give a counter-example that breaks the perfect reliability of the
protocol proposed in [5]. In Section 4, we introduce the new techniques which
lead to our asymptotically optimal protocol using the communication efficient
technique for reliably transmitting conflict graphs from [5]. The latter is then
described in Section 5, where also the communication complexity is worked out.

2 Preliminaries

2.1 Shamir Sharing

Let K be a finite field with |K| > n. A selection {s1, s2, . . . , sn} of shares ac-
cording to Shamir’s (t, n)-threshold secret sharing scheme [4] over the field K
has the following properties,
4 A round or a phase is a single sided communication from S to R or vice versa.
5 This paper also presents a protocol which ends in a single round with high proba-

bility. However as the authors of [5] have noted in their presentation at CRYPTO
2004, this protocol is incorrect. Failure can be enforced with probability close to 1.



(1) any t+ 1 shares fix all other shares in the selection and
(2) given any subset of t + 1 − e shares, no information can be obtained about

any disjoint subset of e shares.

Definition 1. We say that a set of shares is consistent when there is a selection
in the Shamir secret sharing scheme that leads to this set of shares. A set of
shares which is not consistent is called inconsistent.

Definition 2. We say that a channel is corrupted if information sent on the
channel is changed before it reaches its destination in any round of the protocol.
Otherwise the channel is called uncorrupted. In other words, the information
sent on an uncorrupted channel is unchanged in any round of the protocol.

Definition 3. We say that a value is broadcast if it is simultaneously sent over
all communication channels. Since the value can then be correctly determined
using majority voting on the other end, such values are always perfectly reliably
transmitted. Since corruptions that occur during broadcasts are easy to detect,
in the sequel we assume without loss of generality that broadcasts occur without
any corruptions on the channels.

2.2 Protocol Πi

There is a two-round subprotocol Πi that has implicitly been used both in the
protocol of [3] and also in the incorrect protocol of [5]. During this protocol,
R attempts to privately transmit a value s ∈ K to S over the ith channel and
obtains feedback about the result afterwards. It has the following functionality:

– If channel i is corrupted, it is disqualified by R after the second round.
– If channel i is not corrupted, R is certain that S correctly received s.
– If channel i is not under the control of A, A obtains no information about

the value s.

We now briefly describe the details of the protocol. Assume that |K| > n.
First, R selects an arbitrary set {s1, s2, . . . , sn} of shares in Shamir’s (t, n)-
threshold secret sharing scheme where the ith share is s, corresponding to a
randomly chosen secret. R then sends all the shares over channel i and the
share sj over every other channel j. We denote the shares received on channel
i by {s′1, s′2, . . . , s′n} and the shares received on the other channels j by t′j . This
completes the first round. If the received set {s′1, s′2, . . . , s′n} of shares is not
consistent, S disqualifies channel i and broadcasts a notification toR. Otherwise,
for every pair of values such that s′j 6= t′j , S broadcasts6 j and s′j . Finally, R
verifies for all received values whether s′j = sj and disqualifies channel i if this
is not the case or if S disqualified channel i. The properties now follow from a
straightforward application of (1) and (2) for the value s.
6 In [5] these shares are actually not transmitted using broadcast, but the functionality

is the same.



The symmetry of conflicts in Πi We now describe an interesting property
of the first round of the protocol Πi that is used to break the perfect reliability
of the protocol from [5] in Section 3.3. Let {s1, s2, . . . , sn} be the set of shares
in Shamir’s (t, n)-threshold secret sharing scheme that has been transmitted by
R over the ith channel in the first round of protocol Πi. We denote the set of
shares received on channel i by {u1, u2, . . . , un} and the shares received over the
other channels j by vj . We say that channel j conflicts with channel i if uj 6= vj .

Assume that channel i is under the control of the adversary and that the
set {u1, u2, . . . , un} is a consistent set of shares that differs from the original set
{s1, s2, . . . , sn}. If t of the original values sj that R sent over the uncontrolled
channels were kept intact and the shares sent over the remaining t−1 controlled
channels were changed to uj , there will be only one pair uj , vj for which uj 6= vj
(= sj), i.e., there will be only one uncontrolled channel j that conflicts with
channel i. Note that this is also the minimal number of conflicts possible when
the set of shares sent over channel i is altered, since the shares sent over the
t+1 uncontrolled channels completely fix the original set of shares and therefore
cannot all be consistent with the altered set of shares.

Now consider the situation where channel i is not under the control of the
adversary and where {u1, u2, . . . , un} is the original set of shares. Furthermore,
assume that only the share on the controlled channel j is modified, resulting in
an altered share sj . Then uj 6= sj and the received shares are exactly the same
as in the previous situation. This implies that S cannot distinguish between the
two situations.

2.3 Information Reconciliation

In this section we describe an information reconciliation technique that is based
on an idea by Sayeed and Abu-Amara [3]. We assume that S has a vector consist-
ing of n = 2t+ 1 uniformly random values and that at least t+ 1 of these values
are known by R. Furthermore, suppose that the adversary A knows at most t
of these values and nothing else about the other values. The goal is for S to
transmit enough information to allow R to recover the random vector, without
allowing A to do the same.

Concretely, let K be a finite field with |K| > n+ t and assume that S has a
uniformly random vector v = (v1, v2, . . . , vn) ∈ Kn. We now consider the vector
v as a set of values for the first n shares in Shamir’s (n− 1, n+ t+ 1)-threshold
secret sharing scheme. By property (1), these shares fix the remaining t+1 shares
in the scheme. Let S broadcast t of these remaining shares to R.
R now knows at least n different shares in the scheme, which completely

fix all the shares in the scheme and in particular the first n shares. Since A
can learn the value of at most n− 1 different shares, it follows from (2) that A
cannot completely reconstruct the first n shares in the scheme. Therefore, the
requirements are met.



2.4 Privacy Amplification

We now describe a well-known technique for perfect privacy amplification, that is
very well-suited for use in PSMT protocols. Suppose S and R share b uniformly
random elements in K and that it is promised that a < b of these elements are
completely unknown to the adversary. Then there is a simple technique that
allows S and R to non-interactively generate a random elements about which A
has no information.

Assume that |K| > a + b. Then we can view the b shared random elements
as the first b shares in a Shamir’s (b− 1, a+ b)-threshold secret sharing scheme.
Again these shares fix all the other shares in the selection and by property (2),
A has no information about the values of the a ‘new’ shares. These shares can
therefore be taken as the outcome of the privacy amplification.

3 Earlier Protocols for PSMT

3.1 Overview

The main known protocols for perfectly secure message transmission all roughly
have the same structure.

1. First S and R interact in such a manner that they obtain sufficiently corre-
lated information, about which A has sufficient uncertainty.

2. Then S and R perform information reconciliation, i.e., they agree upon
certain information that is not completely known to A.

3. Subsequently S and R non-interactively perform privacy amplification on
this information and obtain a random string which is completely unknown
to A.

4. This string now serves as a one-time pad, S encrypts the actual message
with it and communicates the result to R.

For simplicity we leave out the encryption part of the procedure in the se-
quel and only focus on establishing the one-time pad. The first known two round
protocol for PSMT is due to Dolev et al. [2]. The communication complexity of
this protocol is O(2n), and therefore it is not efficient in terms of communi-
cation complexity. The article by Sayeed and Abu-Amara [3] presents the first
efficient two round PSMT protocol, which achieves a communication complexity
of O(n3). In [5], the authors claim to present a protocol with a communication
complexity of O(n), which can be shown to be optimal. However, the protocol
in [5] is not perfectly reliable as is shown in Section 3.3. Furthermore, it seems
to be nontrivial to repair the protocol, indicating that some new techniques
may be required. As a consequence, the problem of finding two-round PSMT
protocols with better communication complexity is still open. In the sequel we
demonstrate some new techniques, and show that at least asymptotically a linear
communication complexity can be obtained.



3.2 Protocol by Sayeed and Abu-Amara

The protocol due to Sayeed and Abu-Amara [3] is easily explained in terms of the
techniques described in Section 2. Initially, Πi is executed in parallel for every
channel i ∈ {1, 2, . . . , n}. This results in n random values {v1, v2, . . . , vn} that
are received by S, of which at least t+ 1 are equal to values that were originally
transmitted by R. Furthermore, R finds out in the second round which values
were correctly received. Also, A knows at most t of the values received by S,
which correspond to the channels that are under his control. S and R can now
apply the information reconciliation technique from Section 2.3 and the privacy
amplification technique from Section 2.4 to obtain a completely secret element
v, which can then be used as a one-time pad.

3.3 Protocol of CRYPTO 2004

We demonstrate in this section how the protocol Πi is used to obtain a two round
protocol in [5]. To make it clear that the protocol is not perfectly reliable, we
show a strategy for A so that R cannot decide without error probability between
two different random pads at the end of the protocol. Since the adversary can
guess the information sent over the channels that are not under his control and
the protocol should have zero error probability, we can assume without loss of
generality that A also has full knowledge of the information that is transmitted
over the uncontrolled channels.

To further simplify matters we only discuss the core functionality of the
protocol, and only for the situation where > 2t/3 of the channels are corrupted
in the first round. We can do this, since the protocol in [5] applies different
techniques depending on whether ≤ 2t/3 of the channels are corrupted in the
first round or more channels are corrupted. Furthermore, we discuss the protocol
using the notation and techniques of this paper.

The protocol from [5] starts by executing the protocol Πi in parallel for every
channel i. The protocol then continues in the second round as follows:

1. An arbitrary set {q1, q2, . . . , qn} of shares in Shamir’s (b4t/3c, n)-threshold
secret sharing scheme is selected according to a randomly chosen secret.

2. Privacy amplification is applied to these shares, leading to a random vector
y = (y1, . . . , ybt/3c) that is later used as a one-time pad to mask and send a
message M ∈ Kbt/3c.

3. For every channel i, the first round of Πi is executed again with an arbitrary
set Ui = {(u1)i, (u2)i, . . . , (un)i} of shares for which (ui)i = qi, where this
time S is the party transmitting.

4. For every conflict (s′j)i 6= (t′j)i that occurred during the first execution of
Πi, the value (uj)i is broadcast by S. 7

7 In [5] these shares are actually not transmitted using broadcast, but the functionality
is the same.



We now set t = 4 and n = 9 and demonstrate the claimed strategy for the
adversary so that R cannot decide without error probability at the end of the
protocol between two different one-time pads y1 and y2. It then follows that the
protocol is not perfectly reliable.

Assume that the channels 1, 7, 8 and 9 are under control of the adversary.
Let Q1 and Q2 be two sets of shares in Shamir’s (5, 9)-threshold secret sharing
scheme that lead to different pads y1 and y2 after privacy amplification, but
for which the shares are the same in the 3th, 4th, 5th and 6th position. It is
straightforward to show that such sets always exist regardless of the choice of
Q1 and in fact such sets can be found for any choice of y1 and y2. We demonstrate
a strategy for the adversary such that R cannot determine whether Q1 or Q2

was the original set of shares, due to the fact that R cannot determine at the
end of the protocol whether channel 1 has been corrupted during the protocol
or channel 2. Let Q1 be the set of shares that is selected by S in step 1. The
strategy, which consists of a number of instances of the technique demonstrated
in Section 2.2, then works as follows:

– In the first round, the adversary precisely creates conflicts in two directions
between the channels 6 and 7, 6 and 8 and 6 and 9 using the technique
described in Section 2.2.

– In the second round, the adversary precisely creates conflicts in two direc-
tions between the channels 1 and 2, 5 and 7, 5 and 8 and 5 and 9. This is
done in such a way that the shares sent on the channels 1, 3, 4, 5 and 6 are
consistent with the set Q2. Since the shares on the uncontrolled channels are
not altered, the shares sent on the channels 2, 3, 4, 5 and 6 remain consistent
with the set Q1. This can be done as follows.

• For j ∈ {1, 2, 7, 8, 9}, choose a share (u′1)j in such a way that the set of
shares that is defined by the shares (u′1)j , (u3)j , (u4)j , (u5)j and (u6)j
contains as the jth share the jth share of Q2. This is going to ensure that
the shares sent on the channels 1, 3, 4, 5 and 6 are consistent with the
set Q2.
• Let U ′1 be the set of shares that will replace the set U1, defined by the

shares (u′1)1, (u3)1, (u4)1, (u5)1 and (u6)1. The corresponding shares
sent over the controlled channels are replaced by the new shares in this
set. This causes channel 2 to conflict with channel 1.
• Replace the share (u1)2 sent over channel 1 by (u′1)2. This causes channel

1 to conflict with channel 2.
• For j ∈ {7, 8, 9}, let U ′j be the set of shares that will replace the set
Uj , defined by the shares (u′1)j , (u2)j , (u3)j , (u4)j and (u6)j . The corre-
sponding shares sent over the controlled channels are replaced by the new
shares in these sets. This causes channel 5 to conflict with the channels
7, 8 and 9.
• Replace the shares (u7)5, (u8)5, (u9)5 sent over the channels 7, 8 and 9 by

arbitrary different values. This causes the channels 7, 8 and 9 to conflict
with channel 5.



In the first round more than 2t/3 of the channels are corrupted, since the
sets of shares are changed on the channels 7, 8 and 9, so the example matches
the assumed setting. These three channels will be disqualified at the end of the
second round. However, as described in Section 2.2,R cannot determine after the
second application of the first round of Πi whether channel 1 has been corrupted
or channel 2. By design, the received shares on the channels could have come
from the set Q2 if the channels 2, 7, 8 and 9 had been corrupted and the shares
on the actual uncorrupted channels are consistent with Q1. Therefore, R cannot
distinguish between these cases. As a final remark, note that the broadcast shares
(uj)i from step 4 are superfluous in this scenario, as these shares were already
correctly received in the second round.

4 Alternative two round PSMT

In this section we describe the new two round protocol. Using the technique from
Section 5.1 and given a large enough message M , it introduces a communication
cost of O(`n) bits. To this end, we introduce the protocol Π̂i, that is based on
some completely new techniques. As already noted in Section 3.1, we leave out
the encryption part of the procedure and only focus on establishing the one-time
pad.

4.1 Protocol Π̂i

The main contribution of this paper is the replacement of the protocol Πi from
Section 2.2 by a stronger two-round protocol Π̂i with the following functionality:

– S and R both obtain a uniformly random vector Zi = (z1, z2, . . . , zd) ∈ Kd.
However, they do not necessarily control which vector this is.

– If channel i is not under the control of A, A obtains no information about
the vector Zi.

Here d ∈ Z>0 is some constant value that can be selected before the start of the
protocol.

We compare the protocol Π̂i with the protocol Πi. As shown in the protocol
due to Sayeed and Abu-Amara (Section 3.2), after Πi has been invoked once
for every channel, up to t of the values that were actually received by S may
be unknown to R. Therefore, almost all privacy had to be sacrificed during
information reconciliation. However, when the protocol Π̂i finishes, information
reconciliation has already occurred.

Furthermore, we will show that by choosing a message M of sufficiently
large size, the relative amount of privacy that has to be given up during the
information reconciliation in the new protocol can be made arbitrarily small,
whereas in the protocol due to Sayeed and Abu-Amara this amount is always
proportional to the message size. Additionally incorporating the technique from
Section 5.1 allows us to obtain the desired communication complexity.



4.2 Sketch of the techniques used

From the discussion in Section 2.2, we see that controlled channels can change
their share in order to match an altered set of shares sent over another channel in
the protocol Πi, while these channels cannot be detected due to insufficient feed-
back. We demonstrate a completely different technique that allows all corrupted
channels to be detected, even if only a single share has been altered on such a
channel. In Section 4.3 we then demonstrate that if S sends some appropriate
additional information, which is similar to the conflict information that is broad-
cast during the protocol Πi, R can reconstruct the altered set {s′1, s′2, . . . , s′n} of
shares that S received.

The key to detecting all corrupted channels is the fact that there are always
t+1 channels that are not controlled by the adversary. The shares corresponding
to these channels completely determine the original set of shares and therefore
any combination of shares consisting of one altered share together with the shares
corresponding to the t + 1 uncontrolled channels has to be inconsistent. Such
an inconsistent combination allows R to detect a corrupted channel, since S
can send the altered share to R and R can verify whether this share has been
altered. However, since it is not known which channels are under the control of
A, we need to perform this procedure for all subsets consisting of t+ 1 channels
to make sure that the proper subset of t+ 1 channels has been attempted.

4.3 Details of protocol Π̂i

Assume that |K| > n + t and let N = {1, 2, . . . , n}. The first round is just as
in the protocol Πi, except that instead of one random set of shares, m sets of
shares are initially selected and transmitted.

Round 1 In the first round, R selects m arbitrary sets of shares according
to Shamir’s (t, n)-threshold secret sharing scheme for m randomly chosen secret
values. We use notation (sj) to denote the vector of all jth shares and denote the
set consisting of all shares by {(s1), (s2), . . . , (sn)}. Furthermore, the notation
(sj)l is used to denote the jth share in the lth set of shares. R sends the set
{(s1), (s2), . . . , (sn)} over the channel i and the vector (sj) over every other
channel j. This completes the first round.

Round 2 Assume that S receives the set {(s′1), (s′2), . . . , (s′n)} on channel i and
vectors (t′j) on the other channels j, where we define (t′i) := (s′i). Without loss
of generality, we may again assume that all the m sets of received shares are
consistent, since otherwise S can disqualify channel i and notify R.

We now perform the verification as described in Section 4.2, where for every
channel j and every combination of t+ 1 channels j1, j2, . . . , jt+1 not including
channel j we try to find an index l for which the combination of the shares
(t′j1)l, (t′j2)l, . . . , (t′jt+1

)l and (t′j)l is not consistent. For every such selection of
channels, if such an index l exists S broadcasts one such share (t′j)l and its



index l to R, who can then verify whether this share is correct. In Lemma 1, we
show that this approach allows R to identify all corrupted channels j.

It is clear that in the above procedure many shares are broadcast that were
not initially known to A. In order to remove all information that A may have
gained due to this, all sets of shares corresponding to the broadcast shares are
discarded. Of the remaining sets, the ith shares are then kept. Due to the sim-
ilarities with the protocol Πi, it now follows that these shares are known to A
only if channel i is under his control, whereas A gains no information about
these shares otherwise.

Concretely, for j = 1, 2, . . . , n, let the set Qj = {Vj1, Vj2, . . . , Vjw} consist of
all combinations of t+1 channels that do not include channel j, i.e., Qj = {V ⊂
N\{j} : |V | = t + 1}. Then for all members of the set Qj (1 ≤ j ≤ n) the
corresponding shares determine the full set of shares and every set Qj has the
same number of elements (namely w =

(
n−1
t+1

)
elements).

The following protocol now specifies the verification step that is performed
after the first round.

Protocol 1 (Classify channels)

1. Let j ∈ N and k ∈ {1, . . . , w}. Then either the received shares in the (t+ 2)-
sized set of shares Wjkl := {(t′j)l} ∪ {(t′z)l : z ∈ Vjk} are consistent for
every l ∈ {1, . . . ,m}, or there is a smallest integer ljk such that the shares
in Wjkljk are not consistent.
Taking ljk = 0 when the shares in Wjkl are consistent for every l, we let
Lj = (lj1, . . . , ljw) be the vector containing all such smallest indices, Ij =
{lj1, . . . , ljw}\{0} be the corresponding set of indices and define

Ej := ((t′j)ljm)m∈{1,...,w}:ljm 6=0.

2. For j = 1, . . . , n, S broadcasts Lj and Ej. Furthermore, S defines

Zi := ((s′i)l)l∈{1,...,m}\(⋃nj=1 Ij)
.

During Protocol 2 almost the same ‘conflict information’ is transmitted as
in the second round of Πi, with as its main difference that now whenever
(s′j)l 6= (t′j)l both conflicting values are returned instead of only the value (s′j)l.
However, this information is used in a completely different way. Whereas in pre-
vious protocols this information was required to discover channels that have been
corrupted, that functionality is now completely superfluous due to the previous
protocol. Instead, the information transmitted during Protocol 2 is exactly suf-
ficient to allow for complete information reconciliation by R, in the sense that
it helps R to completely determine what S received in the first round.

Protocol 2 (Gather reconciliation information)

1. Define Ci := {(l, j, (s′j)l, (t′j)l) : (s′j)l 6= (t′j)l, j ∈ N\{i}, l ∈ {1, . . . ,m}}.
2. S broadcasts Ci.



After S has finished transmitting, R can now execute the following protocol
to reconstruct Zi. Note that nothing needs to be transmitted anymore at this
point.

Protocol 3 (Reconcile)
According to Lemma 1, a channel j has been corrupted iff there exists an entry
(t′j)l in Ej such that (t′j)l 6= (sj)l. This allows R to completely split up the set
of channels in a set Uc of channels that have been corrupted and a set Uu of
uncorrupted channels.

1. First assume that i ∈ Uu. Then

Zi = ((s′i)l)l∈{1,...,m}\(⋃nj=1 Ij)
= ((si)l)l∈{1,...,m}\(⋃nj=1 Ij)

,

which is a vector known to R.
2. Now assume that i ∈ Uc. Fix l ∈ {1, . . . ,m}, let H ⊂ Uu be a set of

t + 1 uncorrupted channels and take j ∈ H. Then either (t′j)l = (s′j)l or
(l, j, (s′j)l, (t

′
j)l) ∈ Ci. In the first case, (t′j)l (which is then equal to (sj)l,

which is known to R) gives a share in the lth set of shares {(s′1)l, . . . , (s′n)l},
and in the second case (s′j)l gives a share in the lth set of shares.
Since the lth set of shares is consistent, the t+ 1 shares that can be obtained
in this way fix all the shares in this set and in particular the share (s′i)l.
Therefore, R can obtain Zi in this case as well.

It follows that R and S both obtain the same vector Zi at the end of the
protocol. If Zi is not empty, the values in the vector are either completely known
to the adversary or he has no information about these values, depending only on
whether the adversary controls channel i or not. This completes the description
of protocol Π̂i.

Two round PSMT Assume that we execute the protocol Π̂i in parallel for all
n channels. Without loss of generality we may assume that all vectors Zi have
the same length, since otherwise S and R can just remove entries according
to some predetermined method. Also, it should be clear that for any i that
the protocol is executed for, the set

⋃n
j=1 Ij can contain at most nw = n

(
n−1
t+1

)
indices. Therefore, by choosing m large enough, the length of the vectors Zi can
in fact be fixed to any nonzero value, so we can assume that the vectors Zi have
nonzero length.

At most t of the vectors Zi are known to the adversary at the end of the
n parallel executions of Π̂i, whereas he has no information about the remain-
ing vectors. Therefore, applying a parallel version of the privacy amplification
technique from Section 2.4 on these n vectors gives t+ 1 completely secret vec-
tors. The values in these vectors can then be used in the second round by S to
one-time-pad encrypt message elements from K.



Proofs We now provide the results that support our claims. The following
lemma shows thatR can determine for a channel j whether it has been corrupted
in the first round of Π̂i by comparing the received values in the set Ej with the
original values that were transmitted on channel j in the first round.

Lemma 1. Fix any j ∈ N . Then (t′j)l 6= (sj)l for some l ∈ {1, . . . ,m} iff there
is a value l′ ∈ {1, . . . ,m} such that (t′j)l′ 6= (sj)l′ and (t′j)l′ is an entry of Ej.

Proof. (⇐) Trivial.
(⇒) If (t′j)l 6= (sj)l for some l ∈ {1, . . . ,m}, then there is a set Vjk of

t + 1 uncontrolled channels that does not contain channel j. In particular, the
shares in the set Wjkl are inconsistent, since the shares corresponding to these
uncontrolled channels lead to share (sj)l for j, which is different from (t′j)l.

Now let l′ be the smallest value for which the shares in the set Wjkl′ are
inconsistent. Since the channels in Vjk are not under control of the adversary,
the shares in the set Wjkl′\{(t′j)l′} lead to share (sj)l′ for channel j, where
(t′j)l′ 6= (sj)l′ since otherwise the shares would be consistent. Since (t′j)l′ is an
entry of Ej by definition, the lemma follows.

At first sight, it may seem that A can deduce information from the minimum
collision indices ljk that are broadcast during Protocol 2. However, the lemma
below shows that this is not the case.

Lemma 2. The values ljk in Protocol 1 completely depend on the actions of
the adversary in the first round. In particular, these values are known to the
adversary even before they are broadcast in the second round.

Proof. By Lagrange’s theorem, a unique linear relation
∑t+1
i=1 λisi = st+2 nec-

essarily holds for a consistent set {s1, . . . , st+2} of shares in Shamir’s (t, n)-
threshold secret sharing scheme, where the λi’s are publicly known constants
that only depend on the a priori fixed evaluation points on the used secret shar-
ing polynomial. Lets assume that the first e <= t shares are replaced by values s′i.
It is straightforward to verify that the new set {s′1, .., s′e, se+1, .., st+2} is consis-
tent iff

∑e
i=1 λis

′
i+
∑t+1
i=e+1 λisi = st+2. This is the case iff

∑e
i=1 λi(si−s′i) = 0.

However, the values si−s′i are chosen by and known to the adversary. Therefore,
the adversary already knows beforehand whether any particular received subset
of t+ 2 shares is consistent or not and can in particular predict all the minimum
indices ljk.

Proposition 1. If (l, j, (s′j)l, (t
′
j)l) ∈ Ci, then at least one of the channels i and

j has been corrupted. Furthermore, both (s′j)l and (t′j)l were already known to
the adversary at the end of the first round.

Assume that A does not control channel i. Since the first round of Π̂i is a
parallel version of the first round of Πi, it is clear that A obtains no information
about the ith shares in the sets of shares in the first round. The following lemma
states that the adversary does not learn anything new about the values of the
entries of Zi (provided that Zi has any entries at all) in the second round of Π̂i.
This shows that the proposed protocol is perfectly private.



Lemma 3. If channel i is not under control of the adversary and Zi contains a
nonzero number of entries, then the adversary obtains no new information about
the values of the entries of Zi in the second round.

Proof. According to Lemma 2, the indices that are transmitted during Protocol 1
are selected by (and therefore known to) the adversary before the execution of the
second round. Furthermore, the shares that are transmitted during Protocol 1
are completely uncorrelated with the vector Zi, since the corresponding sharings
are discarded before the vector Zi is constructed. Finally, Proposition 1 shows
that only information that is already known to the adversary is transmitted
during Protocol 2. Therefore, the adversary does not learn anything new about
the values of the entries of Zi in the second round.

5 Towards linear overhead

5.1 Improved reliable transmission

The most expensive transmission in the described protocols so far, both for the
previous protocols as well as for the new one, is the transmission of the collisions
in the second round, i.e., the transmission of the values s′j and/or t′j for which
s′j 6= t′j . In this section we demonstrate a technique used in [5], which can
reduce the communication cost by switching from broadcast to a combination
of broadcast and error correcting. We describe this technique for a single value
of l ∈ {1, . . . ,m} in the new protocol, where we group all shares received on the
channels that relate to a set of shares that has index l. It is straightforward to
improve the technique we describe by taking all shares into account at once, but
this has no impact on the obtained communication complexity.

We start by regrouping the vectors in the sets C1, . . . , Cn as follows: For l =
1, . . . ,m, define Cl := {(i, j, (s′j)l, (t′j)l) : (l, j, (s′j)l, (t

′
j)l) ∈ Ci, i ∈ {1, 2, . . . , n}}.

Then the set Cl contains all conflicts arising from the distribution of the n lth

sets of shares. We then move to a more efficient method to reliably transmit the
sets Cl. Define the undirected graph Gl = (P, El) by

(i, j) ∈ El ⇔ (i, j, (s′j)l, (t
′
j)l) ∈ Cl ∨ (j, i, (s′i)l, (t

′
i)l) ∈ Cl

and let Ml be the size of a maximum matching on Gl. From Proposition 1 it
follows that every edge in this graph involves at least one channel that has been
corrupted. Therefore there are at least Ml channels that have been corrupted in
total.

These channels can all be detected by R using the information from Proto-
col 1. This implies thatR will be able to discard the shares received on at leastMl

channels during the reliable transmission. Therefore, we can use an error correct-
ing code with codewords of length n that can handleMl erasures and t−Ml errors
for the transmission. Using codewords of length n, n−Ml − 2(t−Ml) = Ml + 1
shares can now be transmitted.

Since every edge in the graph involves at least one channel that is in the
maximum matching, there can be at most 2Mln edges in the graph. In particular,



this implies that every set Cl can contain at most 4Mln vectors. Using an error
correcting code, every set Cl can thus be transmitted by sending O(n2) shares
over the channels.

5.2 Complexity analysis

Choose a field K such that its elements can be represented using bit strings of
length O(log(n)) and assume that m is such that m > nw logn(m). The length
max{0,m − nw} of the vectors Zi can be chosen to be of size ≥ cm for any
constant c in the interval (0, 1), by enlarging m as necessary. As the privacy
amplification section shows, this implies that we can obtain a secret key of size
(t+1)cm = O(nm), i.e., of O(mn log(n)) bits. In order to have a PSMT-protocol
with a linear communication complexity, the total number of shares transmitted
in each round should be O(mn2) or, stated equivalently, the total number of
bits transmitted in each round should be O(mn2 log(n)). Let us now analyze the
communication complexity of the parts of the new protocol.

The first round. For every i, R sends mn elements over channel i and m
elements over every other channel j. This sums up to a total of O(mn)
shares that are sent over each channel and therefore to O(mn2) shares in
total that are transmitted in the first round.

Protocol: Classify channels. For every i ∈ {1, 2 . . . , n}, at most O(w) in-
dices and field elements are broadcast at the end of Protocol 1 for ev-
ery j, so that in total O(n2w(log(m) + log(n)) bits have to be broadcast.
This gives O(n3w(log(m) + log(n)) bits that are transmitted during Proto-
col 1. Our assumption implies that m > n, so that this can be rewritten
to O(n3w log(m)). Furthermore, by assumption m > nw logn(m), so that
m log(n) > nw log(m), i.e., n3w log(m) = O(mn2 log(n)).

Protocol: Gather reconciliation information. Assume that we regroup the
sets Ci during the Protocol 2 as described in Section 5.1 and obtained the
sets Cl. Then, using some appropriate padding between the vectors Cl, all
information can be transmitted by communicating only O(mn2) shares.

This completes the analysis.

6 Conclusion

In this paper we have given an asymptotically optimal two round PSMT protocol
for n = 2t + 1. It is not difficult to extend the protocol for n > 2t + 1 as well.
In particular, there exists a protocol that asymptotically achieves a constant
communication overhead when t = cn for any 0 < c < 1/2.

The main difference when compared to earlier two round PSMT protocols
is the ability to completely isolate corrupted channels. However, this comes at
the expense of a high computational cost to both sender and receiver. We do
not know whether a similar protocol can exist where sender and receiver are
restricted to polynomial time computations (in terms of the number of channels)
only.
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