
Implementing the Elliptic Curve Method of

Factoring in Reconfigurable Hardware

Kris Gaj1, Soonhak Kwon2, Patrick Baier1, Paul Kohlbrenner1,
Hoang Le1, Mohammed Khaleeluddin1, Ramakrishna Bachimanchi1

1 Dept. of Electrical and Computer Engineering, George Mason University,
Fairfax, Virginia 22030, USA

{kgaj,pkohlbr1,hle7,mkhaleel,rbachima}@gmu.edu, districtline@gmx.net
2 Inst. of Basic Science, Sungkyunkwan University,

Suwon 440-746, Korea
shkwon@skku.edu

Abstract. A novel portable hardware architecture for the Elliptic Curve
Method of factoring, designed and optimized for application in the rela-
tion collection step of the Number Field Sieve, is described and analyzed.
A comparison with an earlier proof-of-concept design by Pelzl, Šimka, et
al. has been performed, and a substantial improvement has been demon-
strated in terms of both the execution time and the area-time product.
The ECM architecture has been ported across three different families of
FPGA devices in order to select the family with the best performance to
cost ratio. A timing comparison with a highly optimized software imple-
mentation, GMP-ECM, has been performed. Our results indicate that
low-cost families of FPGAs, such as Xilinx Spartan 3, offer at least an
order of magnitude improvement over the same generation of micropro-
cessors in terms of the performance to cost ratio.

Keywords: Cipher-breaking, factoring, ECM, FPGA

1 Introduction

The fastest known method for factoring large integers is the Number Field Sieve
(NFS), invented by Pollard in 1991 [1, 2]. It has since been improved substantially
and developed from its initial “special” form (which was only used to factor
numbers close to perfect powers, such as Fermat numbers) to a general purpose
factoring algorithm. Using the Number Field Sieve, an RSA modulus of 663
bits was successfully factored by Bahr, Boehm, Franke and Kleinjung in May
2005 [3]. The cost of implementing the Number Field Sieve and the time it takes
for such an implementation to factor a b-bit RSA modulus provide an upper
bound on the security of b-bit RSA.

In order to factor a big integer N , such as an RSA modulus, NFS requires the
factorization of a large number of moderately sized integers created at run time,
perhaps of size 200 bits. Such numbers can be routinely factored in very little
time. However, because an estimated 1010 such factorizations are necessary for
NFS to succeed in factoring a 1024 bit RSA modulus, it is of crucial importance

to perform these auxiliary factorizations as fast and efficiently as possible. Even
tiny improvements, once multiplied by 1010 factorizations, would make a signif-
icant difference in how big an RSA modulus we can factor. The Elliptic Curve
Method (ECM), which is the main subject of this paper, is a sub-exponential
factoring algorithm, with expected run time of O(exp(c

√
log p log log p)M(N))

where c > 0, p is a factor we aim to find, and M(N) denotes the cost of
multiplication (mod N). ECM is the best method to perform the kind of factor-
izations needed by NFS, for integers in the 200-bit range, with prime factors of
up to about 40 bits [16, 17].

The contribution of this paper is an implementation of the elliptic curve
method in hardware (FPGAs). We describe in detail how to optimize the de-
sign and compare our work both to an existing software implementation (GMP-
ECM)[4, 5] and an earlier hardware implementation [6, 7].

2 Elliptic Curve Method

2.1 ECM Algorithm

Let K be a field with characteristic different from 2, 3. An elliptic curve can
be represented by a homogeneous equation Y 2Z = X3 + AXZ2 + BZ3 with
X,Y, Z ∈ K not all zero, where A,B are in K with 4A3 + 27B2 6= 0, together
with a special point O = (0, 1, 0) called a ”point at infinity”. Points of the curve
E together with the addition operation form an abelian group which is denoted
by E(K), where O is the identity element of the group [8].

The Elliptic Curve Method of factoring was originally proposed by Lenstra [9]
and subsequently extended by Brent [10] and Montgomery [11, 12]. The original
part of the algorithm proposed by Lenstra is typically referred to as Phase 1
(or Stage 1), and the extension by Brent and Montgomery is called Phase 2 (or
Stage 2). The pseudocode of both phases is given below as Algorithm 1.

Algorithm 1 ECM Algorithm

Require: N : composite number to be factored, E: elliptic curve, P0 = (x0, y0, z0) ∈ E(ZN): initial
point, B1: smoothness bound for Phase 1, B2: smoothness bound for Phase 2, B2 > B1.

Ensure: q: factor of N, 1 < q ≤ N , or FAIL.

Phase 1.
1: k ←

∏

p≤B1
pblogp B1c

2: Q0 ← kP0

{Q0 = (xQ0
, yQ0

, zQ0
)}

3: q ← gcd(zQ0
, N)

4: if q > 1 then
5: return q
6: else
7: go to Phase 2
8: end if

Phase 2.
9: d← 1
10: for each prime p = B1 to B2 do
11: (xpQ0

, ypQ0
, zpQ0

)← pQ0.

12: d← d · zpQ0
(mod N)

13: end for
14: q ← gcd(d,N)
15: if q > 1 then
16: return q
17: else
18: return FAIL
19: end if

2.2 Implementation Issues

An efficient algorithm for computing scalar multiplication was proposed by
Montgomery [11] in 1987, and is known as the Montgomery ladder algorithm.

This algorithm is especially efficient when an elliptic curve is expressed in the
Montgomery form, E : by2 = x3 + ax2 + x. This form is obtained by a suitable
change of variables [4] from the standard Weierstrass form. The corresponding
expression in projective coordinates is

E : by2z = x3 + ax2z + xz2, (1)

with b(a2 − 4) 6= 0.

When one uses the Montgomery ladder algorithm with the Montgomery form
of elliptic curve given in (1), all intermediate computations can be carried on
using only x and z coordinates. As a result, we denote the starting point P0
by (x0 : : z0), intermediate points P , Q, by (xP : : zP), (xQ : : zQ), and the
final point kP0 by (xkP0

: : zkP0
). The pseudocode of the Montgomery ladder

algorithm is shown below as Algorithm 2, and its basic step is defined in detail
as Algorithm 3.

Algorithm 2 Montgomery Ladder Algorithm

Require: P0 = (x0 : : z0) on E with x0 6= 0, an s-bit positive integer k = (ks−1ks−2 · · · k1k0)2
with ks−1 = 1

Ensure: kP0 = (xkP0
: : zkP0

)

1: Q← P0, P ← 2P0

2: for i = s− 2 downto 0 do
3: if ki = 1 then
4: Q← P +Q, P ← 2P
5: else
6: Q← 2Q, P ← P +Q
7: end if
8: end for
9: return Q

Algorithm 3 Addition and Doubling using the Montgomery’s Form of Elliptic Curve

Require: P = (xP : : zP), Q = (xQ : : zQ) with xP xQ(xP − xQ) 6= 0, P0 = (x0 : : z0) =

(xP−Q : : zP−Q) = P −Q, a24 =
a+2
4
, where a is a parameter of the curve E in (1)

Ensure: P +Q = (xP+Q : : zP+Q), 2P = (x2P : : z2P)

1: xP+Q ← zP−Q[(xP − zP)(xQ + zQ) + (xP + zP)(xQ − zQ)]
2

2: zP+Q ← xP−Q[(xP − zP)(xQ + zQ)− (xP + zP)(xQ − zQ)]
2

3: 4xP zP ← (xP + zP)
2 − (xP − zP)

2

4: x2P ← (xP + zP)
2(xP − zP)

2

5: z2P ← (4xP zP)
(

(xP − zP)
2 + a24 · (4xP zP)

)

A careful analysis of formulas in Algorithm 3 indicates that point addition P+Q
requires 6 multiplications, and point doubling 5 multiplications. Therefore, a
total of 11 multiplications are required in each step of the Montgomery ladder
algorithm. In Phase 1 of ECM, the initial point, P0, can be chosen arbitrarily.
Choosing z0 = 1 implies zP−Q = 1 throughout the entire algorithm, and thus
reduces the total number of multiplications from 11 to 10 per one step of the
algorithm, independent of the i-th bit ki of k. This optimization is not possible
in Phase 2, where the initial point Q0 is the result of computations in Phase 1,
and thus cannot be chosen arbitrarily.

2.3 Implementation of Phase 2

Phase 1 computes one scalar multiplication kP0, and the implementation issues
are relatively easy compared with Phase 2. For Phase 2, we follow the basic idea
of the standard continuation [11] and modify it appropriately for efficient FPGA
implementation. Choose 2 < D < B2, and let every prime p, B1 < p ≤ B2, be
expressed in the form

p = mD ± j (2)

where m varies between MMIN = b(B1 +
D
2)/Dc and MMAX = d(B2 − D

2)/De,
and j varies between 1 and bD2 c. The condition that p is prime implies that
gcd(j,D) = 1. Thus, possible values of j form a set JS = {j : 1 ≤ j ≤
bD2 c, gcd(j,D) = 1}, of the size of φ(D)/2, and possible values of m form a
set MT = {m : MMIN ≤ m ≤MMAX}, of the size MN = MMAX −MMIN + 1,
where MN is approximately equal to B2−B1

D . Then, the condition pQ0 = O,
implies (mD ± j)Q0 = O, and thus mDQ0 = ±jQ0.

Writing mDQ0 = (xmDQ0
: : zmDQ0

) and jQ0 = (xjQ0
: : zjQ0

), the
condition mDQ0 = ±jQ0 ∈ E(Zq) is satisfied if and only if xmDQ0

zjQ0
−

xjQ0
zmDQ0

≡ 0 (mod q). Therefore existence of such pair m and j implies that
one can find a factor of N by computing

gcd (d,N) > 1, where d =
∏

m,j

(xmDQ0
zjQ0

− xjQ0
zmDQ0

) (3)

In order to speed up these computations, one precomputes one of the sets S =
{jQ0 : j ∈ JS} or T = {mDQ0 : m ∈MT }. Typically, the first of these sets, S, is
smaller, and thus only this set is precomputed. One then computes the product
d in the (3) for a current value of mDQ0, and all precomputed points jQ0, for
which either mD+j or mD−j is prime. For each pair, (m, j), where j ∈ JS and
m ∈ MT , we can precompute a bit value: prime table[m, j] = 1 when mD + j
or mD − j is prime, and 0 otherwise. This table can be reused for multiple
iterations of Phase 2 with the same values of B1 and B2, and is of the size of
MN · φ(D)/2 bits. Similarly, we can precompute a bit table: GCD table[j] = 1
when j ∈ JS, and 0 otherwise. This table will have D/2 bits for odd D and D/4
for even D (no need to reserve bits for even values of j). The exact pseudocode
of the algorithm used in our implementation of Phase 2 is given in Algorithm 4.

The value B1 is usually chosen as B1 ≈ e
√

1
2
log q log log q where q is unknown

prime we want to find, and the value B2 is between 50B1 and 100B1 depending
on the computational resources for Phase 2. In our case, like Šimka et al. [6,
7], we choose B1 = 960 and B2 = 57000 to find a 40-bit prime divisor of 200-

bit integers. Note that one has e
√

1
2
log q log log q ≈ 988 by setting q = 241 which

is close to 960, and the ratio B2/B1 is 57000/960 ≈ 59. In general, the larger
values of B1 and B2 increase the probability of success in Phase 1 and Phase 2
respectively (and thus decrease the expected number of trials), but at the same
time, increase the execution time of these phases. Values of D = 30 = 2 · 3 · 5
and D = 210 = 2 · 3 · 5 · 7 are the two most natural choices for D as they

minimize the size of sets JS and S and as a result of the amount of memory
storage and computations required for Phase 2. The larger D, the larger the
amount of Precomputations in Algorithm 4, but the smaller MN , and thus the
smaller number of iterations of the outer loop during Main computations in
Algorithm 4. A theoretical analysis of the optimal parameter choices is given in
[19], with a view towards software implementations. The techniques developed
there - which use Dickman’s function to estimate the probability of success of
the Elliptic Curve Method - can be adapted to a hardware setting and make it
possible to determine optimal parameter choices via numerical approximations
to Dickman’s function. While our choices are not strictly optimal, they are fairly
good and allow for direct comparsion with Šimka et al. [6, 7].

Algorithm 4 Standard Continuation Algorithm of Phase 2
Require: N : number to be factored, E: elliptic curve, Q0 = kP0: initial point for Phase 2 calculated

as a result of Phase 1, B1: smoothness bound for Phase 1, B2: smoothness bound for Phase 2,
B2 > B1, D: parameter determining a trade-off between the computation time and the amount
of memory required; D is assumed even in this version of the algorithm.

Ensure: q: factor of N , 1 < q ≤ N or FAIL

Precomputations:
1: MMIN ← b(B1 +

D
2
)/Dc

2: MMAX ← d(B2 −
D
2
)/De

3: clear GCD table, clear JS

4: for each j = 1 to D
2
step 2 do

5: if gcd(j,D) = 1 then
6: GCD table[j] = 1
7: add j to JS

8: end if
9: end for
10: clear prime table
11: for each m =MMIN to MMAX do
12: for each j = 1 to D

2
step 2 do

13: if (mD + j or mD − j is prime) then
14: prime table[m, j] = 1
15: end if
16: end for
17: end for
18: Q← Q0

19: for j = 1 to D
2
step 2 do

20: if GCD table[j] = 1 then
21: store Q in S

{Q = jQ0 = (xjQ0
: : zjQ0

)}

22: end if
23: Q← Q+ 2Q0

24: end for

Main computations:
25: d← 1, Q← DQ0, R←MMINQ
26: for each m =MMIN to MMAX do
27: for each j ∈ JS do
28: if prime table[m, j] = 1 then
29: retrieve jQ0 from table S
30: d← d · (xRzjQ0

− xjQ0
zR)

{R = (xR : : zR)}
31: end if
32: end for
33: R← R +Q
34: end for
35: q ← gcd(d,N)
36: if q > 1 then
37: return q
38: else
39: return FAIL
40: end if

3 ECM Architecture

3.1 Top-level view: ECM units

Our ECM system consists of multiple ECM units working independently in par-
allel, as shown in Figure 1. Each unit performs the entire ECM algorithm for
one number N, one curve E and one initial point P0. All units share the same
global control unit and the same global memory. All components of the system
are located on the same integrated circuit, either an FPGA or an ASIC, depend-
ing on the choice of an implementation technology. The exact number of ECM

units per integrated circuit depends on the amount of resources available in the
given integrated circuit. Multiple integrated circuits may work independently in
parallel, on factoring a single number, or factoring different numbers. All inte-
grated circuits are connected to a central host computer, which distributes tasks
among the individual ECM systems, and collects and interprets results.

The operation of the system starts by loading all parameters required for
Phase 1 of ECM from the host computer to the global memory on the chip.
These parameters include:

1. Number to be factored, N , coordinates of the starting point P0, and the
parameter a24 dependent on the coefficient a of the curve E - all of which
can be separate for each ECM unit.

2. Integer k, used as an input in the ECM Phase 1 (see Algorithm 1), its size
kN , and the parameter n = blog2NMAXc + 2, related to the size of the
largest N, NMAX , processed by the ECM units - all of which are common
for all ECM units.

Fig. 1. Block diagram of the top-level unit. Notation: MEM-memory; M1, M2-
multipliers 1 and 2; A/S adder/subtractor.

In the next step, N , the coordinates of P0, and the parameters a24 and n
are loaded to the local memories of the respective ECM units, and the operation
of these units is started. All units operate synchronously, on different data sets,
performing all intermediate calculations exactly at the same time.

The results of these calculations are the coordinates xQ0
and zQ0

of the
ending point Q0 = kP0, separate for each ECM unit. These coordinates are
downloaded to the host computer, which performs the final calculations of Phase
1, q = gcd(zQ0

, N).
If no factor of N was found, the ECM system is ready for Phase 2. The values

of N , the parameters a24 and n, and the coordinates of the points Q0 obtained as
a result of Phase 1 are already in the local memories of each ECM unit. The host
computer calculates and downloads to the global memory of the ECM system
the following parameters dependent on B2 and D:MMIN ,MN , GCD table, and
prime table, defined in Section 2.3. The Phase 2 is then started simultaneously
in all ECM units, and produces as final results, the accumulated product d (see
(3)). These final results are then downloaded to the host computer, where the
final calculations q = gcd(d,N) are performed.

Note that with this top level organization, there is no need to compute great-
est common divisor or division in hardware. Additionally, the overhead associ-
ated with the transfer of data between the ECM system and the host computer,
and the time of computations in software are both typically insignificant com-
pared to the time used for ECM computations in hardware, even in the case of
a relatively slow interface and/or a slow microprocessor.

3.2 Medium-level View: Operations of the ECM Unit

Medium-level operations The primary operation constituting Phase 1 of
ECM is a scalar multiplication Q0 = kP0. As discussed in Section 2.2, this oper-
ation can be efficiently implemented in projective coordinates using Algorithm 2.

In Phase 1, one coordinate of P0 can be chosen arbitrarily, and therefore the
computations can be simplified by selecting zP0

= zP−Q = 1. The remaining
computations necessary to simultaneously compute P +Q and 2P can be inter-
leaved, and assigned to three functional units working in parallel, as shown in
Table 1. The entire step of a scalar multiplication, including both point addition
and doubling can be calculated in the amount of time required for 2 modular
additions/subtractions and 5 modular multiplications. Please note that because
the time of an addition/subtraction is much shorter than the time of a multipli-
cation, two sequential additions/subtractions can be calculated in parallel with
two multiplications.

Table 1. One step of a scalar multiplication, including the concurrent operations P+Q

and 2P , for the case of zP−Q = 1. Notation: A: operations used for addition only, D:
operations used for doubling only, A/D: operations used for addition and doubling.

Adder/Subtractor Multiplier 1 Multiplier 2

A/D:
a1 = xP + zP

s1 = xP − zP

A/D:
a2 = xQ + zQ

s2 = xQ − zQ
D: m1 = s21 D: m2 = a2

1

D: s3 = m2 −m1 A: m3 = s1 · a2 A: m4 = s2 · a1

A:
a3 = m3 +m4

s4 = m3 −m4
D: x2P = m5 = m1 ·m2 D: m6 = s3 · a24

D: a4 = m1 +m6 A: xP+Q = m7 = a2
3 A: m8 = s24

A: zP+Q = m9 = m8 · xP−Q D: z2P = m10 = s3 · a4

The storage used for temporary variables a1, . . . , a4, s1, . . . , s4, and m1, . . . ,m10

can be reused whenever any intermediate values are no longer needed. With
the appropriate optimization, the amount of local memory required for Phase 1
has been reduced to 11 256-bit operands, i.e., 88 32-bit words. The remaining
portion of this memory is used in Phase 2 of ECM.

In Phase 2, the initial computation

D ·Q0 and MMIN · (D ·Q0)

can be performed using an algorithm similar to the one used in Phase 1. The
only difference is that now, P −Q = Q0 cannot be chosen arbitrarily, and thus,

zP−Q = zQ0
6= 1. As a result, the computations will take the amount of time

required for 2 modular additions/subtractions and 6 modular multiplications.
The second type of operation required in Phase 2 is a simple point addition

P +Q. This operation can be performed in the time of 6 additions/subtractions
and 3 modular multiplications.

Finally, the last medium level operation required in Phase 2 is the accumu-
lation of the product d, as defined in (3). We can rewrite the expression for d as

d ≡
∏

i,n

din ≡
∏

i,n

(xnzi − xizn) (mod N) (4)

where, (xi, zi) ∈ {(x, z) : (x : : z) = jQ0}, (xn, zn) ∈ {(x, z) : (x : : z) = mDQ0}
and GCD table[j]=1 and prime table[m, j]=1. In Table 2, we show how these
operations can be distributed in an optimum way among three arithmetic units
working in parallel. As shown in Table 2, after the initial delay of one mul-
tiplication, the time required to compute and accumulate any two subsequent
values of a partial product xmDQ0

zjQ0
−xjQ0

zmDQ0
is equal to the time of three

multiplications.

Table 2. Accumulation of the partial results
∏

i,n

(xnzi−xizn) (mod N) in Phase 2 (for

fixed n and moving i)

Adder/Subtractor Multiplier 1 Multiplier 2
m1 = xn · z0 m2 = x0 · zn

d0n = m1 −m2 m3 = xn · z1 m4 = x1 · zn

d1n = m3 −m4 d = d · d0n m1 = xn · z2
d = d · d1n m2 = x2 · zn

d2n = m1 −m2 m3 = xn · z3 m4 = x3 · zn

d3n = m3 −m4 d = d · d2n m1 = xn · z4
d = d · d3n m2 = x4 · zn

· · · · · · · · · · · · · · · · · ·

Instructions of the ECM unit Each ECM unit is composed of two modular
multipliers, one adder/subtractor, and one local memory. The local memory size
is 512 32-bit words, equivalent to 64 256-bit registers. In Phase 1, only 11 out of
64 256-bit registers are in use. In Phase 2, with D = 210, the entire memory is
occupied.

Every ECM unit forms a simple processor with its own instruction set. Since
all ECM units perform exactly the same instructions at the same time, the
instructions are stored in the global instruction memory, and are interpreted
using the global control unit, as shown in Figure 1. Three sequences of ECM
instructions describe three kinds of medium-level operations:

1. One step of a scalar multiplication kP (P = 2P , Q = P + Q) in Phase 1,
i.e., with zP0

= 1 (see Table 1).
2. One step of a scalar multiplication kP (P = 2P , Q = P + Q) in Phase 2,

i.e., with zP0
6= 1.

3. Addition P +Q in Phase 2, i.e., with zP0
6= 1.

Since only 11 256-bit registers are necessary to perform each of the sequences of
instructions given above, only 4 bits are required to encode each input/output
address.

The operation performed by each instruction is determined based on the
position of the instruction in the instruction sequence, and thus does not need
to be encoded in the instruction body. In particular, a group of four instructions
corresponds to one row of Table 1 and is stored in the order: Multiplication 2,
Multiplication 1, Subtraction, and Addition. These four consecutive instructions
are fetched serially, but executed in parallel. The processor progresses to the next
group of four instructions only when all instructions of the previous group have
been completed. If the given arithmetic unit should remain inactive in the given
sequence of four instructions, this inactivity is described using the zero value of
a special flag in the body of the respective instruction.

3.3 Low-level View: Modular multiplication and
addition/subtraction

The three low level operations implemented by the ECM unit are Montgomery
modular multiplication [13], modular addition, and modular subtraction. Modu-
lar addition and subtraction are very similar to each other, and as a result they
are implemented using one functional unit, the adder/subtractor. For 256-bit
operands, both addition and subtraction take 41 clock cycles.

In order to simplify our Montgomery multiplier, all operations are performed
on inputs X,Y in the range 0 ≤ X,Y < 2N , and return an output S in the
same range, 0 ≤ S < 2N . This is equivalent to computing all intermediate
results modulo 2N instead of N , which increases the size of all intermediate
values by one bit, but shortens the time of computations, and leads to exactly
the same final results as operations mod N .

In our implementation we have adopted the Radix-2 Multiplier Algorithm
with Carry Save Addition, reported earlier in [14]. With this algorithm applied,
the total execution time of a single Montgomery multiplication is equal to n+16
clock cycles. For a typical use within ECM, n is greater than 100, and thus one
addition followed by one subtraction can easily execute in the amount of time
smaller than the time of a single Montgomery multiplication.

4 Implementation Results

Our ECM system has been developed entirely in RTL-level VHDL, and written
in a way that provides portability among multiple families of FPGA devices and
standard-cell ASIC libraries. In the case of FPGAs, the code has been synthesized
using Synplicity Synplify Pro v. 8.0, and implemented on FPGAs using Xilinx
ISE v. 6.3, 7.1 and 8.1. Three different families of FPGA devices have been
targeted, including high-performance families, Virtex E and Virtex II, as well as
a low-cost family, Spartan 3. The design has been debugged and verified using
a test program written in C, and using GMP-ECM [4, 5].

Table 3. Execution time of Phase 1 and Phase 2 in the ECM hardware architecture
for 198-bit numbers N, B1 = 960 (which implies number of bits of k, kN = 1375),
B2 = 57000, and D = 30 or D = 210

Operation Notation Formula # clk # clk

cycles cycles

D = 30 D = 210

Elementary operations

Modular addition TA 41

Montgomery TM TM = n+ 16 216

multiplication

Point addition and TAD1 TAD1 = 5TM + 2TA + 50 1212

doubling (Phase 1)

Point addition and TAD2 TAD2 = 6TM + 2TA + 50 1428

doubling (Phase 2)

Point addition (Phase 2) TADD2 TADD2 = 3TM + 6TA + 30 924

(Phase 2)

Phase 1

Phase 1 (estimation) TP1 est TP1 ≈ kN · TAD1 1,666,500

Phase 1 (simulation) TP1 sim 1,713,576

Phase 2

Precalculating TjQ TjQ ≈ 2TAD2 7476 49,056

jQ0 +(bD/4c − 2)TADD2 (0.19%) (2.56%)

DQ0 TDQ TDQ ≈ dlog2(D + 1)eTAD2 7140 11,424

(0.18%) (0.60%)

MMINDQ0 TMminDQ TMminDQ ≈ 8568 4284

dlog2(MMIN + 1)eTAD2 (0.22%) (0.22%)

Calculating mDQ0 for TmDQ TmDQ ≈ (MN − 2)TADD2 1,725,108 244,860

MMIN < m ≤MMAX (44.29%) (12.78%)

Number of ones nprime table 4531 4361

in the prime table

Calculating Td Td ≈ d1.5 · nprime tablee(TM + 12) 1,789,883 1,525,886

accumulated product d +MN (TM + TA)/2 (45.95%) (79.67%)

Phase 2 (estimation) TP2 est TP2 ≈ TjQ + TDQ + TMminDQ 3,538,175 1,835,510

+TmDQ + Td (90.84%) (95.84%)

Phase 2 (simulation) TP2 sim 3,895,013 1,915,219

(100%) (100%)

The execution times of Phase 1 and Phase 2 in the ECM hardware archi-
tecture are shown in Table 3. The generic formulas for major component oper-
ations are provided, together with the estimated values of the execution times
for the case of 198-bit numbers N , and the smoothness bounds B1 = 960 and
B2 = 57000. The estimated values are compared with the accurate values ob-
tained from simulation. The difference is less than 10%, and can be attributed to
the time needed for control operations and data movements within local memo-
ries, and between global memory and local memories. Two values of the param-
eter D are considered for Phase 2, D = 30 and D = 210. The table proves that
the choice of the parameter D = 210, reduces the execution time of Phase 2 in
our architecture by a factor of two compared to the case of D = 30. As confirmed
by exhaustive search, the choice of D = 210 results in the smallest possible exe-
cution time for Phase 2 for the given values of the smoothness bounds B1 = 960

and B2 = 57000, assuming execution times of basic operations given in Table 3.
For D = 210, the largest contribution to Phase 2, around 80%, comes from the
calculation of the accumulated product d.

In order to estimate an overhead associated with the transfer of control and
data between a microprocessor and an FPGA, the ECM system with 10 ECM
units has been ported to a reconfigurable computer SRC 6 from SRC Computers
[18], based on 2.8 GHZ Xeon microprocessors and Xilinx Virtex II XC2V6000-6
FPGAs running at a fixed clock frequency of 100 MHz. The data and control
transfer overheads have been experimentally measured to be less than 4% of the
end-to-end execution time for the combined Phase 1 and Phase 2 calculations.

In Table 4, we compare our ECM architecture to an earlier design by Pelzl,
Šimka, et al., presented at SHARCS 2005, and described in subsequent publica-
tions [6, 7]. Every possible effort was made to make this comparison as fair as
possible. In particular, we use an identical FPGA device, Virtex 2000E-6. We
also do not take into account any limitations imposed by an external microcon-
troller used in the Pelzl/Šimka architecture. Instead, we assume that the system
could be redesigned to include an on-chip controller, and it would operate with
the maximum possible speed reported by the authors for their ALUs [6, 7], i.e.,
38 MHz (clock period = 26.3 ns). We also ignore a substantial input/output over-
head reported by the authors, and caused most likely by the use of an external
microcontroller.

In spite of these equalizing measures, our design outperforms the design by
Pelzl, Šimka, et al. by a factor of 9.3 in terms of the execution time for Phase 1,
by a factor of 7.4 in terms of the execution time for Phase 2 with the same value
of parameter D, and by a factor of 15.0 for Phase 2 with the increased value
of D = 210, not reported by Pelzl/Šimka. The main improvements in Phase 1
come from the more efficient design for a Montgomery multiplier (a factor of
5 improvement) and from the use of two Montgomery multipliers working in
parallel (a factor of 1.9 improvement). An additional smaller factor is the ability
of an adder/subtractor to work in parallel with both multipliers, as well as, the
higher clock frequency.

One might expect that such improvement in speed comes at the cost of
substantial sacrifices in terms of the circuit area and cost. In fact, our architecture
is bigger, but only by a factor of 2.7 in terms of the number of CLB slices.
Additionally, the design reported in [6, 7] has a number of ECM units per FPGA
device limited not by the number of CLB slices, but by the number of internal on-
chip block RAMs (BRAMs). If this constraint was not removed, our design would
outperform the design by Pelzl/Šimka in terms of the amount of computations
per Xilinx Virtex 2000E device by a factor of 9.3 · 2.33 = 22 for Phase 1 and
35 for Phase 2. If the memory constraint is removed, the product of time by
area still improves compared to the design by Pelzl and Šimka by a factor of
9.3/2.7 = 3.4 for Phase 1 and 5.6 for Phase 2.

In Table 5, we show the results of porting our design to three families of
Xilinx FPGAs. For each family, a representative device is selected and used
in our implementation. For each device we determine the exact amount of re-

Table 4. Comparison with the design by Pelzl, Šimka, et al., both implemented using
Virtex 2000E-6.

Part 1: Execution Time

Pelzl, Šimka, et al. Our design Ratio

Pelzl, Šimka / ours

clk cycles Time # clk cycles Time # clk cycles Time

Clock period 26.3 ns 18.5 ns

Modular addition 16 0.62 µs 41 0.78 µs 0.6 0.8

Modular subtraction 24 0.42 µs 41 0.78 µs 0.4 0.5

Montgomery 796 20.7 µs 216 4.1 µs 3.7 5.0

multiplication

Point addition & 8200 213.2 µs 1212 23.0 µs 6.8 9.3

doubling (Phase 1)

Phase 1 11,266,800 292.9 ms 1,713,576 31.7 ms 6.6 9.3

Point addition & 8998 233.9 µs 1428 27.1 µs 5.6 8.6

doubling (Phase 2)

Point addition 4920 127.9 µs 924 17.6 µs 4.8 7.3

(Phase 2)

Calculation and 4776 124.2 µs 648 12.3 µs 6.2 10.1

accumulation of

two values of din

(Phase 2)

Phase 2 (D = 30) 20,276,060 527.2 ms 3,895,013 72.1 ms 5.2 7.4

Phase 2 (D = 210) - - 1,915,219 35.5 ms 10.6 15.0

Part 2: Resource usage per one ECM unit

Pelzl, Šimka, et al. Our design Ratio

(D = 210) Ours / Pelzl, Šimka

Number of # % # %

CLB slices N/A 6.0 3102 16 2.7

LUTs 1754 4.5 4933 13 2.8

FFs 506 1.25 3129 8 6.2

BRAMs 44 27 2 1.25 0.045

Maximum 3 7

number of ECM (limited by BRAMs) (limited by CLB slices) 2.33

units per chip

sources needed per single ECM unit, the maximum number of ECM units per
chip, the maximum clock frequency, and then the maximum amount of ECM
computations (Phase 1 and Phase 2) per unit of time. Finally, we normalize
the performance by dividing it by the cost of a respective FPGA device. From
the last row in the table one can see that the low-cost FPGA devices from the
Spartan 3 family outperform the high-performance Virtex II devices by a factor
of 16, and thus are more suitable for cost effective code breaking computations.

In Table 6, we compare the execution time of Phase 1 and Phase 2 between
the two representative FPGA devices and a highly optimized software imple-
mentation (GMP-ECM) running on Pentium 4 Xeon, 2.8 GHz. GMP-ECM is
one of the most powerful software implementations of ECM and contains mul-
tiple optimization techniques for both Phase 1 and Phase 2 [4, 5]. Additionally,
we run our own test program in C that mimics almost exactly the behavior of

hardware, except for using calls to the multiprecision GMP library for all low
level operations, such as modular multiplication and addition. One can see that
the algorithmic optimizations used in GMP-ECM matter, and reduce the overall
execution time for Phase 1 from 18.3 ms to 11.3 ms (38%), and Phase 2 from
18.6 ms to 13.5 ms (27%).

Interestingly, the execution time for an ECM unit running on Virtex II, 6000E
is only slightly greater than the execution time of GMP-ECM on a Pentium
4 Xeon. At the same time, since this FPGA device can hold up to 10 ECM
units, its overall performance is about 8.5 times higher for combined Phase 1
and Phase 2 computations. However, the current generation of high-end FPGA
devices cost about 10 times as much as comparable microprocessors. Therefore,
the advantage of Virtex II over Pentium 4 disappears when cost is taken into
account. In order to get an advantage in terms of the performance to cost ratio,
one must use a low-cost FPGA family, such as Xilinx Spartan 3. In this case, the
ratio of the amount of computations per chip is about 7 in favor of the biggest
Spartan 3. Additionally this device is actually cheaper than the state-of-the-art
microprocessor, so the overall improvement in terms of the performance to cost
ratio exceeds a factor of 10.

Table 5. Results of the FPGA implementations (resources and timing for one ECM
unit per FPGA device, execution time of Phase 1 and Phase 2 for 198-bit numbers
N, B1 = 960, B2 = 57000, D = 210)

Results Virtex Virtex II Spartan 3

XCV2000E-6 XC2V6000-6 XC3S5000-5

Resources for one ECM unit

- CLB slices 3102 (16%) 3197 (9%) 3322 (10%)

- LUTs 4933 (13%) 5025 (7%) 5134 (8%)

- FFs 3129 (8%) 3102 (5%) 3130 (5%)

- BRAMs 2/160 2/144 2/104

Maximum number of ECM units 7 10 10

per FPGA device

Technology 0.15/0.12 µm 0.15/0.12 µm 90 nm

Cost of an FPGA devicea $1230 $2700 $130

Maximum clock frequency for one ECM unit 54 MHz 123 MHz 100 MHz

Time for Phase 1 and Phase 2 67.2 ms 29.5 ms 36.3 ms

of ECM computations per second 104 339 276

with the maximum number of ECM units

of ECM computations per second per $100 8 13 212

with the maximum number of ECM units

a Approximate cost per unit for a batch of 10,000+ devices

5 Conclusions

A novel hardware architecture for the Elliptic Curve Method of factoring has
been proposed. The main differences as compared to an earlier design by Pelzl,
Šimka, et al. [6, 7] include the use of an on-chip optimized controller for Phase
1 and Phase 2 (in place of an external controller based on an ARM processor),
substantially smaller memory requirements, an optimized architecture for the

Table 6. Comparison of the execution time between 2.8 GHz Xeon Pentium 4
(w/512KB cache) and two types of FPGA devices Virtex II XC2V6000-6 and Spartan
3 XC3S5000-5 (198-bit number N, B1 = 960, B2 = 57000, D = 210, maximum number
of ECM units per FPGA device)

Virtex II Spartan 3 Pentium 4 Pentium 4

XC2V6000-6 XC3S5000-5 (testing program) (GMP-ECM)

Clock frequency 123 MHz 100 MHz 2.8 GHz

No. of parallel 10 10 1

ECM computations

Time of Phase 1 13.9 ms 17.1 ms 18.3 ms 11.3 ms

Time of Phase 2 15.6 ms 19.2 ms 18.6 ms 13.5 ms

Time of Phase 1 & Phase 2 29.5 ms 36.3 ms 36.9 ms 24.8 ms

of Phase 1 718 584 55 89

computations per second

of Phase 2 642 522 54 74

computations per second

of Phase 1 & 2 339 276 27 40

computations per second

Montgomery multiplier, the use of two (instead of one) multipliers, and the
ability of all arithmetic units (two multipliers and one adder/subtractor) to
work in parallel. When implemented on the same Virtex 2000E-6 device, our
architecture has demonstrated a speed-up by a factor of 9.3 for ECM Phase 1
and 15.0 for ECM Phase 2, compared to the design by Pelzl/Šimka, et al. At
the same time, memory requirements have been reduced by a factor of 22, and
the requirements for CLB slices have increased by a factor of 2.7. If the same
optimizations regarding the memory usage and the use of an internal controller
were applied to the design by Pelzl/Šimka, our architecture would still retain an
advantage in terms of the performance to cost ratio by a factor of 3.4 for Phase
1 and 5.6 for Phase 2.

Our architecture has been implemented targeting two additional families of
FPGA devices, Virtex II and Spartan 3. Our analysis revealed that the low-cost
Spartan 3 devices outperformed the high-performance Virtex II devices in terms
of the performance to cost ratio by a factor of about 16.

We have also compared the performance of our hardware architecture im-
plemented using Virtex II XC2V6000-6 and Spartan 3 XC3S5000-5 with the
optimized software implementation running on Pentium 4 Xeon, with a 2.8 GHz
clock. Our analysis shows that the high performance FPGA device outperforms
the same generation microprocessor by a factor of about 8.5, but looses its advan-
tage when the cost of both devices is taken into account. On the other hand, the
low-cost FPGA device Spartan 3 achieves about an order of magnitude advan-
tage over the same generation Pentium 4 processor in terms of both performance
and performance to cost ratio. This feature makes low-cost FPGA devices an
appropriate basic building block for cost-optimized hardware for breaking cryp-
tographic systems, which is consistent with the conclusions of other research
groups reported earlier in the literature [15].

References

1. J.M. Pollard, “Factoring with cubic integers”, Lecture Notes in Mathematics 1554,
pp. 4-10, Springer, 1993.

2. A.K. Lenstra and H.W. Lenstra, The Development of the Number Field Sieve,
Lecture Notes in Mathematics 1554, Springer, 1993.

3. Factorization of RSA-200, F. Bahr, M. Boehm, J. Franke, T. Kleinjung, http:
crypto-world.com/announcements/rsa200.txt.

4. P. Zimmermann, “20 years of ECM,” preprint, 2005, http://www.loria.fr/∼
zimmerma/papers/ecm-submitted.pdf.

5. J. Fougeron, L. Fousse, A. Kruppa, D. Newman, and P. Zimmermann, “GMP-
ECM”, http://www.komite.net/laurent/soft/ecm/ecm-6.0.1.html, 2005.

6. M. Šimka, J. Pelzl, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Dru-
tarovsky, V. Fischer, and C. Paar, “Hardware factorization based elliptic curve
method”, IEEE Symposium on Field-Programmable Custom Computing Machines

- FCCM’05, Napa, CA, USA, 2005.
7. J. Pelzl, M. Šimka, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Dru-

tarovsky, V. Fischer, and C. Paar, “Area-time efficient hardware architecture for
factoring integers with the elliptic curve method”, IEE Proceedings on Information

Security, vol . 152, no. 1, pp. 67-78, 2005.
8. D. Hankerson, A.J. Menezes, and S.A. Vanstone, Guide to Elliptic Curve Cryptog-

raphy, Springer–Verlag, 2004.
9. H.W. Lenstra, “Factoring integers with elliptic curves”, Annals of Mathematics,

vol. 126, pp. 649–673, 1987.
10. R.P. Brent, “Some integer factorization algorithms using elliptic curves”, Aus-

tralian Computer Science Communications, vol. 8, pp. 149–163, 1986.
11. P.L. Montgomery, “Speeding the Pollard and elliptic curve methods of factoriza-

tion”, Mathematics of Computation, vol. 48, pp. 243–264, 1987.
12. P.L. Montgomery, “An FFT extension of the elliptic curve method of factorization”,

Ph.D. Thesis, UCLA, 1992.
13. P.L. Montgomery, “Modular multiplication without trivial division”, Mathematics

of Computation, vol. 44, pp. 519–521, 1985.
14. C. McIvor, M. McLoone, J. McCanny, A. Daly, and W. Marnane, “Fast Mont-

gomery modular multiplication and RSA cryptographic processor architectures”,
Proc. 37th IEEE Computer Society Asilomar Conference on Signals, Systems and

Computers, Monterey, USA, pp. 379-384, Nov. 2003.
15. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, A. Rupp, M. Schimmler, “How to break

DES for 8,980 Euro”, 2nd Workshop on Special-purpose Hardware for Attacking

Cryptographic Systems - SHARCS 2006, Cologne, Germany, April 3-4, 2006.
16. J. Franke, T. Kleinjung, C. Paar, J. Pelzl, C. Priplata, and C. Stahlke, “SHARK :

A realizable special hardware sieving device for factoring 1024-bit integers”, Cryp-

tographic Hardware and Embedded Systems - CHES 05, LNCS 3659, pp. 119–130,
Springer-Verlag, 2005.

17. W. Geiselmann, F Januszewski, H Koepfer, J. Pelzl, and R. Steinwandt, “A sim-
pler sieving device: Combining ECM and TWIRL”, Cryptology ePrint Archive,
http://eprint.iacr.org/2006/109.

18. SRC Computers, Inc., http://www.srccomp.com.
19. R.D. Silverman and S.S. Wagstaff,“A practical analysis of the elliptic curve factor-

ing algorithm”, Mathematics of Computation, vol. 61, no. 203, pp. 465-462, 1993.

