
Path Swapping Method to Improve DPA resistance of

Quasi Delay Insensitive Asynchronous circuits

Fraidy Bouesse, Gilles Sicard, Marc Renaudin

TIMA Laboratory, 46 avenue Félix Viallet F38031 Grenoble, France

Fraidy.Bouesse@imag.fr

Abstract. This paper presents a Path Swapping (PS) method which enables to

enhance the security of Quasi Delay Insensitive Asynchronous Circuits against

Power Analysis (PA) attack. This approach exploits the logical symmetries of

the QDI asynchronous blocks, particularly its data-path redundancies, to make

all electrical curves used when implementing a PA attacks useless. Indeed, the

idea is to average the electrical signatures of a block by randomly exchanging

its data-paths during processing. To be able to implement this approach, we

adopted a formal model of QDI circuits. Firstly, this formal model enables the

designer to formally verify the symmetry of all paths in order to apply a path

swapping method. Secondly, it offers the possibility to model the electrical

signature of QDI asynchronous circuits. Finally, applying DPA on this formal

model allows us to evaluate, in an early phase of the design, the circuit’s

sensitivity to the relevancy of the approach. Electrical simulations performed on

a DES crypto-processor confirm the efficiency of the technique.

Keywords: QDI Asynchronous circuits, Power analysis, Path Swapping (PS).

1 Introduction

One of the most difficult task when designing secure systems is to protect devices

from so-called side-channel attacks such as power analysis attacks (DPA, SPA),

electromagnetic attacks, timing attacks and differential fault analysis. Since the

discovery of these attacks, self-timed circuits have demonstrated their inherent

capabilities to increase the security of chips. In fact, the Differential Power Analysis

attack, firstly introduced by Paul Kocher [1], uses the correlation between the data

processed by the circuitry and an observable power consumption to reveal the

confidential information. Secret keys are retraced from the device by observing and

monitoring the electrical activity of a device and performing advanced statistical

computations.

Additionally to its absence of clock signal which demonstrates the practical way to

eliminate a global synchronization signal, self-timed logic is well-known for its

ability to decrease the consumption and smooth the current profile. Simon Moore et

al. described in [2] techniques for improving chip security against side channel

attacks. Their approach to improve chip DPA resistance is focused on the use of an

alternative data encoding scheme such as one-hot data encoding (1-of-N codes). In the

same design context, the Balsa synthesis system was modified to generate circuits

with enhanced security against side-channel attacks [3]. The countermeasures that

used Self-timed circuit properties are all focused on balancing the operation through

special DI Coding scheme. Moreover, Paul Kocher also developed some

countermeasures based on the same properties [4], and a new design concept has been

presented in [5] by Danil Sokolov et al. who used standard dual-rail logic with a two

spacer protocol working in a synchronous environment. The results obtained by

exploiting Self-timed logic have been reported in several papers. J. Fournier et al.

evaluated and demonstrated in [6] that Speed Independent asynchronous circuits

increase resistance against side channel attack and the concrete results of the

effectiveness of the QDI asynchronous logic against DPA has been reported in [7].

However, all these papers concluded in terms of DPA that there still exists some

residual sources of leakage which can be used to succeed an attack. These residual

sources of leakage that are still observable when implementing a DPA attack on

balanced QDI asynchronous circuits are addressed by G.F. Bouesse et al. in paper [8].

They show that, the residual sources of leakage of a balanced QDI circuits come from

the back end steps which introduce some electrical dissymmetries, especially through

the routing capacitances. The solutions implemented in paper [8] and also mentioned

in paper [2] in order to remove electrical dissymmetries, consist in constraining the

placement and routing. They defined a place and route methodology which enables the

designer to control the net capacitances. Contrary to the previous proposed

countermeasures mentioned above, the approach described in this paper does not try

to get rid of these residual sources of leakage, but instead makes it not exploitable by

the DPA attack.

The PS (path swapping) method takes advantage of the structural symmetries that

exist in QDI asynchronous circuits or those proposed in [2][3]. In fact, in such circuits

many identical structures called paths exist that can be alternatively used to compute a

given function. Therefore, the idea is to randomly choose one of the possible paths to

compute the function which hence averages the electrical signature over all the paths.

The issue lies in succeeding to do so with minimum overhead.

The paper is organized as follows. Section 2 recalls the asynchronous properties

that are used to increase DPA resistance, especially the N-rail Quasi Delay Insensitive

asynchronous logic together with the four-phase protocol. Section 3 introduces the

path swapping technique and section 4 presents the formal approach chosen to

implement this technique. The specification of the formal model adopted to represent

the circuits is first described, and then formal DPA resistance criteria at logical and

electrical levels are defined using this circuit model. It enables us to formally justify

the path swapping technique. The approach is validated with the case study described

in section 5 and results obtained using electrical simulations are reported in section 6.

Section 7 concludes the paper.

2 Previous Works: QDI circuits and security

QDI asynchronous circuits represent a class of circuits controlled by the data

themselves. In fact, an asynchronous circuit is composed of individual modules

communicating to each other by means of point-to-point communication channels.

Therefore, a given module becomes active when it senses the presence of incoming

data. It then computes them and sends the result to the output channels.

Communications through channels are governed by a handshaking protocol which

requires a bi-directional signalling between senders and receivers (request and

acknowledge). Among the main classes of handshaking protocols [9] we only

consider and describe the four-phase protocol (fig.1) which has an interest in security.

D ata

Ack

C om . "n" C om . "n+1"

Inv alid D ataValid D ata

Phas e 1 Phas e 4Phase 3Phase 2

Valid D ataD ata

Ack

C om . "n" C om . "n+1"

Phas e 1 Phase 3Phase 2

Valid D ataD ata

Ack

C om . "n" C om . "n+1"

Inv alid D ataValid D ata

Phas e 1 Phas e 4Phase 3Phase 2

Valid D ataD ata

Ack

C om . "n" C om . "n+1"

Phas e 1 Phase 3Phase 2

Valid D ata

Fig. 1. Four-phase handshaking protocol.

The four-phase protocol protocol requires a return to zero phase for both

data/requests and acknowledgements. Contrary to synchronous circuits where the

shape of the current (current peaks) depends on the previous states and data values,

QDI asynchronous logic using a four-phase protocol re-initializes all previously

activated nodes before processing a new data. This behaviour enables the designer to

precisely control the transitions involved in a given computation. Moreover, because

it is based on hazard free logic QDI asynchronous circuits eliminate all current

variations caused by glitches.

The implementation of a four-phase handshaking protocol requires sensing the

presence of data in phase 1 and their absence in phase 3. In order to do so, dedicated

logic and special encoding are necessary for sensing data validity/invalidity and for

generating the acknowledgement signal. Considering that one bit has to be transferred

through a channel using the four phase protocol, one has to encode three different

values: invalid, valid at ‘1’, valid at ‘0’. Two wires (A0, A1) are then required to

encode the three states. This technique is called dual-rail encoding. The

acknowledgement signal is generated by taking advantage of the data-encoding. As

depicted in figure 2, a Nor gate is usually used to sense the dual-rail encoding output

for generating the completion signal.

Dual-rail encoding is easily extended to N-rails. It is called 1-of-N encoding. This

encoding data scheme is useful to reduce the number of electrical transitions involved

in a given computation. For the sake of DPA resistance, 1-of-N encoding ensures that

the same number of transitions is required to encode the values 0 to N-1 and

guarantees a constant Hamming weight.

As an example, consider the xor function. Figure 2 shows a dual-rail xor gate

implementation. All computations of this dual-rail xor gate involve a fixed and

constant number of transitions regardless of the input data. Hence, the opportunity to

have data independent power consumption i.e. not correlated to the processed data

seems achievable and this is exactly the goal pursued.

However, the QDI implementation of a function is not always balanced. In such

cases, the gate structure is modified to ensure that all data-paths and control paths can

be balanced and do involve a constant number of transitions [2].

Ci_ack

Ci1

Ci0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Ai0

Bi1

OR

OR

ac
k

_
A

 ;
 a

ck
_

B

Cr

Cr

OR

Net_00

Net_01

Net_02

Net_03

Net_04

Net_05

Net_06 Net_07

Combinational part I Half-bufferpart II

Ci0

OR22

OR21 Cr31

Cr32

NOR41

C13

C12

C11

C14

Ci_ack

Ci1

Ci0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Ai0

Bi1

OR

OR

ac
k

_
A

 ;
 a

ck
_

B

Cr

Cr

OR

Net_00

Net_01

Net_02

Net_03

Net_04

Net_05

Net_06 Net_07

Combinational part I Half-bufferpart II

Ci0

OR22

OR21 Cr31

Cr32

NOR41

C13

C12

C11

C14

Fig. 2. Dual-rail gate with four-phase

protocol. (Cr = Muller gate with a reset)

C211

C212

C313

C414

E1

OR221

OR222

CR231

CR232

NOR241

E2

E3

E4

E5

E6

E7

E8

Ai0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Bi1

Ci1

Ci0

Ci_ack

Ack

Level1 Level 2 Level 3 Level4

Ci_ack

V2

V3

V4

E1

V5

V6

V7

V8

V9

E2

E3

E4

E5

E6

E7

E8

Ai0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Bi1

Ci1

Ci0

Ci_ack

Ack

Level1 Level 2 Level 3 Level4

Ci_ack
V1

C211

C212

C313

C414

E1

OR221

OR222

CR231

CR232

NOR241

E2

E3

E4

E5

E6

E7

E8

Ai0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Bi1

Ci1

Ci0

Ci_ack

Ack

Level1 Level 2 Level 3 Level4

Ci_ack

V2

V3

V4

E1

V5

V6

V7

V8

V9

E2

E3

E4

E5

E6

E7

E8

Ai0

Ai0

Bi0

Ai1

Bi1

Ai1

Bi0

Bi1

Ci1

Ci0

Ci_ack

Ack

Level1 Level 2 Level 3 Level4

Ci_ack
V1

Fig. 3. Annotated directed graph GXor=(V,E) of

the Dual-rail Xor gate of fig.2.

To summarize, the use of QDI logic together with a four-phase protocol and 1-of-N

data encoding enables:

o to control the current by removing all spurious transitions (hazard free logic).

o to equalize the number of transitions using a constant hamming weight

representation of data.

o to control the type of all transitions.

o to reduce the dependence between data and power consumption using symmetrical

structures of data and control paths.

As described in [2][4] all these properties are suited to implement secure chips

against DPA. The design methodology developed in this paper is based on these

properties of QDI asynchronous logic, particularly the data path symmetries. They are

exploited to randomly average electrical signatures so that the electrical

dissymmetries described in [8] and amplified after the back end steps become useless.

We now analyse this point by introducing the path swapping method.

III Contribution: Path Swapping method

The goal of this new design approach is to eliminate the electrical effects which

enable to succeed the DPA attack on QDI circuits. To do so, we do exploit the circuit

structure which exhibits a lot of symmetries. Indeed, in the blocks of such circuits

there exist many identical physical paths from their primary inputs to their primary

outputs. The idea is to randomly choose one of the possible paths to compute the

function. More formally, let’s define nc as the number of output channels using 1-of-N

data encoding. Each output channel i has N rails. We can represent the logical

equation of each rail by fij(Ax) and its dynamic current profile by Pij(t/Ax) when the

input value Ax is computed. The value Ax is one element of Ei, the set of all possible

input values which activate the channel i. The indexes i and j identify the channel

number and the rail number respectively. For each rail there is a data-path from the

primary output rail considered to the primary inputs (N data-paths).

If all data-paths are logically symmetric, it means that:

)/(...)/(

)(...)(

1

1

xiNxi

xiNxiix

AtPAtPand

AfAfEA

≠≠

==⇒∈∀
(1)

This equation (1) shows that for any input value Ax of a QDI asynchronous block

we can acquire N different electrical signatures, corresponding to the same computed

logical function. The principle of this new design method is to randomly choose

among the possible fij functions and therefore their corresponding electrical signatures

in order to make the DPA attack inefficient. To illustrate this, let’s now consider the

simple xor function and the implementation depicted in figure 2. First, note that this

circuit is balanced in the sense that the computation of the xor function always

involves the same switching sequence of gates.
Nor gate C gateOr gate C gate r →→→

Besides, the structure is symmetric in the sense that there exist two identical

logical paths between the outputs and the primary inputs.

3121

12

11

C gate

C

:path datafirst -

CrgateOrgate
gate

→→




3222

14

13

C gate

C

:path data second -

CrgateOrgate
gate

→→




Moreover, each path can be split into two execution-paths which represent an

exclusive path that can be used to process a rail.

312112

312111

Cr gate Or gate C gate -

Cr gate Or gate C gate -

railoutput first theof paths-execution *

→→

→→

322214

322213

Cr gate Or gate C gate -

Cr gate Or gate C gate -

railoutput second theof paths-execution *

→→

→→

Therefore, as shown in figure 4, different sets of inputs and outputs can be applied

in such a structure. For the sake of DPA resistance, it is worthwhile to observe that for

constant values at the inputs four different electrical signatures can be obtained using

inputs and outputs permutations. We call this method path swapping because

interchanging the inputs and/or outputs leads to swap the execution from logical paths

to other logical paths inside the circuit.The realization of this technique requires the

use of multiplexers/demultiplexers and a random number generator (RNG).

Multiplexers/Demultiplexers are used to permute inputs/outputs and are controlled by

the random number generator. The use of a random number generator guarantees an

equiprobable and unpredictable distribution function of inputs/outputs. Considering

the example illustrated in figure 5, if M data have to be computed, the random number

generator must ensure to randomly activate each execution-path M/4 times. The

specifications of the random number generator and of the Multiplexers/

Demultiplexers blocks are addressed in section 4.6. The path swapping method can

only be efficiently implemented with design logic which offers an opportunity to

implement symmetrical and balanced circuits as it is the case with QDI asynchronous

circuits. This type of logic enables to implement the PS method with a minimum area

overhead and by slightly changing the performance of the circuit.

To apply this technique to QDI asynchronous circuits, we have specified a formal

design approach which enables us to formally verify the symmetry of the circuit and

formally verify at each design level the relevancy of the path swapping approach.

This design approach is based on a formal representation of QDI circuits.

Ci_ack

OR

OR

ack_A ; ack_B

Cr

Cr

OR

Combinational Half-buffer

OR22

OR21 Cr31

Cr32

NOR41

C13

C12

C11

C14

Ai0

Case 1

Bi0

Ai1

Bi1

Ai0

Case 2

Bi1

Ai0

Bi0

Ai1

Case 3

Bi0

Ai0

Bi1

Ai1

Case 4

Bi1

Ai1

Bi0

Ai0

Case 5

Ai0

Bi1

Ai1

Bi0

Case 6

Ai1

Bi0

Ai0

Bi1

Case 7

Ai0

Bi0

Ai1

Bi1

Case 8

Ai1

Bi1

Ai0

Bi0

Bi0

Bi1

Ai1

Bi1

Ai1

Bi0

Ai0

Bi0

Ai1

Bi1

Ai0

Bi1

Bi0

Ai1

Ai0

Bi0

Ai1

Bi1

Ai1

Bi1

Ai0

Bi0

Ai0

Bi1

Ai1

Bi0

Ai1

Bi0

Ai0

Bi1

Ai0
Bi1

Ai1

Bi0

Ai0
M

u
x
4
_
1

Bi1

Ai1

Bi0

Ai0

M
u
x
4
_1

Ci1

Ci0

Ci1

Ci0

This example illustrates all possible

permutations of the inputs and outputs

that can be applied on a dual-rail xor

gate. The first case corresponds to a

standard implementation and can be

used as a reference one. In the

second case, only the rails of the input

channel Bi(Bi0,Bi1) are swapped which

also requires a permutation of the

output rails. In the third case, the rails

of input channel Ai(Ai0,Ai1) are

swapped and this requires a

permutation of the output rails. Both

input channel rails Bi(Bi0,Bi1) and

Ai(Ai0,Ai1) are swapped in the fourth

case without any permutation of the

output rails. In the other cases the rails

of the input channel Bi(Bi0,Bi1) are

permuted with rails of the input

channel Ai(Ai0,Ai1).

Ci_ack

OR

OR

ack_A ; ack_B

Cr

Cr

OR

Combinational Half-buffer

OR22

OR21 Cr31

Cr32

NOR41

C13

C12

C11

C14

Ai0

Case 1

Bi0

Ai1

Bi1

Ai0

Case 2

Bi1

Ai0

Bi0

Ai1

Case 3

Bi0

Ai0

Bi1

Ai1

Case 4

Bi1

Ai1

Bi0

Ai0

Case 5

Ai0

Bi1

Ai1

Bi0

Case 6

Ai1

Bi0

Ai0

Bi1

Case 7

Ai0

Bi0

Ai1

Bi1

Case 8

Ai1

Bi1

Ai0

Bi0

Bi0

Bi1

Ai1

Bi1

Ai1

Bi0

Ai0

Bi0

Ai1

Bi1

Ai0

Bi1

Bi0

Ai1

Ai0

Bi0

Ai1

Bi1

Ai1

Bi1

Ai0

Bi0

Ai0

Bi1

Ai1

Bi0

Ai1

Bi0

Ai0

Bi1

Ai0
Bi1

Ai1

Bi0

Ai0
M

u
x
4
_
1

Bi1

Ai1

Bi0

Ai0
M

u
x
4
_
1

Bi1

Ai1

Bi0

Ai0

M
u
x
4
_1

Bi1

Ai1

Bi0

Ai0

M
u
x
4
_1

Ci1

Ci0

Ci1

Ci0

Ci1

Ci0

Ci1

Ci0

This example illustrates all possible

permutations of the inputs and outputs

that can be applied on a dual-rail xor

gate. The first case corresponds to a

standard implementation and can be

used as a reference one. In the

second case, only the rails of the input

channel Bi(Bi0,Bi1) are swapped which

also requires a permutation of the

output rails. In the third case, the rails

of input channel Ai(Ai0,Ai1) are

swapped and this requires a

permutation of the output rails. Both

input channel rails Bi(Bi0,Bi1) and

Ai(Ai0,Ai1) are swapped in the fourth

case without any permutation of the

output rails. In the other cases the rails

of the input channel Bi(Bi0,Bi1) are

permuted with rails of the input

channel Ai(Ai0,Ai1).

Fig. 4. Path Swapping method applied to the Dual-rail Xor gate

4 Formal model of QDI asynchronous circuits

The formal model we have adopted to automate and verify at each design phase all

QDI properties described above is based on the digraph (directed graph) theory.

4.1 Digraph of QDI asynchronous circuits

A digraph is a graph in which the edges are directed from the initial vertex (a) to the

terminal vertex (b). If G=(V,E) is a digraph, then V and E are respectively the set of

vertices and the set of edges of the digraph G. For the purpose of representing the

QDI asynchronous circuits as a digraph, we define the two following rules:

* All gates of the circuit are considered as the elements of the set V (vertices).

* All interconnections are considered as the elements of the set E (directed edges).

For example let’s consider the block of figure 2. Its representation in the form of a

digraph GXor=(V,E) is presented in figure 3. Each vertex (Vi) and directed edge Ei are

respectively annotated by the name of the corresponding gate and interconnection. All

dotted lines represent primary inputs and outputs of the block.







































====

000000000V

100000000V

100000000V

010000000V

001000000V

000101000V

000100100V

000010010V

000010001V

VVVVVVVVV

M

9

8

7

6

5

4

3

2

1

987654321

BG

a- Boolean Matrix







































====

000000000V

2NOR00000000V

2NOR00000000V

0CR20000000V

00CR2000000V

0002OR02C000V

0002OR002C00V

00002OR002C0V

00002OR0002CV

VVVVVVVVV

M

9

418

417

326

315

22144

22133

21122

21111

987654321

AG

b- Matrix annotated with labels

Fig.5. Matrix of the digraph GXor=(V,E)

There are several different ways to represent a graph. The two common ways are

as an adjacency list or as an adjacency matrix. The adjacency list is appropriate for

software implementations. However, for the sake of clarity, we use in this paper an

adjacency matrix representation.

4.1.1 Adjacency Matrix
The adjacency matrix of a digraph G is the n-by-n matrix (MG(n,n)) where n is the

total number of vertices of the graph G. If there is an edge from vertex (a) to vertex

(b), then the element ((a),(b)) of the matrix is 1, otherwise it is 0. It is called the

boolean matrix of G (MBG(n,n)) (figure 5-a). In order to represent in the Boolean

matrix the input vertices which are defined as the terminal vertices of all input edges

(inputs dotted lines in fig. 3), we define the following property:

* For any element (a) of the set V, if ((a),(a))=1, then the vertex (a) is considered

as an input vertex.

From this boolean matrix of the digraph G, we can associate an annotated matrix

(MAG(n,n)) of the annotated digraph G, where the directed edge between vertex (a)

and vertex (b) are represented by the name of the terminal vertex as illustrated in

figure 5-b. The number of elements in each row “i” gives the number of elements

connected to a vertex (Vi) and the number of elements in each column “j” gives the

number of inputs of the vertex (Vj), except for the output vertices. In fact, output

vertices which generate the output signals are differently labelled in the matrix (in

bold) in order to facilitate their identification. This makes easier finding the sub

digraphs which compute each output rail of the block, and then to evaluate their data-

path symmetries.

4.2 Logical symmetry of data-paths

The data-path symmetries are analyzed by extracting in the digraph all subdigraphs

that generate each output rail. This extraction is done by the exploration of the matrix

of the block. The exploration starts by the identification of all output vertices, then

collecting for each identified vertex, all its ascendant vertices. Each vertex output is

then considered as an anti-root of the tree towards which directed edges are oriented.

Let’s consider the matrix of the digraph of figure 5-b. The matrix of the subdigraph

GCi0=(VCi0,ECi0) of rail Ci0 and the matrix of the subdigraph GCi1=(VCi1,ECi1) of rail

Co1 are presented in figure 6.



























====

0000V

CR2000V

02OR2C0V

02OR02CV

VVVV

M

8

326

22144

22133

8643

1AGCO

a- rail Ci1



























====

0000V

CR2000V

02OR2C0V

02OR02CV

VVVV

M

7

315

21122

21111

7521

0AGCO

b- rail Ci0

Fig. 6. Matrix of the subdigraph of the digraph G.

To be able to define the symmetry of the data-paths between N-rail of the encoding

bit, let us introduce the notion of execution-path.

* The execution-path is defined as any exclusive path that can be used to process

one output rail.

One property of the QDI asynchronous logic is to offer the opportunity to use

convergence gates. At each cycle, these gates guarantee the exclusivity of one of its

inputs, i.e only one input of the convergence gate is activated. This property enables

us to deduce the execution-paths by the exploration of the matrix. The OR gate of

both subdigraphs is used as a convergence gate. It means that for each output rail

there are two execution-paths described by the subdigraphs and their equivalent

matrices in figure 7.

EGC(1)=(GE1,EE1) with GE1={V1,V5,V7} and EE1={E1, E5}

EGC(2)=(GE2,EE2) with GE2={V2,V5,V7} and EE2={E2, E5}

EGC(3)=(GE3,EE3) with GE3={V3,V6,V8} and EE3={E3, E6}

EGC(4)=(GE4,EE4) with GE3={V4,V6,V8} and EE3={E4, E6} 000

200

022
)(

l

k

j

lkj

iEGC

V

CRV

ORCV

VVV

M =

Fig. 7. Subdigraphs EGC(i) and their equivalent matrices MEGC(i).

 (VJ,Vk,Vl) Є [(V1,V5,V7);(V2,V5,V7);(V3,V6,V8);(V4,V6,V8)]

One way to formally analyze the data-path symmetry is to analyze the symmetry

of each execution-path, by processing the digraph isomorphism.

4.2.1 Isomorphism of a digraph
Two digraphs G1 and G2 are isomorphic if there is a one-to-one correspondence

between their vertices and directed edges. If there is a directed edge between two

vertices of G1, then there is a directed edge between the two corresponding vertices in

the digraph G2. More formally,

* For any directed edge ((a),(b)) of G1, G2 is isomorphic to G1 if and only if

F((a),(b)) is a directed edge of G2 (F is an isomorphic function).

In terms of matrices, if A1 and A2 are respectively the matrices of G1 and G2, the

digraph G1 is isomorphic to the digraph G2 if there is a classification of the vertices of

G2 such as the boolean matrix of A1 and A2 are equal.

* If A1=A2 then G1 and G2 are isomorphic

Thus, the analysis of the data-paths symmetries is equivalent to determinate the

isomorphism of block subdigraphs (each subdigraph represents one execution-path of

the block).

* Data-paths are symmetrical at logical level if and only if their digraphs are

isomorphic

Therefore, blocks are balanced if their data-paths are symmetric. If not, the module

is said unbalanced. From the previous example, as the matrices EGCo(1), EGCo(2),

EGCo(3) and EGCo(4) are equal, then their digraphs are isomorphic, so that the digraph

GXOR(V,E) is a balanced structure. However, the QDI implementation of a function is

not always balanced, in such a case, the digraph is analyzed and modified to ensure

that all data and control paths are balanced [2][10]. The directed graph representation

adopted in this design flow is well suited to formally analyze the design symmetries.

It offers the opportunity to formally analyze the data-paths symmetries of the design

and then balance the asymmetric data-paths if necessary. After that, we apply the path

swapping method and formally verify that the structure of the circuit is still well

balanced at the logical level.

Let’s then apply the DPA attack on this type of circuit in order to evaluate the

chip’s DPA sensitivity. This starts by defining the electrical model of balanced QDI

asynchronous logic.

4.3 Electrical Model of balanced QDI asynchronous logic

The electrical model of balanced QDI asynchronous circuit used in this paper is based

on the model developed in [8]. It proposes a current model of QDI block

implementing a fix number of logical transitions regardless of the input data. As it

represents about 85% of the CMOS gate power dissipation, the paper only considers

the Dynamic power dissipation (Pd) which is defined as the power required to charge

and discharge the capacitive load of the gates. Hence, the block dynamic current

profile is expressed by:

)()()(
11

tPtItP dni

N

j

ij

Nc

i

dc

ij

+











= ∑∑

==

 with
dt

dV
CtI =)((2)

Iij(ti) represents the dynamic current dissipated by the jth gate of level i and Pdn is

a dynamic noise function. Nc is the number of gates along the critical data-path. It

represents the maximum number of gates in series in the execution path of the block

and also corresponds to a number of logical level used to divide a block in Nc logical

levels as illustrated in the digraph representation (figure 6). Nij is the number of gates

switching at each logical level (Nc). The values Nc and Nij are determined by a simple

analysis of the block digraph representation. C is the total charge of the output gate

node, defined by: C=Cl+Cpar+Csc in which Cl, represents the load capacitance (gate

and routing capacitance), Cpar is the parasitic capacitance, and Csc is the Short-circuit

equivalent capacitance. Let’s again consider the block of figure 4. We deduce through

the digraph exploration the values of Nc and Nij : Nc=4 ; N11=N21=N31=N41=1.

Therefore, the block dynamic current at each phase (evaluation phase and return to

zero phases) is given by:

())()()()()()(4413j32j21j1 tPtItItItItP dnxordc ++++= (3)

Equation (3) represents, in a first approximation, the profile of the dynamic current

of the Dual-rail Xor gate.

This formal current modelling can be extended to all balanced QDI asynchronous

block. Its application enables to evaluate with high accuracy the effectiveness of our

new secure design approach on balanced QDI asynchronous circuits.

4.4 Applying DPA on the formal model

We have adopted the formalization proposed by Thomas S. Messerges et al. in [11]

to apply DPA on this formal model. Before that, let’s first review the basis of the

attack. DPA attack is performed by computing M random values of plain-text-input

(PTIi). For each of the M plain-text-input, a discrete time power signal Sij and cipher-

text-output are collected. The index i of power signal Sij corresponds to the PTIi that

produced the signal and the j index corresponds to the time of the sample. According

to a DPA algorithm, the Sij are split into two sets by a separating function D.

{ }00 == DSS ij
 { }1DSS ij1 == (4)

The average power signal of each set is given by:

∑
=

=
0

10

0

1
][

n

i

ijS
m

jA ∑
=

=
1

11

1

1
][

n

i

ijS
m

jA (5)

Where |mo| and |m1| represent the number of power signals Sij respectively in set S0

and S1. The DPA bias signal is obtained by:

][][][10 jAjAjT −= (6)

If the DPA bias signal shows important peaks, it means that there is a strong

correlation between the D function and the power signal. Selecting an appropriate D

function is then essential in order to guess a good secret key.

Let us apply this DPA attack to a balanced QDI asynchronous design without

activating the path swapping technique. Choosing an XOR for the D function implies

to analyse the electrical signature of an Xor gate [8]. Then, the average current signal

of both sets of equation (5) is written as follows:

())()()()()()(
2

1
][4413312211121110 tItItItItItItA nxor +++++=

())()()()()()(
2

1
][4413322221141131 tItItItItItItA nxor +++++=

(7)

Where In(t) is a noise signal. The electrical signature is given by:









++++

−







++++==

41

41

41

32

32

32

22

22

22

14

14

14

13

13

13

41

41

41

31

31

31

21

21

21

12

12

12

11

11

11

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C

dt

dVout
C]t[T]t[S

as
ijij

ij

t

V

dt

dVout

∆

∆
≅ this expression becomes

(8)










∆
−

∆
∆+









∆
−

∆
∆+









∆
−

∆
−

∆
+

∆
∆=

32

32

31

31

22

22

21

21

14

14

13

13

12

12

11

11

t

C

t

C
.V

t

C

t

C
.V

t

C

t

C

t

C

t

C
.V]t[S

(9)

∆t represents the physical time taken by the gate to charge/discharge its output

node. This time also depends on the value of C. Recalling that C=Cl+Cpar+Csc.

Contrary to synchronous design where the DPA attack reveals path dissymmetry of

the attacked bit (Ci), DPA on the balanced QDI asynchronous design reveals path

dissymmetry of all rails that are used to encode the attacked bit. The DPA on dual-rail

xor gate requires comparing the electrical behaviour of paths which compute rail Ci0

and rail Ci1. As it is shown in equation 9, the main dissymmetries of such a balanced

QDI structure are located on load capacitances which involve gates delay variations

between their different paths. Let’s now apply the same DPA attack on a dual-rail Xor

gate implementing the path swapping. As all data-paths are used to compute outputs,

the average current signal of each set of equation (5) contains all gates’ currents of the

structure. Then, its expression is given by:

))()()()()()()()()()((
4

1
][][44133222211411333122111211110 tItItItItItItItItItItAtA nxorxor +++++++++==

(10)

This nullifies the electrical signature of the dual-rail Xor gate.

0][≈=tS (11)

Equations (10) and (11) clearly demonstrate that the differential power analysis on

such a symmetric data-paths is completely unusable when using the path swapping

method.

4.5 The swapping function

As illustrated above, implementing a DPA attack on bit encoded with 1-of-N encoded

data, means analysing the electrical difference between its N data-path rails. This fact

enables us to reduce the number of possible permutations which are useful to

implement the path swapping method. Indeed, let’s consider the attacked bit Ci of a

selection function D encoded with 1-of-N. Ei represents the set of input values which

activate the rail i of Ci and mi represents the number of these input values (elements)

in each set Ei. There are two possible approaches to implement the swapping function:

a nondeterministic approach and a deterministic approach.

• The nondeterministic approach: in this approach the number of possible input

permutations for each input element is computed by the following expression:

∑
=

=
N

i

iPE mP
1

 PPE: number of possible permutation of one

input element
(12)

This number highlights two points: first, the elements of the same set Ei can be

permuted between them and second, this approach requires for each input element Ai

of Ei (Ai ∈ Ei), the use of PPE PPE-to-1 multiplexers (PPE inputs and 1 output).

Hence, the number and the type of multiplexers required for the bit Ci is given by:

rsMultiplexetoPPN PEPECi
)1(

2
−−= (13)

This number can be reduced if the permutations inside each set Ei are proscribed:

∑ ∑
= ≠= 





















→+=

N

i

N

ijj

jiC rsMultiplexemmN
i

1 ;1

1)1(

(14)

If all mi are equal (each set Ei has the same number of elements), then:

rsMultiplexemPPN iPEPECi
1)1(→+−= (15)

For example, if N=2 and sets E0 and E1 have respectively m0=2 and m1=2 as

shown in figure 4, we obtain 4 4-to-1 multiplexers which can be reduced to 4 3-to-1

multiplexers.

• The deterministic approach: the goal of this approach is to constrain the

permutation function in order to optimize the use of multiplexers and to guarantee the

security. The idea here is to permute one element of set Ei with one element of each of

the other sets. Therefore, each element can be permuted N times (as we have N sets)

and it requires for the bit Ci, PPE N-to-1 multiplexers:

rsMultiplexetoNPN PECi
1−−= (16)

Considering the previous example, we obtain 4 2-to-1 multiplexers.

Even if the swapping function is known, it does not affect the efficiency of the

approach because it is randomly executed. In fact, the choice of data-path used to

process the data remains random. This point enables us to considerably optimize the

use of multiplexers. In addition to this, some optimizations can be applied according

to the regularity and the symmetry of the architecture. It is not necessary to implement

multiplexers with each block of the architecture (see the case study on paragraph 5).

These analyses are also available when using some demultiplexers and can be

extended on all data-paths.

4.6 Discussion

Nevertheless, the security brought by this new design approach is fully efficient if and

only if these two conditions are fulfilled:

* Randomizing the path swapping: the objective is to ensure unpredictable

apportionment of path swapping inside a block. The attack is still possible if the

hacker knows the random function generator. Indeed, the analysis can be focused on

set of data that are processed by the same random value. For example, if the random

function is always switching between two cases (case 1 and 2 as described in figure

4). Performing the attack on the first case is equivalent to attack a balanced QDI

asynchronous circuit (without path swapping). The situation is the same if one output

rail of the bit attacked is always computed in the same data-path. Then, the random

generator must be an unpredictable and equiprobable function. The implementation of

such a random function is out of the scope of this paper.

* Implementing multiplexers and demultiplexers in the architecture. One way to break

the random function generator is to apply DPA attack on these blocks. For example, if

the multiplexer of channel Ai (encoding with two rails: Ai0 and Ai1) presents a

significant signature when its rails are swapped, the random function which controls

this multiplexer can be predicted. A particular care must be done when implementing

these functions [12].

5 Case Study: DES crypto-processor

A chosen example to validate this design approach is a DES algorithm. The

asynchronous DES crypto-processor is implemented using a four-phase protocol, 1-

of-N encoded data and balanced data-paths. The architecture used is an iterative

structure, based on three self-timed loops synchronized through communicating

channels: one loop for the ciphering data-path, the second loop for the key data-path

and the third one for the control data-path (a finite state machine) which controls the

data-paths along its sixteen iterations (figure 10).

The implementation of multiplexers/Demultiplexers in each block of the

architecture could significantly increase the chip’s area. This can be done efficiently

by taking advantage of the implemented algorithm. As the DES algorithm uses only

four simple types of functions (permutation, Xor, Substitution, Expansion and

reduction functions), we only need to implement Multiplexers/Demultiplexers on

registers and on the Substitution box (blocks in bold on figure 8). The Substitution

function (SBOX) is selected because it is a surjective function (irreversible function).

Indeed, because it is a one way function, it is difficult to trace the information

when its inputs/outputs are permuted. Each Substitution Box (SBOX) of the DES

algorithm receives 6 bits (64 possible values) in their inputs and generates 4 bits on

their outputs (16 possible values), so that, one output value can be selected by 4

different input values [13]. With the dual-rail encoding of the data for each SBOX, we

have 8 sets (output rails) of 32 input elements. Applying a nondeterministic

permutation, leads to implement 64 64-to-1 multiplexers which is not efficient in

terms of area. We used a deterministic implementation exploiting the maximum

redundancy of the Substitution function. Let’s consider the first substitution box of

the DES algorithm. To be able to efficiently swap data-path rails of the SBOX1, we

gathered in the same set all input values which generate an output value and its

opposite value. For example all input values which generate the output value ‘0’ and

its inverse output ‘F’ are gathered in the same set E0 as illustrated in table 1.

This representation enables us to observe that, it is only possible to permute in each

set, the input values which have the same row number. Therefore it requires 32 2-to-1

multiplexers which increases the SBOX1 area by 30%.

IP

Registers RRegisters L

Xor48

Expansion

Xor32

IP-1

PC1

Mux_K

DMux_K

PC2

Control

DATA KEY

Output

Key data path

Sbox

Registers

Ciphering data path

IP

Registers RRegisters L

Xor48

Expansion

Xor32

IP-1

PC1

Mux_K

DMux_K

PC2

Control

DATA KEY

Output

Key data path

Sbox

Registers

Ciphering data path

IP

Registers RRegisters L

Xor48

Expansion

Xor32

IP-1

PC1

Mux_K

DMux_K

PC2

Control

DATA KEY

Output

Key data path

Sbox

Registers

Ciphering data path

IP

Registers RRegisters L

Xor48

Expansion

Xor32

IP-1

PC1

Mux_K

DMux_K

PC2

Control

DATA KEY

Output

Key data path

Sbox

Registers

Ciphering data path

Fig. 8. DES architecture

Table 1. A new ordering of the SBOX1

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
values

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
Output

values

Cx / Rx

Column number

Row number

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
values

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
Output

values

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
values

12/313/212/113/09

E7
7/311/22/115/07

12/313/28/19/010

E6
14/35/29/110/06

1/39/210/111/012

E4
4/30/23/11/04

9/37/211/16/011

E5
8/314/213/112/05

2/33/215/17/08

E3
10/312/214/18/03

15/34/26/12/013
E2

3/36/25/14/02

11/32/24/10/014
E1

6/31/27/13/01

0/38/21/15/015
E0

13/315/20/114/00

SetsInput values
Output

values

Cx / Rx

Column number

Row number

6 Validations: Electrical Simulations

The technology used for implementing the design is the HCMOS9 (0.13µm) from

STMicroelectronics. All electrical simulations are performed with Nanosim with an

asynchronous DES gate Netlist.

The electrical simulation offers the possibility to analyze without disturbing signals

(noise), the electrical behaviour of the design with more details. Hence, the number of

necessary messages (M) is minimal. In order to easily evaluate the relevancy of this

new countermeasure, the path swapping method is only implemented in the first

Substitution function (SBOX1) and to four bits of Register L (figure 8). These four

bits are combined with the output bits of the first Substitution function (SBOX1) by

an Xor function in block Xor32. To reproduce the effects of back end steps during

simulations, a dissymmetry is introduced between rails which compute the fourth bit

of the SBOX1. In fact, the load capacitance (C) of the first rail (S4(0)) is set to 32

femto-farads. This value includes the gate, the routing, the parasitic and the short-

circuit capacitances. It has been estimated after a pre-place and route step with Silicon

Ensemble. The defined D function for processing the attack is as follows:

 D(C4,P6,K0)= SBOX1(P6⊕K0)

The attack is done on the fourth bit of the SBOX1 with 64 curves (64 plain-text-

inputs). As a reference, the attacks were realized without activating the

countermeasure by switching off the random number generator. The results of the

attack are displayed in figure 9. The DPA bias signal (S) is clearly observable when

the correct key is guessed.

S Correct key

Wrong key

A0A1

A0

A1

S

(a) (b)
Correct key

S Correct key

Wrong key

A0A1

A0

A1

S

(a) (b)
Correct key

Fig 9. Electrical Signature when performing DPA attack on bit 4 of the SBOX1.

Loading charge difference of both rails of this bit is 32 femtoF. Only the first round is

considered. (a) – path swapping is not activated (b) – path swapping is activated

The result of the attack when the countermeasure is activated is illustrated in figure 9-

b. The DPA bias signal is completely removed as predicted by the equation (11).

All results present in this paragraph demonstrated the relevancy of using the path

swapping method on QDI asynchronous circuits which have their data-paths balanced

and symmetric.

7. Conclusion

This paper presented a new design technique for enhancing QDI asynchronous

circuits’ resistance against DPA attack. This design approach which is called Path

Swapping exploits all properties of QDI asynchronous logic which are suited to

design secure chips, particularly the logical data-path symmetries.

The results obtained from electrical simulations of a DES crypto-processor proved

the efficiency of the Path Swapping method in terms of DPA resistance. Current works

are focused on the realization of a prototype in order to perform analysis on silicon.

References

[1] P. Kocher, J. Jaffe, B. Jun, "Differential Power Analysis," Advances in Cryptology - Crypto

99 Proceedings, LNCS Vol. 1666, M. Wiener ed., Springer-Verlag, 1999.

[2] Simon Moore, R. Anderson, P. Cunningham, R. Mullins, G.Taylor, “Improving Smart Card

Security using Self-timed Circuits”, Eighth International Symposium on Asynchronous

Circuits and systems (ASYNC2002). 8-11 April 2002. Manchester, U.K.

[3] L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley, J. D. Garside and S. Temple,

“SPA - A Synthesisable Amulet Core for Smartcard Applications”, Proceedings of the

Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC 2002).

Pages 201-210. Manchester, 8-11/04/2002. Published by the IEEE Computer Society.

[4] J. Joshua, P. Kocher, J. Benjamin, Balanced Cryptographic computational method and

apparatus for leak minimization in smartcards and others Cryptosystems,

EP1088295/WO9967766.

[5] Danil Sokolov, Julian Murphy, Alex Bystrov and Alex Yakovlev,”Improving the Security

of Dual-Rail Circuits”, CHES 2004, LNCS 3156, pp 282-297, 2004.

[6] J. J. A Fournier, Simon Moore, Huiyun Li, Robert Mullins, and Gerorge Taylor,”Security

Evaluation of Asynchronous Circuits”, CHES 2003, LNCS 2779, pp 137-151, 2003.

[7] F. Bouesse, M. Renaudin, B. Robisson, E Beigne, P.Y. Liardet, S. Prevosto, J. Sonzogni,

“DPA on Quasi Delay Insensitive Asynchronous circuits: Concrete Results”, DCIS 2004

Bordeaux, France, November 24-26, 2004.

[8] G.F. Bouesse, M. Renaudin, S. Dumont, F. Germain, « DPA on Quasi Delay Insensitive

Asynchronous Circuits: Formalization and Improvement », DATE 2005, Munich, p.424.

[9] Marc Renaudin, “Asynchronous circuits and systems: a promising design alternative”,

Microelectronic for Telecommunications : managing high complexity and mobility”

(MIGAS 2000), special issue of the Microelectronics-Engineering Journal, Elsevier Science,

Vol. 54, N° 1-2, December 2000, pp. 133-149.

[10] F. Bouesse, M. Renaudin, F. Germain, “Asynchronous AES Crypto-processor Including

Secured and Optimized Blocks”, the Journal of Integrated Circuits and Systems (JICS),

Volume 1, ISSN 1807-1953,March 2004.

[11] T. S. Messerges and E. A. Dabbish, R. H. Sloan, “Investigations of Power Analysis

Attacks on Smartcards”, USENIX Workshop on Smartcard Technology, Chicago, Illinois,

USA, May 10-11, 1999.

[12] P. Maurine, J.B. Rigaud, F. Bouesse, G. Sicard, M. Renaudin, “Static Implementation of

QDI Asynchronous Primitives”, 13th International Workshop on Power and Timing

Modeling, Optimization and Simulations, PATMOS2003.

[13] NIST, Data Encryption Standard (DES), FIPS PUB 46-2.

