
New Cryptanalytic Results on IDEA

Eli Biham⋆1 , Orr Dunkelman∗1, Nathan Keller⋆⋆2

1Computer Science Department, Technion.
Haifa 32000, Israel

{biham,orrd}@cs.technion.ac.il
2Einstein Institute of Mathematics, Hebrew University.

Jerusalem 91904, Israel
nkeller@math.huji.ac.il

Abstract. IDEA is a 64-bit block cipher with 128-bit keys introduced
by Lai and Massey in 1991. IDEA is one of the most widely used block
ciphers, due to its inclusion in several cryptographic packages, such as
PGP and SSH. The cryptographic strength of IDEA relies on a com-
bination of three incompatible group operations – XOR, addition and
modular multiplication. Since its introduction in 1991, IDEA has with-
stood extensive cryptanalytic effort, but no attack was found on the full
variant of the cipher.
In this paper we present the first known non-trivial relation that involves
all the three operations of IDEA. Using this relation and other tech-
niques, we devise a linear attack on 5-round IDEA that uses 219 known
plaintexts and has a time complexity of 2103 encryptions. By transform-
ing the relation into a related-key one, a similar attack on 7.5-round
IDEA can be applied with data complexity of 243.5 known plaintexts
and a time complexity equivalent to 2115.1 encryptions. Both of the at-
tacks are by far the best known attacks on IDEA.

1 Introduction

The International Data Encryption Algorithm (IDEA) is a 64-bit, 8.5-round
block cipher with 128-bit keys proposed by Lai and Massey in 1991 [20]. Due
to its inclusion in several cryptographic packages, such as PGP and SSH, IDEA
is one of the most widely used block ciphers. Since its introduction, IDEA re-
sisted intensive cryptanalytic efforts [1, 5, 6, 8–14, 16, 21, 22, 24]. The best pub-
lished chosen-plaintext attack on IDEA is an attack on 5-round IDEA that
requires 224 chosen plaintexts, and has time complexity of 2126 encryptions [12].
The best published related-key attack is an attack on 6.5-round IDEA that re-
quires 257.8 chosen plaintexts encrypted under four related keys and has time
complexity of 288.1 encryptions [5]. Along with the attacks on reduced-round
variants, several weak-key classes for the entire IDEA were found. The largest
weak key class (identified by a boomerang technique) contains 264 keys, and the
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membership test requires 216 adaptive chosen plaintexts and ciphertexts and has
a time complexity of 216 encryptions [6].

The cryptographic strength of IDEA relies on the combination of three incom-
patible group operations: bitwise XOR, modular addition in Z216 , and modular
multiplication in GF (216 + 1) where 0 is replaced by 216. All the three opera-
tions are essential for the security of the cipher. Indeed, if the multiplication is
removed, then the cipher can be broken easily by examining the least signifi-
cant bits of the words during the encryption. If the XOR is removed, then the
cipher is affine over addition in Z216 , and hence, is easily breakable using only
few known plaintexts. In [7, 26] it is shown that if the addition is removed then
the cipher can be easily broken using multiplicative differentials.

In this paper we present the first known non-trivial relation that involves
all the three different operations of IDEA. More precisely, we show that for the
MA transformation of IDEA, that is composed of additions and multiplications,
there exists an XOR differential with a non-trivial probability.

We use our new relation to devise several new attacks on IDEA based on
various attack techniques: First, we devise linear-type attacks on reduced-round
variants of IDEA that are similar to the attacks presented in [12, 16, 24]. The
attacks are based on constructing linear approximations with bias 1/2 that re-
lates the least significant bits of some words during the encryption process. We
use our relation, along with differential techniques and partial key guessing, to
improve the basic technique presented in [16, 24] and to establish the best known
attack on 5-round IDEA. Our attack requires only 219 known plaintexts and the
time complexity is equivalent to 2103 encryptions. Both the data and the time
complexities are smaller than the respective complexities of all the previously
known attacks on 4.5 or 5 rounds of IDEA. Our attack also has a relatively small
memory complexity, unlike the 5-round attack in [12]. We also devise realistic
attacks on variants of IDEA with a small number of rounds: A distinguishing
attack on 2.5-round IDEA requiring 218 chosen plaintexts and time complexity
of 218 encryptions, and an attack on 3-round IDEA with data complexity of 219

chosen plaintexts and time complexity of about 248.5 encryptions. Both of the
attacks are better in some of the parameters than all the known attacks on the
respective variants of IDEA.

We also show how to use the same relation in the related-key model. Using
two related keys, we are able to extend the linear property by 2.5 rounds. This
gives rise to a 7.5-round attack on IDEA requiring 243.5 known plaintexts and a
time complexity of 2115.1 encryptions. It is also possible to use our new relation
to improve the previously best known related-key attack on IDEA, using the
related-key rectangle technique. These improvements can be used to construct
a 7-round related-key rectangle attack on IDEA with data complexity of 265

related-key chosen plaintexts and time complexity of 2104.2 7-round IDEA en-
cryptions. The complexities of the new attacks, along with selected previously
known attacks, are summarized in Table 1.
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Rounds Attack Complexity # of Affected Source
Type Data Time Keys

2 Differential 210 CP 242 all [21]
2.5 Differential 210 CP 2106 all [21]
3 Differential-Linear 229 CP 244 all [8]

3.5 Linear 103 KP/CP 297 all [16]
3.5 Square 222 CP 266 all [16]
4 Imppossible Differential 237 CP 270 all [1]
4 Linear 114 KP 2114 all [24]
4 Square 223 CP 298 all [16]

4.5 Impossible Differential 264 CP 2112 all [1]
5 Meet-in-the-Middle Attack 224 CP 2126 all [12]

6.5 Related-Key Rectangle 259.8 RK-CP 288.1 all [5]

2.5† Linear 218 CP 218 all Section 4.1
3 Linear 219 CP 248.5 all Section 4.2

4.5 Linear 16 CP 2103 all Section 4.3
5 Linear 219 KP 2103 all Section 4.3

7.5 Related-Key Linear 243.5 RK-KP 2115.1 all Section 5
7 Related-Key Rectangle 265 RK-CP 2104.2 all Appendix A

KP – Known plaintext, CP – Chosen plaintext, RK – Related key,
Time complexity is measured in encryption units
† – Distinguishing attack

Table 1. Selected Known Attacks on IDEA and Our New Results

We expect that the new relation can also be used to improve other attacks
on IDEA, as well as attacks on other block ciphers that use the same operations,
e.g., the MESH family of block ciphers [23].

The paper is organized as follows: In Section 2, we briefly describe the struc-
ture of IDEA. In Section 3 we present the new relation between the operations
of IDEA. In Section 4 we present the new attack on 5-round IDEA. In Sec-
tion 5 we transform this attack into a 7.5-round related-key attack on IDEA.
Appendix A suggests a related-key rectangle attack on 7-round IDEA. Finally,
Section 6 summarizes the paper.

2 Description of IDEA and the Notations Used in the

Paper

IDEA [20] is a 64-bit, 8.5-round block cipher with 128-bit keys. It uses a com-
position of XOR operations, additions modulo 216, and multiplications over
GF (216 + 1).

Every round of IDEA is composed of two layers. The round input of round i
is composed of four 16-bit words denoted by (X i

1
, X i

2
, X i

3
, X i

4
). In the first layer,

denoted by KA, the first and the fourth words are multiplied by subkey words
(mod 216 + 1) where 0 is replaced by 216, and the second and the third words
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Fig. 1. One Round of IDEA

are added to subkey words in (mod 216). The intermediate values after this half-
round are denoted by (Y i

1
, Y i

2
, Y i

3
, Y i

4
). Formally, let Zi

1
, Zi

2
, Zi

3
, and Zi

4
be the

four subkey words, then

Y i
1 = Zi

1 ⊙ X i
1; Y i

2 = Zi
2 ⊞ X i

2; Y i
3 = Zi

3 ⊞ X i
3; Y i

4 = Zi
4 ⊙ X i

4

Then, (pi, qi) = (Y i
1 ⊕Y i

3 , Y i
2 ⊕Y i

4 ) enters the second layer, a structure composed
of multiplications and additions denoted by MA. We denote the two output
words of the MA transformation by (ui, ti). Denoting the subkey words that
enter the MA function by Zi

5 and Zi
6,

ui = (pi ⊙ Zi
5) ⊞ ti; ti = (qi

⊞ (pi ⊙ Zi
5)) ⊙ Zi

6

Another notation we use in the attack refers to an intermediate value in the MA
layer: we denote the value pi ⊙ Zi

5 by si.
The output of the i-th round is (Y i

1
⊕ ti, Y i

3
⊕ ti, Y i

2
⊕ ui, Y i

4
⊕ui). In the last

round (round 9) the MA layer is removed. Thus, the ciphertext is (Y 9
1 ||Y

9
2 ||Y

9
3 ||Y

9
4 ).

The structure of a single round of IDEA is shown in Figure 1.
IDEA’s key schedule is linear: each subkey is composed of bits selected from

the key. However, the exact structure of the key schedule is crucial for our attacks
and hence the entire key schedule is described in Table 2.
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Round Zi

1 Zi

2 Zi

3 Zi

4 Zi

5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92 93–108 109–124
i = 9 22–37 38–53 54–69 70–85

Table 2. The Key Schedule Algorithm of IDEA

3 A New Non-Trivial Relation Between the Three

Operations of IDEA

In this section we present the new non-trivial relation between the three different
operations of IDEA. The relation we present is a property of the MA layer. Since
the property is independent of the round number, in this section we omit the
round index in all the notations. The property is related to the XOR difference
between the values in two encryptions. We denote the difference in the word X
by ∆X .

Observation 1. Assume that the XOR difference between the two intermediate
encryption values in the input to the MA layer is of the form (∆p, ∆q) = (0, α)
for some α. Assume also that there is no key difference in the key word Z5 (but
there is no assumption whether there is a key difference in the subkey word Z6).
Then:

1. The least significant bit of the value ∆u ⊕ ∆t equals zero.
2. The average probability of the event (∆u, ∆t) = (8000x, 8000x) over all the

possible keys is 2−16 (if α 6= 0 or if there is a key difference in Z6).
3. If α is non-zero or if there is a difference in Z6, then Σν,τ Pr 2[(∆u, ∆t) =

(ν, τ)] = 2−23.72.

We note that the first part of the observation is similar to observations that
were used in [12, 16, 24].

If the MA layer was truly random, then the probability of the event (∆u, ∆t) =
(8000x, 8000x) would be 2−32. Hence, we have a differential with a much higher
probability than expected.

The third part of the observation gives a much higher value than the corre-
sponding value for a random function (which is 2−32). The value discussed in
the third part of the observation affects boomerang and rectangle attacks.

We shall now provide the proof of the observation: The proof uses the additive
difference (module 216) between the two inputs, which we denote by δX . As
there is no XOR difference in the first input word to the MA function (∆p = 0),
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then there is no additive difference as well, i.e., δp = 0. As there is no additive
difference in the subkey Z5, then ∆s = δs = 0 as well. As u = t ⊞ s then
δu = δt ⊞ δs = δt. We use this relation in the proof:

1. LSB(∆u) = LSB(δu) = LSB(δt) = LSB(∆t), where LSB(w) denotes the
least significant bit of the word w. Thus, LSB(∆u ⊕ ∆t) = LSB(∆u) ⊕
LSB(∆t) = 0.

2. Since no assumption on α or the subkey difference in Z6 was used (aside
the fact that there is such a difference), we can assume that the value δt
is randomly distributed. Hence, with probability 2−16 the difference is δt =
8000x. In this case, δu = 8000x as well. However, δt = 8000x is equivalent to
∆t = 8000x. Thus, the probability of the event (∆u, ∆t) = (8000x, 8000x) is
indeed 2−16, as asserted.

3. We can write

Σν,τ Pr 2[(∆u, ∆t) = (ν, τ)] = Σν,τ (Σδ Pr[(∆u, ∆t) = (ν, τ) ∧ (δt = δ)])
2

=

2−32 · Σν,τ (Σδ Pr[(∆u, ∆t) = (ν, τ))|(δt = δ)])2

where the last equality follows from the assumption that Pr[δt = δ] = 2−16

for every δ. We calculated the last value explicitly by a computer program
and got the value Σβ,γ Pr 2[(∆u, ∆t) = (β, γ)] = 2−23.72, as asserted.

Q.E.D.

4 A New Attack on 5-Round IDEA

In this section we present new attacks on 2.5-round, 3-round and 5-round IDEA
based on the first relation established in Section 3.

We start with an observation due to Biryukov (according to [24]) and Demirci [12].
Let us examine the second and the third words in all the intermediate stages of
the encryption. There is a relation between the values of these words and the
outputs of the MA layer in the intermediate rounds that uses only XOR and
modular addition, but not multiplication. Let P = (P1, P2, P3, P4) be a plaintext
and let C = (C1, C2, C3, C4) be its corresponding ciphertext, then

(((((((((((((((((P2 ⊞ Z1

2
) ⊕ u1) ⊞ Z2

3
) ⊕ t2) ⊞ Z3

2
) ⊕ u3) ⊞ Z4

3
) ⊕ t4) ⊞ Z5

2
) ⊕ u5)

⊞Z6

3) ⊕ t6) ⊞ Z7

2 ) ⊕ u7) ⊞ Z8

3 ) ⊕ t8) ⊞ Z9

2) = C2.
(1)

Similarly,

(((((((((((((((((P3 ⊞ Z1

3 ) ⊕ t1) ⊞ Z2

2 ) ⊕ u2) ⊞ Z3

3 ) ⊕ t3) ⊞ Z4

2 ) ⊕ u4) ⊞ Z5

3) ⊕ t5)
⊞Z6

2
) ⊕ u6) ⊞ Z7

3
) ⊕ t7) ⊞ Z8

2
) ⊕ u8) ⊞ Z9

3
) = C3.

(2)
Now, if we are interested only in the value of the least significant bit (LSB)

of the words, modular addition is equivalent to XOR and we can simplify the
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above equations into:

LSB(P2 ⊕ Z1

2
⊕ u1 ⊕ Z2

3
⊕ t2 ⊕ Z3

2
⊕ u3 ⊕ Z4

3
⊕ t4 ⊕ Z5

2
⊕ u5 ⊕ Z6

3
⊕ t6 ⊕ Z7

2

⊕u7 ⊕ Z8

3
⊕ t8 ⊕ Z9

2
) = LSB(C2),

(3)
and

LSB(P3 ⊕ Z1

3
⊕ t1 ⊕ Z2

2
⊕ u2 ⊕ Z3

3
⊕ t3 ⊕ Z4

2
⊕ u4 ⊕ Z5

3
⊕ t5 ⊕ Z6

2
⊕ u6 ⊕ Z7

3

⊕t7 ⊕ Z8
2 ⊕ u8 ⊕ Z9

3 ) = LSB(C3).
(4)

Since ui = ti ⊞ si then LSB(ui) = LSB(ti ⊞ si), thus, LSB(ui ⊕ ti) =
LSB(si). Taking this into consideration and XORing the two above equations
we obtain

LSB(P2 ⊕ P3 ⊕ Z1

2
⊕ Z1

3
⊕ s1 ⊕ Z2

2
⊕ Z2

3
⊕ s2 ⊕ Z3

2
⊕ Z3

3
⊕ s3 ⊕ Z4

2
⊕ Z4

3
⊕ s4

⊕Z5
2 ⊕ Z5

3 ⊕ s5 ⊕ Z6
2 ⊕ Z6

3 ⊕ s6 ⊕ Z7
2 ⊕ Z7

3 ⊕ s7 ⊕ Z8
2 ⊕ Z8

3 ⊕ s8 ⊕ Z9
2 ⊕ Z9

3 )
= LSB(C2 ⊕ C3).

(5)
This equation is called in [16] “the Biryukov-Demirci relation”.
Consider two plaintexts P 1 and P 2. Denote the XOR difference between the

encryptions of P 1 and P 2 (under the same secret key) in an intermediate value
X by ∆X . Then, the XOR the equations given by P 1 and P 2 gives

LSB(P 1

2
⊕ P 1

3
⊕ P 2

2
⊕ P 2

3
⊕ ∆s1 ⊕ ∆s2 ⊕ ∆s3 ⊕ ∆s4 ⊕ ∆s5 ⊕ ∆s6 ⊕ ∆s7⊕

∆s8) = LSB(C1

2
⊕ C1

3
⊕ C2

2
⊕ C2

3
).

(6)
Equation (6) is the basic equation used in all our attacks in this section.

4.1 A Distinguishing Attack on 2.5-Round IDEA

Consider a 2.5-round variant of IDEA of the form KA ◦ MA ◦ KA ◦ MA ◦ KA.
For sake of simplicity we assume that the attack is on the first 2.5 rounds of
IDEA, but the same attack holds for any 2.5 consecutive rounds of this form.

For a 2.5-round IDEA, Equation (6) is reduced to

LSB(P 1

2
⊕ P 1

3
⊕ P 2

2
⊕ P 2

3
⊕ ∆s1 ⊕ ∆s2) = LSB(C1

2
⊕ C1

3
⊕ C2

2
⊕ C2

3
). (7)

Note that by the first part of the observation in Section 3, if the input XOR
difference to the MA layer is of the form (∆p, ∆q) = (0, α) then ∆s = 0. In
order to use this property, we consider pairs of plaintexts (P 1, P 2) such that
∆(X1

1 , X1
2 , X1

3 , X1
4 ) = (0, β, 0, γ) for arbitrary values of β and γ. For these pairs

∆Y 1

1
= ∆Y 1

3
= 0 (independent of the values Z1

1
, Z1

3
), and hence ∆p1 = 0.

Therefore, the required property holds and ∆s1 = 0. We note that the same
idea was used (to some extent) in [16].

Similarly, if we take only ciphertext pairs satisfying ∆(Y 3

1
, Y 3

2
, Y 3

3
, Y 3

4
) =

(0, 0, β′, γ′) for arbitrary values of β′ and γ′, then (∆p2, ∆q2) = (0, α′) for some
α′, and hence ∆s2 = 0.
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If the plaintext/ciphertext pair ((P 1, C1), (P 2, C2)) satisfies both differential
relations required above, Equation (7) is further reduced into

LSB(P 1

2
⊕ P 1

3
⊕ P 2

2
⊕ P 2

3
) = LSB(C1

2
⊕ C1

3
⊕ C2

2
⊕ C2

3
). (8)

This is a simple linear relation that can be checked easily since only bits of the
plaintexts and the ciphertexts are involved in the equation.

Based on these observations, we can mount a simple distinguishing attack on
2.5-round IDEA, using the following algorithm:

1. Ask for the encryption of 218 plaintexts of the form (A, Z, B, W ), where A
and B are fixed and Z and W assume arbitrary random values.

2. Insert the ciphertexts into a hash table sorted by the first two words.
3. For every pair of ciphertexts in the same bin of the hash table, check whether

Equation (8) holds for the corresponding plaintext/ciphertext pair.
4. If there is a pair for which the equation does not hold, conclude that the

cipher is not 2.5-round IDEA. If there is no such pair, conclude that the
cipher is 2.5-round IDEA.

Due to the structure of the plaintexts, for every pair of plaintexts the first
differential requirement holds. For every pair of ciphertexts in the same bin of
the hash table, the second requirement also holds. Hence, for all the checked
pairs Equation (8) should be satisfied for 2.5-round IDEA.

The 218 plaintexts can be combined into about 235 possible pairs, and a
fraction of 2−32 of them is expected to have ciphertext difference of the form
(0, 0, β′, γ′). Hence, the expected number of pairs analyzed in Step 3 is eight. If
there is a pair for which the equation does not hold, we know for sure that the
cipher is not 2.5-round IDEA. On the other hand, for a random permutation,
the probability that the equation holds for all the eight pairs is 1/256. Hence,
the distinguisher succeeds with probability greater than 99.5%.

Since the second and the third steps of the attack are implemented using a
hash table, the time complexity of the attack is dominated by the time complex-
ity of the encryptions in the first step of the attack. Hence, the data complexity
of the attack is 218 chosen plaintexts and the time complexity is 218 encryptions.

4.2 A Key Recovery Attack on 3-Round IDEA

The 2.5-round distinguisher can be extended to an attack on 3-round IDEA of
the form E = KA ◦ MA ◦ KA ◦ MA ◦ KA ◦ MA by guessing the subkey of the
last MA layer and applying the distinguishing attack to the first 2.5 rounds. In
this case, the data complexity is slightly increased, since more pairs are required
in the last step of the attack in order to discard all the wrong key values.

The attack algorithm is the following:

1. Ask for the encryption of 219 plaintexts of the form (A, Z, B, W ), where A
and B are fixed and Z and W assume arbitrary random values.

2. For every guess of the 32-bit subkey of the last MA layer:

8



(a) Partially decrypt all the ciphertexts through the last MA layer and insert
the resulting Y 3 values into a hash table sorted by the first 32 bits.

(b) For every pair of values in the same bin of the hash table, check whether
Equation (8) holds for the corresponding plaintext/ciphertext pair.

(c) If there is a pair for which the equation does not hold, discard the subkey
guess. Otherwise, keep the subkey guess.

3. Output all the subkey guesses that were not discarded.

Since there are 219 plaintexts, then there are about 237 possible pairs, and
about 32 pairs are examined in Step 2(b). Hence, for a wrong key guess the
probability that the equation holds for all the pairs is 2−32. Therefore, only few
possible key guesses remain, including the right key. The filtering can be further
improved by enlarging the data structure by a small factor.

The time complexity of the attack is dominated by Step 2(b) which contains
decrypting all ciphertexts under all the subkey guesses. The data complexity
of the attack is 219 chosen plaintexts and the time complexity of the attack is
equivalent to 219×232× (1/6) ≈ 248.5 3-round encryptions. Note that the attack
recovers only 32 bits of the master key and the rest of the key has to be found
using other techniques.

We note that a similar attack can be mounted on a 3-round variant of IDEA
of the form E = MA ◦ KA ◦ MA ◦ KA ◦ MA ◦ KA. The only difference is that
in this case the attack is performed in the decryption direction. The time and
data complexities remain unchanged.

The two extensions can be combined to an attack on a 3.5-round variant of
IDEA of the form E = MA◦KA◦MA◦KA◦MA◦KA◦MA. However, in this
case the data and time complexities are worse than the complexities of the best
known attack on 3.5-round IDEA. This follows from the fact that while in the
3-round attacks we could guarantee that one of the differential conditions holds,
in the 3.5-round attack this is not the case.

4.3 Attack on 5-Round IDEA

In this section we devise an attack on a 5-round variant of IDEA starting with
the second half of round 3. Choosing round 3 as the starting point of the attack
is the optimal round, as described later.

First, we consider a 4.5-round attack starting at the beginning of round 4.
For this variant, the Equation (6) is transformed into

LSB(P 1

2
⊕P 1

3
⊕P 2

2
⊕P 2

3
⊕∆s4⊕∆s5⊕∆s6⊕∆s7) = LSB(C1

2
⊕C1

3
⊕C2

2
⊕C2

3
). (9)

In our attack we use pairs of plaintexts with XOR difference ∆(X4
1 , X4

2 , X4
3 , X4

4 ) =
(0, β, 0, γ), thus, ∆s4 = 0. In order to calculate ∆si for 5 ≤ i ≤ 7, we guess part
of the master key and partially decrypt the ciphertexts through the last three
rounds.

In order to calculate the required ∆si values, we guess the subkeys Z8
4 ,Z8

3 ,Z8
2 ,

Z8

1
,Z7

6
,Z7

5
,Z7

4
,Z7

3
,Z7

2
,Z7

1
,Z6

6
,Z6

5
that allow to partially decrypt two rounds, and
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the subkeys Z6

1
, Z6

2
, Z5

5
that allow to calculate the value ∆s5. However, it appears

that all these 15 subkeys use only 103 bits of the master key, whereas bits
100–124 of the master key remain unused. Hence, we can guess 103 bits of the
master key, and for each guess we can check whether the equation holds for
the plaintext/ciphertext pairs. We note that finding the right subkey requires
about 128 pairs for the analysis, which can be constructed from about 16 chosen
plaintexts. We also note that starting the attack in a different round would
require guessing more subkey bits.

In order to extend the attack to 5 rounds, we guess the subkey of the MA
layer in round 3. This does not increase the time complexity since the relevant
subkey is composed of bits 50–81 of the master key that are included in the 103
bits we guess in the 4.5-round attack. However, this additional half round affects
the data complexity of the attack.

The only remaining issue is getting pairs of plaintexts with difference∆(X4

1
, X4

2
, X4

3
, X4

4
) =

(0, β, 0, γ). Since for every guess of the MA layer of round 3 different plaintext
pairs are needed to fulfill this differential requirement, this attack uses known
plaintexts instead of chosen plaintexts. We start with 219 known plaintexts that
compose 237 possible pairs. For each subkey guess of the MA layer of round 3,
we partially encrypt all the plaintexts and choose the pairs that have difference
∆(X4

1
, X4

2
, X4

3
, X4

4
) = (0, β, 0, γ). We expect 32 such pairs, and these pairs are

used in the sequel of the attack. The time complexity of this step is negligible
compared to the time complexities of the other steps of the attack.

The attack algorithm is as follows:

1. Ask for the encryption of 219 known plaintexts.
2. For each guess of key bits 50–81, perform the following:

(a) Partially encrypt the plaintexts through the MA layer of round 3 and
insert the resulting X4 values to a hash table indexed by the first and
the third words.

(b) For each guess of key bits 0–49,82–99,1 and 125–127 and for all the
colliding pairs, perform the following:
i. Partially decrypt all the pairs through rounds 7 and 6, and the MA

layer of round 5.
ii. Verify that Equation (9) holds for all of the pairs. If no, discard the

key guess.
(c) If the key guess passed the filtering, perform exhaustive search on the

remaining 25 key bits.

As we mentioned before, for every guess of key bits 50–81, we expect that 32
pairs are analyzed in Step 2(b) of the attack. Hence, the probability that a wrong
key guess passes the filtering is 2−32. Thus, we expect that about 2103 ·2−32 = 271

key guesses enter Step 2(c). Thus, the time complexity of Step 2(c) is expected
to be equivalent to 225 · 271 = 296 encryptions in total.

Therefore, the time complexity of the attack is dominated by the partial
decryptions of Step 2(b). We observe that this step can be optimized. Note that

1 Note that key bits 50–81 are already guessed.
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half of the key guesses are discarded after the first pair, half of the remaining key
guesses are discarded after the second pair, etc. Hence, instead of decrypting all
the pairs at once, the attacker can decrypt the first pair and check whether the
equation holds, then (if the key guess was not discarded) decrypt the second pair
and check the equation for it, etc. Using this improvement, the time complexity
of this step is 2103+2102+2101+. . . ≈ 2104 partial decryptions, which are roughly
equivalent to 2103 full encryptions.

Hence, the data complexity of the attack is 219 known plaintexts and the
time complexity is 2103 encryptions.

5 Related-Key Attack on 7.5-Round IDEA

In this section we present a related-key attack on the first 7.5 rounds of IDEA.
The 7.5-round related-key attack uses similar relations as the 5-round known
plaintext attack. In the attack we use the difference between the keys to construct
pairs of plaintexts for which the intermediate values (when encrypted under
the two different keys) are equal for 2.5 rounds. For such pairs of plaintexts,
Equation (6) is reduced to a much simpler one.

Let the K and K∗ be two keys such that they are equal in all bits but bit 34
and any non-empty subset of bits {41, 42, . . . , 49}. Let P and P ∗ be the two
plaintexts, such that Y 2 and Y 2∗, the corresponding intermediate encryption
values after the KA layer of round 2, satisfy:

Y 2

1
= Y 2∗

1
; Y 2

2
= Y 2∗

2
; Y 2

3
= Y 2∗

3
; Y 2

4
= Y 2∗

4
(10)

In such pair, the intermediate encryption values are equal until the MA layer of
round 4. In that MA layer, the input difference is (∆p4, ∆q4) = (0, 0) and the
key difference affects only Z4

6 . Hence, by the observation presented in Section 3,
∆s2 = ∆s3 = ∆s4 = 0.

Therefore, for such pair Equation (6) is reduced to

LSB(P2⊕P3⊕P ∗

2
⊕P ∗

3
⊕∆s1⊕∆s5⊕∆s6⊕∆s7) = LSB(C2⊕C3⊕C∗

2
⊕C∗

3
). (11)

Hence, if the attacker is able to construct plaintext pairs satisfying Equa-
tion (10), he can partially encrypt/decrypt the plaintext/ciphertext pairs through
rounds 1, 7, 6, and 5 and check whether Equation (11) is satisfied. In order to do
so, the attacker has to guess the subkeys Z1

1 , Z1
3 , Z1

5 for the partial encryption
and Z5

5
, Z6

1
, Z6

2
, Z6

5
, Z6

6
,Z7

1
–Z7

6
,Z8

1
–Z8

4
for the partial decryption. However, these

18 subkeys use only 103 bits of the master key, and hence guessing these key bits
and checking whether Equation (11) holds for some plaintext/ciphertext pairs
satisfying Equation (10) yields an attack faster than exhaustive key search.

Constructing pairs of plaintexts satisfying Equation (10) is not a trivial oper-
ation. However, if we use the known plaintext model and take sufficiently many
plaintexts, then Equation (10) may be satisfied sufficiently many times. A naive
approach would be to partially encrypt all the given known plaintexts through
round 1 and the KA layer of round 2, and to find the relevant pairs. However,

11



even in an optimized manner, this approach would result in guessing 96 key bits,
which combined with the known plaintext nature of the attack results in a time
complexity of least 2128 1-round IDEA encryptions.

Therefore, we use a modified approach. We use 242.5 known plaintexts en-
crypted under two related keys (a total of 243.5 related-key known plaintexts),
and partially encrypt them through the KA layer of round 1. After the KA
layer, we consider only the pairs that have difference (0, 0040x, 0, 0040x). Such
pairs have difference (0, 0, 0040x, 0040x) at the input to the KA layer of round 2,
independent of the value of the subkeys Z1

5
, Z1

6
. With probability 1/2 the dif-

ference in the third word is canceled by the key difference, and with probability
2−16 the difference in the fourth word is canceled by the key difference, leading
to a pair that satisfies Equation (10). Hence, the required pairs are detected
in a two steps algorithm. First the attacker guesses the values of the subkeys
Z1

1
, Z1

2
, Z1

3
, and Z1

4
and finds the pairs having difference (0, 0040x, 0, 0040x) after

the first KA layer. Most of the pairs are filtered at this stage. Then the attacker
further guesses the values of the subkeys Z1

5 , Z1
6 , Z2

3 , and Z2
4 and checks which

of the remaining pairs satisfy Equation (10).
The attack algorithm on 7.5-round IDEA is as follows:

1. Ask for 242.5 known plaintexts encrypted under K and denote the set of
plaintexts and ciphertexts by SetP .

2. Ask for 242.5 known plaintexts encrypted under K∗ and denote the set of
plaintexts and ciphertexts by SetP ∗.

3. For each guess of the subkeys Z1

1
, Z1

2
, Z1

3
, and Z1

4
:

(a) Partially encrypt all plaintexts in SetP and in SetP ∗ through the KA
layer of round 1.

(b) Find all pairs of Y 1 (encrypted under K) and Y 1∗ (encrypted under K∗)
such that Y 1 ⊕ Y 1∗ = (0, 0040x, 0, 0040x).

(c) For each such pair, and each guess of Z1

5
, Z1

6
, Z2

3
, and Z2

4
:

i. If the pair satisfies Equation (10), guess Z5

5
, Z6

1
, Z6

2
, Z6

5
, Z6

6
,Z7

1
–Z7

6
,

and Z8
1–Z8

4 and verify whether Equation (11) is satisfied.
ii. If the equation is not satisfied — discard the subkey guess.

4. For each remaining subkey, exhaustively try all 25 remaining subkey bits,
and output the remaining key.

There are 285 pairs of plaintexts, of which 285 · 2−64 = 221 have difference
(0, 0040x, 0, 0040x) after the KA layer of round 1. For each guess of Z1

5
, Z1

6
, Z2

3
,

and Z2
4 , about 221 · 2−17 = 16 pairs have a zero difference after the KA layer

of round 2, satisfying Equation (10). For a correct subkey guess, all these pairs
should satisfy Equation (11). For wrong subkey guesses, the probability that
Equation (11) is satisfied for all the pairs is 2−16. There are 2103 possible subkeys,
and hence the number of subkeys that enter Step 4 is expected to be 2103 ·2−16 =
287.

The time complexity of the attack is thus dominated by Step 3 (Steps 1 and 2
have time complexity of 242.5 encryptions each, and Step 4 has time complexity
of 287 · 225 = 2112 trial encryptions). Step 3(a) is repeated 264 times, and each
time 243.5 values are partially encrypted through one KA layer. Hence, the time

12



complexity of this step is 264 · 243.5 = 2107.5 partial encryptions. Step 3(b) can
be executed efficiently using a hash table. In Step 3(c)(i) only 221 pairs (or 222

values) are analyzed but this step requires guessing 32 more bits (Z2

3 and Z2

4 are
covered by the bits guessed in Step 3(a)). Thus, the time complexity of the first
part of this step (finding the pairs satisfying Equation (10)) is 264 ·222 ·232 = 2118

1-round decryptions. The time complexity of the second part of Step 3(c)(i)
(checking whether Equation (11) is satisfied) is much lower, as even though 9
more key bits are guessed, there are only 32 pairs (or 64 values) that enter this
step. Thus, the total time complexity of the attack is about 2118 · 1

7.5
= 2115.1

7.5-round IDEA encryptions.

6 Summary and Conclusions

In this paper we presented several new results on the block cipher IDEA: The
first non-trivial relation involving all the three different operations of IDEA, a
known-plaintext 5-round attack, a related-key attack on 7.5-round IDEA (with
two keys) and a related-key rectangle attack on 7-round IDEA (with four keys).
These results are by far the best known attacks against reduced-round variants
of the cipher.

Our paper shows that the linear key schedule of IDEA makes the cipher
relatively vulnerable to attacks that guess vast amounts of the key. However,
despite our findings, the full IDEA still resists all known attacks.
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A A Related-Key Rectangle Attack on 7-Round IDEA

In this appendix we use the third part of the observation in Section 3 to im-
prove the 6.5-round related-key rectangle attack presented in [5] and to devise
a related-key rectangle attack on 7-round IDEA. Due to space constraints, we
present only the main idea of the attacks and the final results. The detailed
description of the attacks appears in the full version of the paper.

We start by devising a new related-key boomerang distinguisher for 5.5-
round IDEA. The data complexity of the distinguisher is worse than that of the
distinguisher used in [5], but it can be used to devise better key recovery attacks.
We note that the distinguisher used in [5] can be also improved using similar
techniques. This improvement is also described in the full version of the paper.

The new 5.5-round distinguisher is applicable for rounds 1.5–6. The first
related-key differential starts after the KA layer of round 1 with the difference
(0, 0040x, 0, 0040x) and ends after the MA layer of round 4. The key differ-
ence is in bit 34, and any non-empty subset of bits {41, 42, . . . , 49}. The second
related-key differential starts at the beginning of round 5 with the difference
(0, 8000x, 0, 0) and key difference in key bit 91. This difference evolves into a
zero difference after the MA layer of round 6 with probability 1.

The second differential is quite standard. It is based on cancelling the dif-
ference in the second word using the key difference in bit 91 (i.e., ∆K1 = e91).
Then, the zero difference is preserved until key bit 91 is used again in the subkey
Z7

4
.
The first differential is a bit more complicated. A pair with input difference

α = (0, 0040x, 0, 0040x) to the MA layer of round 1 has difference (0, 0, 0040x, 0040x)
after the MA layer with probability 1. With probability 1/2 the key difference
cancels the data difference in the third word, and with probability 2−16 the key
difference cancels the data difference in the fourth word. Thus, with probabil-
ity 2−17, the pair has a zero difference after the KA layer of round 2. This
zero difference is preserved until the last multiplication in the MA layer of
round 4. Hence, in that MA layer both ∆p4 and the key difference in Z4

5 are
zero. Thus, we can apply the third part of the observation in Section 3 to obtain
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p̂ = 2−17 · 2−11.86 = 2−28.86. The key difference ∆K0 can be any of 511 possible
values. We use the value ∆K0 = e34,49, but it can be any of the other values
without affecting our attack.

Using these differentials, we get a 5.5-round related-key boomerang distin-
guisher that uses 259.32 adaptive chosen plaintexts and ciphertexts (257.32 values
are encrypted/decrypted using four different keys).

We now present a related-key rectangle attack [5, 15, 19] on the first 6.5
rounds of IDEA based on the distinguisher presented above. The attack algo-
rithm mostly follows the attack algorithm presented in [3] with the few modifi-
cations needed due to the related-key nature of the attack.

Let Ka, Kb, Kc, Kd be the related keys such that Kb = Ka ⊕ ∆K0, Kc =
Ka ⊕ ∆K1, and Kd = Kc ⊕ ∆K0. The attack algorithm is as follows:

1. Data Collection Phase:

(a) Generate 235 structures Sa
1 , . . . , Sa

235 of 228 plaintexts each, where in each
structure the first word, the six least significant bits of the second word,
and the 14 least significant bits of the third word are fixed. Ask for the
encryption of the structures under Ka.

(b) Flip bit 6 of the second word and bit 13 of the third word of any plain-
text encrypted under Ka, and ask for the encryption of the resulting
plaintexts under Kb (to obtain Sb

1
, . . . , Sb

235).
(c) Generate 235 structures Sc

1, . . . , S
c
235 of 228 plaintexts each, where in each

structure the first word, the six least significant bits of the second word,
and the 14 least significant bits of the third word are fixed. Ask for the
encryption of the structures under Kc.

(d) Flip bit 6 of the second word and bit 13 of the third word of any plain-
text encrypted under Kc, and ask for the encryption of the resulting
plaintexts under Kd (to obtain Sd

1
, . . . , Sd

239).
2. Finding Candidate Quartets:

(a) Find all pairs of ciphertexts Ca ∈ Sa
i and Cc ∈ Sc

j , such that they have
the same value in the first, the second, and the third words.

(b) For each such pair, check whether there are pairs of ciphertexts Cb ∈ Sb
i

and Cd ∈ Sd
j , such that they have the same value in the first, the second,

and the third words. If such a pair exists — transfer (Pa, Pb, Pc, Pd), the
corresponding plaintexts, to analysis.

3. Analysis of Candidate Quartets:

(a) Initialize 264 counters, each corresponds to a different guess of Z2

1
, Z3

1
, Z4

1
, Z4

7
.

(b) For each subkey guess of Z2
1 , Z3

1 , Z4
1 , Z4

7 and each candidate quartet,
check whether the partial encryption and partial decryption of the pairs
of the quartet lead to the required differences. If this is the case increment
the respective counter.

4. Output: Output all subkey guesses whose counter has values greater than 8.

The analysis presented in the full version of the paper shows that the data
complexity of the attack is 265 related-key chosen plaintexts and the time com-
plexity is 287 memory accesses.
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The 6.5-round attack can be extended to an attack on rounds 1–7 of IDEA
by partially decrypting all the ciphertexts under all possible values of the key of
the last MA layer, and applying the 6.5-round attack. A trivial implementation
of this approach would lead to an attack that requires 232 · 287 = 2119 memory
accesses, and a data complexity of 265 related-key chosen plaintexts.

However, we improve this result by observing that there are 12 shared bits
between the subkeys Z7

6
and Z1

2
. This allows us to filter most of the wrong

candidate quartets, by evaluating the difference after the addition in the KA
layer of round 1. The improved attack is described in detail in the full version of
the paper. The data complexity of the attack is 265 related-key chosen plaintexts
and the time complexity is 2111 memory accesses. Using the conversion of three
clock cycles for one memory access, and the time measurements of the NESSIE
project [25], these 2111 memory accesses are equivalent to 2104.2 7-round IDEA
encryptions.
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