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Abstract. Let H1, H2 be two hash functions. We wish to construct a
new hash function H that is collision resistant if at least one of H1 or
H2 is collision resistant. Concatenating the output of H1 and H2 clearly
works, but at the cost of doubling the hash output size. We ask whether
a better construction exists, namely, can we hedge our bets without dou-
bling the size of the output? We take a step towards answering this
question in the negative — we show that any secure construction that
evaluates each hash function once cannot output fewer bits than simply
concatenating the given functions.

1 Introduction

Let H : {0, 1}∗ → {0, 1}n be a function. A collision for H is a pair M,M ′ ∈
{0, 1}∗ such that H(M) = H(M ′) and M 6= M ′. Roughly speaking, we say
that H is collision resistant if no efficient algorithm can find collisions for H.
Recent attacks [21, 20, 23, 22] on functions previously believed to be collision re-
sistant greatly stimulated the search for new constructions as well as methods to
avoid collision resistance altogether [17]. One natural question is how to combine
existing hash functions. Suppose we are given two hash functions

H1,H2 : {0, 1}∗ → {0, 1}v

that are currently believed to be collision resistant. We worry that one of these
functions will become insecure due to a future attack. Hence, we want to hedge
our bet and construct a new hash function H : {0, 1}∗ → {0, 1}n that is collision
resistant assuming at least one of H1 or H2 is collision resistant. This can be
easily achieved by concatenation. Simply define:

H(x) := H1(x) ‖ H2(x)

in which case H outputs digests of length n = 2v. It is easy to see that if either
H1 or H2 is collision resistant then so is H. More precisely, concatenation has
the following property:

(∗) Any collision on H leads to a collision on both H1 and H2
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Therefore, if finding collisions for either H1 or H2 is difficult then finding col-
lisions for H must also be difficult. Note that property (∗) holds no matter
what hash functions H1 and H2 are used. We give precise definitions in the next
section.

In this paper we ask whether there are more clever ways to construct H.
Specifically, is there a construction that satisfies property (∗), but whose output
size n is less than 2v bits? A positive answer will give a clean way to combine
two hash functions, such as SHA-512 [18] and Whirlpool [2], without increasing
the output size by too much. Here we only consider constructions for H that
evaluate H1 and H2 at most once. Concatenation is such an example.

Unfortunately, we show that when n < 2v it is not possible to satisfy prop-
erty (∗). In other words, there is no generic construction that combines arbitrary
collision resistant hash functions H1,H2 and whose output is any shorter than
concatenation. We give a precise statement of the result in the next section.
Roughly speaking, our proof shows that for any construction with n < 2v we
can construct functions H1,H2 for which property (∗) fails. It is worth noting
that our counterexamples for H1,H2 are realistic functions. For instance, they
can be very similar to SHA-512 and Whirlpool. Our results apply to an arbitrary
number of underlying hash functions and show that we cannot do better than
concatenation, as long as each function is only used once.

We begin by precisely defining what it means for a construction combining
` hash functions to be secure. Intuitively, the construction should satisfy prop-
erty (∗) — a collision on H should lead to a collision on all ` given hash functions.
Consequently, if one of the ` functions is collision resistant then so is H. We then
state and prove our impossibility results.

1.1 Related work

Robust combiners for various cryptographic primitives have received a steady
amount of attention in the cryptographic community. Some examples include
the early results of Asmuth and Blakely [1] on multiple encryption, Herzberg’s
work on combiners for commitment and one-way functions [9], Dodis and Katz’s
on encryption with chosen ciphertext security [7], and Harnik’s et al. on key
agreement [8]. Harnik et al. [8] provide lower bounds regarding the existence of
“transparent” black-box combiners for oblivious transfer and secure computa-
tion [8]. We refer to Herzberg [9] for a survey of robust combiners for various
cryptographic primitives as well as formal models. Hohenberger and Lysyanskaya
recently investigated a related notion of “outsourcing” cryptographic operations
by enlisting potentially malicious helpers to perform some of the calculations [11].
The very notion of increasing the security of encryption by using multiple inde-
pendent keys dates back to the work of Shannon.

Our focus in this paper is on robust combiners for collision resistant hash
functions. Many cryptographic hash functions today are based on the Merkle-
Damg̊ard paradigm [15, 6], which repeatedly applies a given compression function
on successive message blocks in order to hash messages of arbitrary size. Joux [12]
showed that the concatenation of two Merkle-Damg̊ard functions is not much



more secure than the individual functions. In particular, let H1,H2 be Merkle-
Damg̊ard functions that output v bits each. Joux showed that a collision for
H = H1 ‖ H2 can be found in expected time O(v 2v/2). This is far less than the
time for finding a collision on a random function outputting 2v bits. In other
words, concatenation provides a good hedge, but does not increase security for
Merkle-Damg̊ard functions. Generalizations of Joux’s attack were given by Nandi
and Stinson [16] and Hoch and Shamir [10].

Kelsey [13] observed that truncating a collision resistant hash function need
not be collision resistant. A special case of our results (the case ` = 1 in Theo-
rem 1) implies that any construction that evaluates a collision resistant function
H and outputs fewer bits than the output of H need not be collision resistant.

For constructing hash functions, Lucks [14] studied the idea of increasing the
internal state of the iterated hash beyond the size of the final output, specifi-
cally to defend it against Joux’s attack. Along the same lines, Coron et al. [5]
showed how to increase the security of an iterated hash function in which the
compression function is viewed as a random oracle. They gave several techniques
for building an economical Merkle-Damg̊ard hash that becomes indistinguishable
from a random oracle provided we stay below the birthday bound, by truncating
the output or by encoding the input using a prefix-free code.

Generic constructions that attempt to build secure compression functions
from ideal block ciphers have also been investigated. Preneel et al. [19] identified
12 constructions that were potentially secure. Black et al. [4] provided formal
security proofs for all 12 constructions in the ideal cipher model. Some impossi-
bility results have also been shown. Notably, Black et al. [3] proved that secure
hash functions based on block ciphers cannot be “highly efficient”, i.e., require
only one block cipher call per message block on a fixed set of keys.

2 Secure combination of collision resistant hashing

Suppose we wish to combine ` collision resistant hash functions H1, . . . ,H` into
a single function that is collision resistant if any of the Hi is collision resistant.
We first define precisely what it means for such a construction to be secure.
Throughout the section we let Hi be a function from {0, 1}∗ to {0, 1}vi for
i = 1, . . . , `.

A collision resistant combination of H1, . . . ,H` is a pair (C,P ) where C
is a boolean circuit and P is a probabilistic algorithm such that:

– The circuit C is a boolean circuit that includes special “oracle” gates for
evaluating the hash functions H1, . . . ,H`. We refer to CH1,...,H` as the hash
function constructed from H1, . . . ,H`. The circuit takes as input a string
in {0, 1}≤m, namely a string of length at most m, and outputs a digest in
{0, 1}n. The upper bound on the input size merely reflects the finiteness of
the circuit. This upper bound only strengthens our results since it shows
that efficient combiners are not possible even when the input space for C is
finite. We assume C is compressing so that m is (much) larger than n. The



output of C on input M and using hash functions H1, . . . ,H` is denoted by
CH1,...,H`(M).

– Algorithm P is an oracle Turing machine. It provides the proof of security
for C. The algorithm takes as input a pair of messages (M,M ′). It then
repeatedly queries the oracles H1, . . . ,H` on inputs of its choice and finally
outputs two vectors,

W = (W1, . . . ,W`) and W ′ = (W ′
1, . . . ,W

′
`)

The output of P on input (M,M ′) is denoted by PH1,...,H`(M,M ′).

The purpose of algorithm P is to convert any collision on CH1,...,H` into collisions
on all H1, . . . ,H`. Thus, we define security of a pair (C,P ) as follows.

– Let H1, . . . ,H` be functions where Hi : {0, 1}∗ → {0, 1}vi .
– Let M,M ′ ∈ {0, 1}≤m be a collision for the resulting function CH1,...,H` .

We say that P succeeds on this (H1, . . . ,H`) and (M,M ′) if the output of
PH1,...,H`(M,M ′) is two vectors W = (W1, . . . ,W`) and W ′ = (W ′

1, . . . ,W
′
`)

such that

For all i = 1, . . . , ` : (Wi, W ′
i ) is a collision for Hi.

We define the “advantage” AdvP [(H1, . . . ,H`), (M,M ′)] as the probability that
P succeeds on input (M,M ′) relative to the oracles (H1, . . . ,H`). The probability
is over the random bits used by algorithm P .

Definition 1. We say that (C,P ) is an ε-secure collision resistant combi-
nation if for all H1, . . . ,H` and all collisions (M,M ′) on CH1,...,H` we have
that

AdvP [(H1, . . . ,H`), (M,M ′)] > 1− ε

For example, for the concatenation construction discussed in the introduc-
tion, the pair (C,P ) is as follows:

– CH1,H2(M) = H1(M) ‖ H2(M), and
– PH1,H2(M,M ′) simply outputs the two vectors (M,M) and (M ′,M ′).

This pair (C,P ) is a secure collision resistant combination since for any H1,H2

and any collision (M,M ′) on CH1,H2 we have that

AdvP [(H1,H2), (M,M ′)] = 1

Our goal is to show that for any construction (C,P ) where C outputs fewer
bits than concatenation, we have that AdvP [(H1, . . . ,H`), (M,M ′)] is negligible,
for some (H1, . . . ,H`) and some collision (M,M ′). This will show that there is
no provably secure way of combining generic hash functions that is better than
concatenation. In this paper we focus on constructions (C,P ) where C makes at
most one call to each of H1, . . . ,H`. We do not discuss constructions where C
uses some hash function multiple times.



3 Black-box impossibility results

Our main result states that, given any pair (C,P ) where C evaluates each func-
tion once, it will always be possible to find a collision for CH1,...,H` while pre-
venting P from finding collisions for all the Hi. The only trivial exceptions are
(1) when the output size of C is at least as large as the combined output sizes
of all the Hi, which is to say that C does no better than concatenation, and
(2) when the output of C is as large as its input, which is to say that C is
non-compressing. Formally, we have the following theorem.

Theorem 1. Let (C,P ) be a collision resistant combination of oracles Hi :
{0, 1}∗ → {0, 1}vi for i = 1, . . . , `, where C : {0, 1}≤m → {0, 1}n. Let w =
v1 + . . . + v`. Suppose that n < w ≤ m − log2 `. Suppose further that C calls
each of the Hi at most once. Then, there exist inputs M,M ′ ∈ {0, 1}≤m and
functions Ĥi : {0, 1}∗ → {0, 1}vi for i = 1, . . . , `, relative to which:

AdvP [(Ĥ1, . . . , Ĥ`), (M,M ′)] ≤ q2
/
2v+1,

where v = min`
i=1{vi} is the smallest oracle output size, and q is the maximum

number of oracle queries made by P during each execution.

The theorem shows that if C outputs fewer than w = v1 + · · · + v` bits
then the probability of defeating P is overwhelming, provided that q �

√
2v+1,

namely, q �
√

2vi+1 for all i = 1, . . . , `. The condition q �
√

2v+1 must hold
since otherwise one of the Hi is trivially not collision resistant and should not
be used to begin with.

We prove Theorem 1 in two steps. First, in Section 3.1 we assume the exis-
tence of H1, . . . ,H` and a pair M 6= M ′ that is a collision for CH1,...,H` satisfying
a certain property. We use a randomization argument to build Ĥ1, . . . , Ĥ` that
defeat P . Then, in Section 3.2 we show that for any C satisfying the conditions
of Theorem 1 there must exist functions H1, . . . ,H` and a collision M 6= M ′

that satisfies the required property. This second step is the heart of the proof.
These two results taken together will immediately prove Theorem 1.

Proof. Theorem 1 follows from Theorems 2 and 3. ut

3.1 Randomization

Suppose there exist functions H1, . . . ,H` and two messages M,M ′ such that:

– M,M ′ are a collision for CH1,...,H` , and
– there is some j ∈ {1, . . . , `} so that the process of evaluating CH1,...,H`(M)

and CH1,...,H`(M ′) does not present a collision for Hj .

We show how to tweak the Hi into a new set of oracles, Ĥ1, . . . , Ĥ`, such that
P will fail to reduce a collision for CĤ1,...,Ĥ` to a collision on all the Ĥi. In
Section 3.2 we show that such H1, . . . ,H` and M,M ′ must exist.



To state the result more precisely, we first introduce some notation. As before,
we let Hi : {0, 1}∗ → {0, 1}vi for i = 1, . . . , ` be a set of functions, and denote by
CH1,...,H` : {0, 1}m → {0, 1}n the function evaluated by C when it is given oracle
access to the Hi. Consider an input message M ∈ {0, 1}m. For each i = 1, . . . , `,
we define:

– Wi(M) to be the set of oracle queries to Hi made by C while evaluating
CH1,...,H`(M),

– Vi(M) = {Hi(W ) : W ∈ Wi(M)} to be the set of corresponding values
output by Hi.

These sets are taken without multiplicity, and hence, we have a collision for
Hj upon evaluating C(M) if and only if |Wj(M)| > |Vj(M)|. If |Wj(M)| =
|Vj(M)| then no collision occurred for Hj . We can now state the following
theorem.

Theorem 2. Let (C,P ) be a collision resistant combination of ` oracles as
previously defined. Assume that there exist oracles Hi : {0, 1}∗ → {0, 1}vi for
i = 1, . . . , ` and a pair of messages M,M ′, such that:

– M 6= M ′ and CH1,...,H`(M) = CH1,...,H`(M ′), and
– |Vj(M) ∪Vj(M ′)| = |Wj(M) ∪Wj(M ′)| for some j ∈ {1, . . . , `}.

Let v = min`
i=1{vi}. Suppose that P never makes more than q oracle queries upon

each execution. Then, there exist oracles Ĥi : {0, 1}∗ → {0, 1}vi for i = 1, . . . , `,
relative to which:

AdvP [(Ĥ1, . . . , Ĥ`), (M,M ′)] ≤ q2/2v+1

Proof. Let thus M , M ′, and Hi for i = 1, . . . , `, be as stated in the theorem.
We construct the Ĥi by patching Hi in a way that breaks P without affecting
the output of C(M) and C(M ′). Basically, we instruct Ĥi to emulate Hi on all
queries that appear in the course of evaluating one or both of CH1,...,H`(M) and
CH1,...,H`(M ′). On all other inputs, the output of Ĥi is set to a fresh random
string, so that Ĥi behaves as a random function on these inputs.

We now give an explicit construction of the Ĥi based on the Hi and the
circuit C. For each i ∈ {1, . . . , `} we pick an independent random function
Ri : {0, 1}∗ → {0, 1}vi . Then, for i ∈ {1, . . . , `}, we define Ĥi as follows:

Ĥi(W ) :=

{
Hi(W ) if W ∈ Wi(M) ∪Wi(M ′)
Ri(W ) otherwise.

Notice that the random function Ri can be selected and evaluated efficiently
using a lazy algorithm that would pick and store a randomly drawn Ri(W ) ∈
{0, 1}vi upon each novel query for Ri(W ).

It is easy to see that the messages M and M ′ still collide under CĤ1,...,Ĥ` for
the new oracle functions, since C is a deterministic function, and its evaluation
on inputs M and M ′ is unaffected by the change of oracles.



Now, recall that j is the index of (one of) the hash oracle for which no
collision occurred during the evaluations of CH1,...,H`(M) and CH1,...,H`(M ′),
or, equivalently, during the evaluations of CĤ1,...,Ĥ`(M) and CĤ1,...,Ĥ`(M ′). At
least one such j ∈ {1, . . . , `} exists by our assumptions.

Next, we consider the set of all distinct queries to Ĥj that are made during
an execution of P on input (M,M ′). Each output value Ĥj(x) returned by Ĥj

on query x is either:

1. “unpatched”, i.e., so that Ĥj(x) = Hj(x), corresponding to a query in
Wj(M) ∪Wj(M ′);

2. “patched”, i.e., such that Ĥj(x) = Rj(x), in response to any other query.

We know that the few unpatched outputs of Ĥj are all distinct, otherwise the
evaluations of C(M) and C(M ′) would have caused a collision on Hj and thus
Ĥj , contradicting our assumption. As for the patched outputs, by construction
they are random binary strings of vj bits.

Therefore, using the union bound we obtain the following bound on the
probability that an arbitrary set of queries to Ĥj will result in a collision on Ĥj :

Pr
[

q queries cause
a collision on Ĥj

]
≤

∑
a6=b∈

{0,...,q−1}

Pr
[

query a collides
with query b

]
≤

≤
∑

a6=b∈
{0,...,q−1}

1
2vj

≤ q2

2vj+1
≤ q2

2v+1

We conclude that the probability that P Ĥ1,...,Ĥ`(M,M ′) outputs a collision on
Ĥj is at most q2

2v+1 . The probability is over the random choice of R1, . . . , R`

and the random bits used by P . But then by Markov there must exist some
fixed setting of R1, . . . , R` so that for the corresponding Ĥ1, . . . , Ĥ`, algorithm
P Ĥ1,...,Ĥ`(M,M ′) outputs a collision on Ĥj with probability at most q2

2v+1 . This
time the probability is only over the random bits of P . Therefore, the advantage
AdvP [(Ĥ1, . . . , Ĥ`), (M,M ′)] is at most q2/2v+1 as required. ut

3.2 Existence argument

We now turn to the second step of the proof of Theorem 1, which is the main
part of the proof. Let C be a circuit that outputs elements in {0, 1}n and uses
hash functions (i.e. oracles) H1, . . . ,H` : {0, 1}∗ → {0, 1}vi . As in Section 3, let
w = v1 + . . . + v`. We assume that n < w so that the output of C is at least one
bit less than the concatenation of all the outputs of H1, . . . ,H`. In this section
we will occasionally use the standard notation A → B to denote (¬A)∨B where
A and B are boolean expressions.

Suppose C uses each function Hi for i = 1, . . . , ` at most once. We show that
there exists H1, . . . ,H` and M,M ′ ∈ {0, 1}m such that: M,M ′ are a collision



for CH1,...,H` , but for some Hj (1 ≤ j ≤ `) evaluating C(M) and C(M ′) causes
no internal collision on Hj . The argument of Section 3.1 then shows that this
M,M ′ pair cannot be used to find collisions on Hj proving that C cannot be a
secure combination of H1, . . . ,H`.

More precisely, we state the main result of this section in the following the-
orem. We use the notation introduced at the beginning of Section 3.1.

Theorem 3. Let C be a circuit computing a function from {0, 1}m to {0, 1}n

using a set of oracles Hi : {0, 1}∗ → {0, 1}vi for i = 1, . . . , `. Furthermore, we
assume that each Hi is used at most once in C. Let w = v1 + . . . + v`. Then,
whenever n < w ≤ m − log2 `, there exist functions H1, . . . ,H` and messages
M,M ′ such that:

– M 6= M ′ and CH1,...,H`(M) = CH1,...,H`(M ′), and
– |Vj(M) ∪Vj(M ′)| = |Wj(M) ∪Wj(M ′)| for some j ∈ {1, . . . , `}.

G`−1G0 G1 G2 G`

H`H1 H2

M Hash

x1 x2 x`y1 y2 y`

The Circuit C

Fig. 1. Generic hash construction – the circuit C

Clearly the circuit C must use all hash functions H1, . . . ,H`. Otherwise, there
is no hope of using a collision on C to get a collision on all Hi. Since we assumed
that each Hi is used only once we know that C makes exactly ` oracle calls, one
for each of H1, . . . ,H`. An inductive argument on the structure of C shows that,
up to re-ordering the oracles, there exist circuits G0, G1, . . . , G` so that C can
be written as shown in Figure 1. Note that the wires connecting Gi and Gi+1

can be quite thick, and in particular preserve all of the input and the state so
far.

For an input message M ∈ {0, 1}m let ȳ = (y1, . . . , y`) be the outputs of
H1, . . . ,H` while evaluating C(M). Clearly the output of C is fully determined
by M and ȳ. For i = 1, . . . , ` we define the function:

Xi(M,y1, . . . , yi−1) : {0, 1}m+v1+...+vi−1 → {0, 1}∗



to be the input xi given to Hi when evaluating C(M) and assuming that the
output of the hash functions H1, . . . ,Hi−1 is y1, . . . , yi−1 respectively.

Theorem 3 can now be restated more directly. The theorem states that there
exist functions H1, . . . ,H` and inputs M 6= M ′ such that C(M) = C(M ′) and
the following condition holds. Let (x1, y1), . . . , (x`, y`) be the input/output pairs
for H1, . . . ,H` while evaluating C(M). Similarly let (x′1, y

′
1), . . . , (x

′
`, y

′
`) be the

input/output pairs while evaluating C(M ′). Then there exists a j ∈ {1, . . . , `}
for which

(yj = y′j) → (xj = x′j)

In other words, no collision occurred on Hj .

Proof (of Theorem 3). The plan is to consider the set S of all 2m+w tuples of
the form (M,y1, . . . , y`). We often write ȳ = (y1, . . . , y`). Observe that a tuple
(M, ȳ) in S completely defines the output of C(M): simply define the output of
hash function i to be yi for all i = 1, . . . , `. We view a tuple (M, ȳ) as an abstract
object that is not derived from a specific instantiation of the hash functions.

We first partition S into equivalence classes based on the output of C. That
is, two tuples (M, ȳ) and (M ′, ȳ′) are in the same equivalence class if C evaluates
to the same output on both. Note that this partition of S is dependent only on
C. It is independent of the choice of H1, . . . ,H`. Since C outputs elements in
{0, 1}n there are at most 2n equivalence classes. It follows that there exists an
equivalence class E ⊆ S of size at least 2m+w−n. Since w > n this equivalence
class E must be of size strictly greater than 2m. We will use this E extensively
in the remainder of the proof. First, we argue in the following simple lemma that
E must contain tuples with certain properties.

Lemma 1. Under the conditions of Theorem 3 the set E must contain tuples
satisfying the following properties:

1. There exist distinct M (0), . . . ,M (`) ∈ {0, 1}m and some ȳ ∈ {0, 1}w such
that (M (i), ȳ) is in E for all i = 0, . . . , `. In other words, E contains ` + 1
tuples that all share the same ȳ.

2. There exists a tuple
(
M ′, ȳ′

)
in E such that ȳ′ 6= ȳ.

Proof. The first property is easy to see. Let us partition E into equivalence
classes based on ȳ. Two tuples are in the same equivalence class if they have
identical ȳ components. If every class had only ` tuples in it then the size of E
would be at most 2w`. But 2w` ≤ 2m which contradicts the fact that |E| > 2m.
Hence, there must exist ` + 1 tuples in E with the same ȳ.

Similarly, we prove the second property by a counting argument. Since |E| >
2m there must exist in E two tuples T1 = (M, ȳ1) and T2 = (M, ȳ2) where
ȳ1 6= ȳ2. Then either ȳ 6= ȳ1 or ȳ 6= ȳ2. Thus, either T1 or T2 is the required
tuple. This completes the proof of the lemma. ut

Note that M ′ may be contained in {M (0), . . . ,M (`)}. This lemma relies on
the fact that C outputs fewer than w bits. Part (2) of the lemma would not hold



otherwise. For example, part (2) does not hold for the concatenation construc-
tion.

Back to the proof of Theorem 3, we will use the tuples that are guaranteed
to exist by the lemma to complete the proof of the theorem. We need a little
more notation. For i = 0, 1, . . . , ` and ȳ = (y1, . . . , y`) we let:

x
(i)
1 = X1(M (i)),

x
(i)
2 = X2(M (i), y1),

...

x
(i)
` = X`(M (i), y1, . . . , y`−1)

and write x̄(i) = (x(i)
1 , . . . , x

(`)
` ). These are the inputs to the hash functions

corresponding to the tuple (M (i), ȳ(i)). Similarly, we write ȳ′ = (y′1, . . . , y
′
`), and

let:

x′1 = X1(M ′),
x′2 = X2(M ′, y′1),

...
x′` = X`(M ′, y′1, . . . , y′`−1)

Again, we write x̄′ = (x′1, . . . , x
′
`).

We now construct the functions H1, . . . ,H` and the inputs M,M ′ needed to
prove Theorem 3. For i = 1, . . . , ` let Hi be some arbitrary function from {0, 1}∗
to {0, 1}vi . We show how to modify these functions in at most two points to
obtain a collision on C without an internal collision on some Hj . The difficulty
is in ensuring that our modifications to the Hi are legal. That is, we never
map the same input to two different outputs, otherwise we will not be able to
instantiate the Hi. We consider two cases.

Case 1: There exist j ∈ {1, . . . , `} and a, b ∈ {0, . . . , `} such that x
(a)
j = x

(b)
j

and a 6= b. In this case, for i = 1, . . . , ` we define Ĥi as follows:

Ĥi(x) =


yi if x = x

(a)
i

yi if x = x
(b)
i

Hi(x) otherwise

Defining Ĥi(x) in this way is legal since we never map the same input to two
different outputs.

Recall that both tuples (M (a), ȳ) and (M (b), ȳ) are in E. Moreover, we just
forced each Ĥi to evaluate to yi when C is given M (a) or M (b) as input. Therefore,

CĤ1,...,Ĥ`(M (a)) = CĤ1,...,Ĥ`(M (b))



Since a 6= b, we know by the lemma that M (a) 6= M (b). But x
(a)
j = x

(b)
j and

hence there is no collision on Ĥj . Thus, M (a) and M (b) cause a collision on C

but not a collision on Ĥj , as required.

Case 2: Suppose Case 1 did not happen. In this case we know that the following
holds:

– Since ȳ 6= ȳ′, there exists an r ∈ {1, . . . , `} where: yr 6= y′r.

– Since Case 1 did not happen, then for all j = 1, . . . , ` the set
{
x

(i)
j

}`

i=0
contains ` + 1 distinct elements.

Observe that the second bullet implies that for any vector x̄ = (x1, . . . , x`) there
exists some k ∈ {0, 1, . . . , `} such that xj 6= x

(k)
j for all j = 1, . . . , `. The reason

is that there are `+1 possible values for k, but there are only ` coordinates in x̄.
Therefore, there must exist some k ∈ {0, 1, . . . , `} such that x̄ differs from x̄(k)

in all the coordinates.
In particular, there exists k ∈ {0, 1, . . . , `} such that x̄′ differs from x̄(k) in

all the coordinates. Then for i = 1, . . . , ` we define Ĥi as follows:

Ĥi(x) =


y′i if x = x′i

yi if x = x
(k)
i

Hi(x) otherwise

Since the vectors x̄′ and x̄(k) differ in all the coordinates, defining Ĥi(x) in this
way is legal. We never map the same input to two different outputs.

Both tuples (M (k), ȳ) and (M ′, ȳ′) are in E and therefore

CĤ1,...,Ĥ`(M (k)) = CĤ1,...,Ĥ`(M ′)

Furthermore, since x
(k)
1 6= x′1 we know that X1(M (k)) 6= X1(M ′) and hence

M (k) 6= M ′. In addition, since yr 6= y′r there is no collision on Ĥr. Thus, once
again, M ′ and M (k) cause a collision on C but not a collision on Ĥr, as required.

We see that in both cases we were able to produce the required functions
Ĥ1, . . . , Ĥ` and pair of inputs M,M ′. This completes the proof of Theorem 3.

ut

4 Discussion and Future Work

We discuss a few directions for future work in this area.



Stronger impossibility results. Our current impossibility results apply to any
construction C that uses each of the underlying hash functions at most once. Is
there a similar impossibility result for constructions that use each hash function
multiple times? To extend our results all that is needed is a stronger existence
argument, namely a version of Theorem 3 that applies to more general circuits.
Ideally, Theorem 3 can be strengthened to handle adaptive constructions, namely
constructions that evaluate the underlying hash functions a variable number
times. For example, the number of times that C evaluates the function H1 may
depend on the length of M . Nevertheless, even an existence argument for circuits
C that evaluate the hash functions a constant number of times would be progress.
Until a complete impossibility argument is obtained, we cannot rule out the
existence of space-efficient combiners.

Non-blackbox results. Our impossibility results build generic hash functions
H1, . . . ,H` that cause a construction C and its proof of security P to fail. In prac-
tice, however, hash functions typically follow the Merkle-Damg̊ard paradigm.
Thus, a natural question is whether one can give an impossibility proof where
the counter-example hash functions H1, . . . ,H` are Merkle-Damg̊ard functions.
Alternatively, is there a space efficient combiner that is proven secure only when
instantiated with Merkle-Damg̊ard functions? (even though the combiner is nec-
essarily insecure when instantiated with general hash functions).

We note that a stronger impossibility proof, as mentioned in the first para-
graph, will also provide an impossibility proof for efficiently combining Merkle-
Damg̊ard functions. Simply view the ` Merkle-Damg̊ard chains as part of the
circuit C and then apply the impossibility argument to the ` compression func-
tions. A complete impossibility proof will provide ` compression functions for
which the proof of security P fails. Then the derived hash functions H1, . . . ,H`

cause the proof P to fail and are Merkle-Damg̊ard functions as required.

Impossibility results for other hashing concepts. It seems natural that similar
ideas can be applied to other hash function concepts such as second pre-image
resistance. Can one prove that concatenation is the best secure combiner for
second pre-image resistant functions?

5 Conclusion

We studied the problem of combining multiple hash functions into a single func-
tion that is collision resistant whenever at least one of the original functions is.
The hope was that, given a number of plausibly secure hash constructions (e.g.,
SHA-512 and Whirlpool), one might be able to hedge one’s bet and build a new
function that is at least as secure as the strongest of them. The combination
should be space efficient in that the final output should be smaller than the
concatenation of all hashes.

We showed that no such efficient black-box combination is possible assuming
each hash function is evaluated once. We leave for future work the question of



generalizing our proof to the case where the same hash can be evaluated more
than once — or building a working construction that exploits this condition.
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