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Abstract. Recently, Bellare and Palacio succeeded in defining the plain-
text awareness, which is also called PA2, in the standard model. They
propose three valiants of the standard model PA2 named perfect, statis-
tical, and computational PA2. In this paper, we study the relationship
between the standard model PA2 and the property about message hiding,
that is, IND-CPA. Although it seems that these two are independent no-
tions at first glance, we show that all of the perfect, statistical, and com-
putational PA2 in the standard model imply the IND-CPA security if the
encryption function is oneway. By using this result, we also showed that
“PA2 + Oneway ⇒ IND-CCA2”. This result shows the “all-or-nothing”
aspect of the PA2. That is, a standard model PA2 secure public-key en-
cryption scheme either satisfies the strongest message hiding property,
IND-CCA2, or does not satisfy even the weakest message hiding prop-
erty, onewayness. We also showed that the computational PA2 notion is
strictly stronger than the statistical one.
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1 Introduction

The Plaintext Awareness [BR94,BDPR98,HLM03,BP04], which is also known as
PA2, is a notion about the security of a public-key encryption scheme. Intuitively,
we say that a public-key encryption scheme satisfies the PA2, if no adversary
can generate a ciphertext “without knowing” the corresponding plaintext.

The PA2 notion is important, because it implies the chosen ciphertext secu-
rity [BR94,BDPR98,BP04], if a public-key encryption scheme is the IND-CPA
secure. Moreover, it is useful when one instantiates the ideal functions in the
Dolev-Yao model [DY83], since the relation between the PA2 and the Dolev-Yao
model is known [HLM03].

The original definition of the PA2 security was formalized in the random or-
acle model [BR94,BDPR98] and was highly dependent on this model, although
the intuitive definition, mentioned above, does not depend on this model. There-
fore, in the earlier study of the PA2, one of the main concerns was how to define
the PA2 in the standard model.



In Asiacrypt 2004, Bellare and Palacio [BP04] succeeded in defining the stan-
dard model PA2. Their result is important, because we can analize encryption
schemes from the new view point whether these are PA2 secure. Here we briefly
review their definition. They define PA2 notion based on the indistinguishabilty
of two worlds, “Dec world”, and “Ext world”. An adversary in the Dec world
can access the decryption oracle and so on. In contrast, the adversary in the
Ext world can access an extractor, which simulates the decryption oracle, and
so on. The extractor has to simulate the decryption oracle by using only data
“which the adversary knows”. They define the three types of the PA2, named
perfect/statistical/computational PA2, depending on that the Dec world and the
Ext world are perfectly/statistically/computationally indistinguishable for the
adversary.

They also succeeded in proving the fundamental theorem, which state that
all of these plaintext awareness notions, together with IND-CPA security, imply
the chosen ciphertext security.

1.1 Our Contributions

In this paper, we study the relationship between the standard model PA2 and
the property about message hiding, that is, IND-CPA. At first glance, it seems
that these two are independent notions. Indeed, it is well known that the random
oracle model PA2 property does not imply the IND-CPA property and vise versa.

We however show that all of the perfect, statistical, and computational PA2
security in the standard model imply the IND-CPA security if the encryption
function is oneway. Recall that the fundamental theorem that “(perfect, statis-
tical, or computational) PA2 + IND-CPA ⇒ IND-CCA2” holds. Therefore, our
result combining with the fundamental theorem shows the stronger variant of the
fundamental theorem, “(perfect, statistical, or computational) PA2 + Oneway
⇒ IND-CCA2”. This result shows the “all-or-nothing” aspect of the PA2. That
is, the standard model PA2 secure public-key encryption scheme either satis-
fies the strongest message hiding property, IND-CCA2, or does not satisfy even
weakest message hiding property, onewayness.

Our result has not only theoretical interest but also can be useful when one
prove the IND-CCA2 securities of public-key encryption schemes. Recall that it
is non trivial to show the IND-CPA securities of some schemes satisfying the ran-
dom oracle PA2, such as schemes with OAEP+ [OP01], 3-round OAEP [PP04],
or Kobara-Imai [KI01] padding. However, in the case for schemes satisfying the
standard model PA2, we are not required to prove the IND-CPA securities, since
our result assures it.

We also study the gap between the computational and statistical PA2 secu-
rities. That is, we show that the computational PA2 security is strictly stronger
than the statistical one. It is interesting to compare our result with Fujisaki’s
result [F06] about the random oracle PA2. In his paper, he defined a plaintext
simulatability (PS) notion, which was a “computational variant” of the ran-
dom oracle PA2, and showed that plaintext simulatability notion was strictly
stronger than the random oracle PA2. Therefore, our result can be recognized



as the standard model variant of Fujisaki’s result [F06]. By comparing his result
with our result, we can say that statistical and computational standard model
PA2 notions are related to the random oracle PA2 and the PS, respectively.

We stress that, although our result and Fujisaki’s result themselves are sim-
ilar, these are of different model with different proof. Indeed we cannot use his
proof because it highly depends on the random oracle model. Our proof is simpler
and more intuitive than his.

1.2 Previous Works

Before the random oracle PA2 was defined, a weaker variant of it, named the
random oracle PA1 [BR94], had been defined. The first schemes satisfying the
random oracle PA1 and PA2 were proposed in the paper of Bellare-Rogaway
[BR94] and Fujisaki-Okamoto [FO99] respectively. In these papers, the authors
proposed conversions which transform a trapdoor oneway permutation and an
IND-CPA secure public-key encryption scheme to PA1 and PA2 secure public-
key encryption scheme respectively. These conversions are called the OAEP and
the Fujisaki-Okamoto conversions respectively.

Shoup [S01] showed that the random oracle PA1 + IND-CPA does not
imply the IND-CCA2 security, although previously it had been thought that
it did. In his paper, he also gave a revised version of the OAEP conversion,
named the OAEP+, which transforms a trapdoor oneway permutation to a
PA2 secure public-key encryption scheme on the random oracle model. The
OAEP and other conversions satisfying a similar property are also studied in
[CHJPPT98,B01,FOPS01,M01,OP01,CJNP02,KI01,KO03].

As far as we know, the first attempt to define the plaintext awareness not in
the random oracle model was made by Herzog, Liskov, and Micali [HLM03]. They
defined the PA2 notion on the key registration model [HLM03] and constructed
a public-key encryption scheme which satisfies their PA2.

Bellare and Palacio [BP04] define not only the standard model PA2 but also
the standard model PA1. They also showed that the Damg̊ard [D91] and the
lite Cramer-Shoup [CS01] public-key encryption schemes satisfy the standard
model PA1 under the Diffie-Hellman Knowledge assumption [D91,BP04] and
the DDH assumption. Later, Dent [D06] showed that the Cramer-Shoup public-
key encryption scheme [CS98,CS01] satisfies the standard model PA2 security
under the same assumption.

1.3 Organization

The paper is organized as follows: In Section 2, we review the definition of the
standard model PA2. In Section 3, we show that the statistical PA2 is strictly
stronger than the computational one. In Section 4, we show the main theorem,
which states that “(perfect, statistical, or computational) PA2 + Oneway ⇒
IND-CPA”. Finally, in Section 5, we give the conclusion of our paper.



2 Definition of Standard Model PA2

In this section, we review the definition of the standard model PA2 [BP04].
Before giving the formal definition of the standard model PA2, we give intuitive
explanation about it. The definition of the standard model PA2 is based on
the indistinguishability of two worlds, named Dec world and Ext world, and
uses entities named adversary and extractor. In the Dec world, the adversary
can access to the decryption oracle and the encryption oracle. In contrast, the
adversary in the Ext world can access to the extractor and the encryption oracle.
The extractor has to simulate the decryption oracle by using only data “which
the adversary can see”, that is, the adversary’s description, its random tape, and
the answers from the encryption oracle.

It is a characteristic feature for the definition that it has a mechanism to hide
the encryption query of the adversary from the extractor. In order to hide the
encryption query, the entity, named plaintext creator, is also introduced. It is an
entity which makes encryption queries as the adversary’s proxy. The adversary,
in both Dec and Ext worlds, does not make encryption queries directly but
sends an order to the plaintext creator, in order to make it send a query to the
encryption oracle.

The extractor is not allowed to watch the plaintext creator’s random tape,
although it is allowed to watch the adversary’s one. Hence it cannot know what
queries are made to the encryption oracle. We say that an encryption scheme
satisfies the standard model PA2, if the Dec and Ext worlds are indistinguishable
for the adversary from each other.

We now define the standard model PA2 formally:

Definition 1 (Standard Model PA2 [BP04]) Let Π = (Gen, Enc, Dec) be a
public-key encryption scheme. Let A, P , K be polytime machines, which are
respectively called adversary, plaintext creator, and extractor. Let A(pk; RA)
denotes the execution of an algorithm A on inputting pk with the random coin
RA. For a security parameter κ ∈ N, we define two experiments ExpPA2-Dec

Π,A,P (κ)

and ExpPA2-Ext
Π,A,K,P(κ), shown in Fig. 1. In these experiments, it is required that A

makes no query (dec, C) for which C ∈ CList.
We say that the public-key encryption scheme Π is perfectly/statistically/com-

putationally standard model PA2 secure if

∀A∃K∀P : ExpPA2-Dec
Π,A,P (κ) and ExpPA2-Ext

Π,A,K,P(κ) are

perfectly/statistically/computationally indistinguishable for κ.

Since we only discuss about the standard model PA2, we simply say that Π
is perfectly/statistically/computationally PA2 secure if it is perfectly/statistical-
ly/computationally standard model PA2 secure.

Theorem 2 (Fundamental Theorem for Standard Model PA2 [BP04]).
Let Π be an IND-CPA secure public-key encryption scheme. If Π is (perfect,
statistical, or computational) PA2 secure, then Π is IND-CCA2 secure.



—ExpPA2-Dec
Π,A,P (κ)—

Take coins RA and RP for A and P randomly.
(pk, sk)← Gen(1κ), CList← ε, StP ← ε. (Here StP is the state of P).
Run A(pk; RA) until it halts, replying to its oracle queries as follows:
If A makes query (enc, Q)

(M, StP)← P(Q,StP ; RP), C ← Encpk(M), CList← CList||C.
Send C to A as the reply.

If A makes query (dec, Q)
M ← Decsk(Q). Send M to A as the reply.

Return an output S of A.

—ExpPA2-Ext
Π,A,K,P(κ)—

Take coins RA, RP , and RK for A, P, and K randomly.
(pk, sk)← Gen(1κ), CList← ε, StP ← ε, StK ← (pk, RA).

(Here StP and StK are the states of P and K).
Run A(pk; RA) until it halts, replying to its oracle queries as follows:
If A makes query (enc, Q)

(M, StP)← P(Q,StP ; RP), C ← Encpk(M), CList← CList||C.
Send C to A as the reply.

If A makes query (dec, Q)
(M, StK)← K(Q,CList, StK; RK). Send M to A as the reply.

Return an output S of A.

Fig. 1. Experiments used to define PA2 of [BP04]

3 Statistical PA2 is Stronger than Computational PA2

In this section, we show that the computational PA2 security is strictly stronger
than the statistical one. That is, we give an example of a computational PA2 se-
cure public-key encryption scheme Π ′ = (Gen′, Enc′, Dec′) which is not statistical
PA2 secure.

Let κ be a security parameter. Let Π = (Gen, Enc, Dec) be a public-key
encryption scheme which is statistical PA2 secure and IND-CPA secure (and
therefore IND-CCA2 secure). For instance, we can set Π to the Cramer-Shoup
scheme [CS01], if the Diffie-Hellman Knowledge assumption [D91,BP04] and the
DDH assumption holds. We construct the desired public-key encryption scheme
Π ′ = (Gen′, Enc′, Dec′) by modifying Π . The key generation algorithm Gen′(1κ)
first executes Gen(1κ) and obtains a public key/secret key pair (pk, sk) as the
output. After that, it selects a message M0 randomly and computes a ciphertext
C0 = Encpk(M0). Then it sets pk′ = (pk, C0) and sk′ = sk. Finally, it outputs
the public key/secret key pair (pk′, sk′). We also set Enc′pk′(M) = Encpk(M) and

Dec′sk′(C) = Decsk(C). See Fig. 2 also for the description of Π ′.
We first see that Π ′ is not statistical PA2 secure. In order to see it, we

construct an adversary A′
0 such that no extractor can extract a message from

the ciphertext output byA′
0. Our adversaryA′

0 is the one who obtains C0 from its
input pk′ = (pk, C0) and outputs C0. Recall that not A′

0 but the key generation
algorithm Gen′ generates M0 and C0. Therefore,A′

0 “does not know” the message



Gen′(1κ):
(pk, sk)← Gen(1κ)
Select a message M0 randomly.
C0 ← Encpk(M0).
pk′ ← (pk, C0), sk′ ← sk.
Output (pk′, sk′).

Enc′pk′ (M) = Encpk(M), Dec′sk′ (C) = Decsk(C).

A′
0(pk′):
Parse pk′ as (pk, C0) and output C0.

Fig. 2. Descriptions of Π ′ = (Gen′, Enc′, Dec′) and A′
0.

M0 corresponding to C0. Since an extractor K′ is input only data which the
adversary can see, K′ “cannot know” M0 = Dec′sk′(C0) = Decsk(C0) either. This
means that Π ′ is not statistical PA2 secure.

However, we can show that Π ′ is the computational PA2 secure. At first
glance, it seems that Π ′ cannot be computational PA2 secure either, because
even an extractor K′ for the computational PA2 “cannot know” M0 = Dec′sk′(C0)
either. However, we actually do not require the extractor who “can know” such
M0. Recall that the extractor K′ is only required to simulate the decryption
oracle in such a way that an adversary A′

0 cannot computationally distinguish
the output of K′ from that of decryption oracle. Therefore, K′ does not need to
output the plaintext M0 itself, but can output the plaintext M1 such that A′

0

cannot computationally distinguish the distribution of M1 from that of M0.
Recall that A′

0 “knows” neither the plaintext M0 nor the random number
r which was used in the computation of C0 = Encpk(M0; r). Recall also that
Π satisfies the IND-CCA2 security. Hence, A′

0 cannot distinguish a randomly
selected message M1 from M0. Therefore, K′ can output a randomly selected
message M1 as the answer to the decryption query C0.

Based on the above discussion, we can prove the following theorem.

Theorem 3. Suppose that there exists at least one computational PA2 secure
public-key encryption scheme. (For instance, if the Cramer-Shoup scheme [CS01]
satisfies it under the DDH assumption and the Diffie-Hellman Knowledge as-
sumption [D91,BP04]). Then there exists a computational PA2 secure public-key
encryption which is not statistical PA2 secure.

It is interesting to compare our result with Fujisaki’s result [F06] about the
random oracle PA2. In his paper, he defined a plaintext simulatability (PS) no-
tion, which was an “computational variant” of the random oracle PA2, and
showed that plaintext simulatability notion was strictly stronger than the ran-
dom oracle PA2. Therefore, our result can be recognized as the standard model
variant of Fujisaki’s result [F06]. By comparing his result with our result, we can
say that statistical and computational standard model PA2 notions is related to
the random oracle PA2 and the PS, respectively.



4 PA2-04 together with Onewayness Implies IND-CPA

Our main result is the following:

Theorem 4. Let Π = (Gen, Enc, Dec) be a public-key encryption scheme, which
satisfies the onewayness property. If Π is perfectly, statistically, or computation-
ally PA2 secure, then Π is IND-CPA secure, (and therefore IND-CCA2 secure).

This result shows the “all-or-nothing” aspect of the PA2. That is, the (per-
fect, statistical, or computational) PA2 secure encryption scheme either satisfies
the strongest message hiding property, IND-CCA2, or does not satisfy even the
weakest message hiding property, onewayness.

Before proving Theorem 4, we see that one cannot remove the onewayness
assumption from Theorem 4:

Theorem 5. There is a public-key encryption which is perfect PA2 secure but
is neither oneway nor IND-CPA secure.

Proof (Theorem 5, sketch). Let Π = (Gen, Enc, Dec) be a public-key encryption
scheme, such that an encryption Encpk(M) of a message M is M itself. Then Π
is clearly not IND-CPA secure. Recall the definition of the statistical PA2. We
say that Π satisfies the statistical PA2 security if, for any adversary A, there
exists an extractor K such that K succeeds in extracting the plaintext M which
corresponds to a ciphertext C output by A. Since K can know the message M
directly from the ciphertext itself, Π satisfies the perfect PA2.

We first prove Theorem 4 for the special case where Π is statistically PA2
secure. Theorem 4 for the perfect PA2 security is clearly followed from it.

Proof (Theorem 4 for the statistical PA2, sketch). Let us make a contradictory
supposition. That is, we suppose that there exists a statistically PA2 secure
public-key encryption scheme Π = (Gen, Enc, Dec) which is not IND-CPA secure.
Then we show that Π is not oneway.

In order to show it, we construct an adversaryA0 which satisfies the following
tricky property: A0 can obtain a ciphertext C0 such that (1) A0 “does not know”
the plaintext M0 = Decsk(C0) and (2) C0 is not generated by the encryption
oracle. For a moment, suppose that we succeed in constructing such A0. Since
C0 is not generated by the encryption oracle, A0 can make the query C0 to the
decryption oracle. Then, from the definition of the plaintext awareness, there
exists an extractor K which can extract the plaintext M0 from the query C0 of
A0. (Here we exploit the supposition that Π is statistically PA2 secure). This
means that K succeeds in outputting the unknown plaintext M0 of a ciphertext
C0. That is, K can invert the encryption function Enc. This contradicts to the
assumption that Π is oneway.

We next describe how to construct A0. At first glance, it seems impossible
to construct such A0, since the definition of the plaintext awareness disable A0

generating a ciphertext C0 “without knowing” the corresponding plaintext M0.



The basic idea how A0 obtains such ciphertext C0 is similar to that used in
Section 3. In Section 3, the adversary obtains such C0 from the key generation
algorithm. In this proof, A0 obtains such C0 from another entity, that is, a
plaintext creator P0. Then A0 “does not know” the message M0 corresponding
to C0, since not A0 itself but P0 generates C0. (We stress that not the encryption
oracle but P0 itself generates C0. If the encryption oracle generates C0,A0 cannot
send C0 to the decryption oracle).

In order to employ the technique mentioned above, P0 has to send C0 to A0.
However, there is no inherent communication channel which enables P0 to send
C0 directly to A0. So, we construct a “virtual” communication channel from P0

to A0.
Here we exploit the assumption that the public-key encryption scheme Π is

not IND-CPA secure. Recall that the definition of the statistical PA2 security
allows P0 to send plaintexts to the encryption oracle. Therefore, P0 can send to
A0 a ciphertext c such that P0 generates the corresponding plaintext. Since Π
is not IND-CPA secure, the ciphertext c leaks information of the corresponding
plaintext. This means that P0 can send to A0 some sort of information via the
ciphertext c. That is, P0 can use the ciphertext as the virtual channel.

We now describe more precisely how P0 “sends” C0 to A0. Let pk0 be a
public key and sk0 be the unknown secret key corresponding to pk0. Since Π
is not IND-CPA secure, there exist an algorithm B, a state StB of B, a pair
of messages (m0, m1), and a non negligible and non negative valued function
µ = µ(κ) satisfying

Pr(B(pk0, m0, m1, Encpk
0
(m1), StB) = 1)−Pr(B(pk0, m0, m1, Encpk

0
(m0), StB) = 1) ≥ µ.

We set N to d1/µe. Let bi be the i-th bit of the ciphertext C0 = Encpk
0
(M0)

such that M0 is unknown. In advance, A0 sends pk0||m0||m1||N to P0, via the
communication channel which enables A0 to query. For each i, P0 sends a mes-
sage mbi

as a query to the encryption oracle N times. Then the encryption oracle

sends c
(i)
1 = Encpk

0
(mbi

), . . . , c
(i)
N = Encpk

0
(mbi

) to A0 as the answers. After re-

ceiving {c
(i)
j }, A0 executes B(pk0, m0, m1, c

(i)
j , StB) and obtains an output u

(i)
j of

B for each i and j. Then A0 sets b′i = 1 if the number of j satisfying u
(i)
j = 1 is

more than the number of j satisfying u
(i)
j = 0. Otherwise A0 sets b′i = 0. Since B

has a non negligible advantage, the equality u
(i)
j = bi is satisfied with probability

1/2+(non negligible). Hence the equation b′i = bi is satisfied with overwhelming
probability. That is, A0 succeeds in reconstructing the bit bi of the ciphertext
C0 for each i. Therefore, A0 can reconstruct the ciphertext C0 = b1|| · · · ||bn. In
this way, A0 succeeds in “receiving” C0 from P0.2

We now give the proof for the general case where Π satisfies only the com-
putational PA2 security.

Proof (Theorem 4 for the computational PA2, sketch). As in the case of the
proof of for statistical PA2, we suppose that there exists a computationally PA2



secure public-key encryption scheme Π which is not IND-CPA secure. Then we
show that Π is not oneway.

We use similar algorithms to A0 and P0 of the proof for the statistical PA2.
However, in the case of Π is computational PA2, the extractor K may output a
plaintext M ′ which is not equal to the plaintext M0 = Decsk0(C0), although the
distribution of M ′ has to be computationally indistinguishable from that of M0.
Therefore, in order to obtain M0, we modify the description of A0 and P0.

We will first construct an adversary A1 by modifying A0. Then, for some ex-
tractorK, ExpPA2-Ext

Π,A1,K,P′(κ) is computationally indistinguishable from ExpPA2-Dec
Π,A1,P′(κ)

for any P ′. Then, by modifying P0, we will construct a plaintext creator P1 such
that ExpPA2-Ext

Π,A1,K,P1
(κ) is, in fact, statistically indistinguishable from ExpPA2-Dec

Π,A1,P1
(κ),

although we cannot exploit P1 itself to obtain the secret plaintext M0. We will
finally construct a plaintext creator P2, by modifying P1, such that P2 can be
exploited to obtain M0.

We will now give a brief description of A1 and P1 by describing the exper-
iment ExpPA2-Dec

Π,A1,P1
(κ). (We stress that we first choose A1, next obtain K, and

finally choose P1, although we first describe about A1 and P1, and next describe
K. One can easily check that we can take K which does not depend on P1). In the
experiment ExpPA2-Dec

Π,A1,P1
(κ), the experimenter first executes the key generation

algorithm Gen(1κ) and obtains a public key/secret key pair (pk, sk) as an output.
Then he inputs pk to the adversary A1, the encryption oracle, and the decryp-
tion oracle. He also inputs sk to the decryption oracle. Then A1 executes B(pk)
and obtains (m0, m1, StB) as an output. After that, A1 sends pk||m0||m1||N to
P1, via the communication channel which enables A1 to query. Here N = d1/µe.

Then P1 generates a message M1 randomly, and computes a ciphertext C1 =
Encpk(M1). After that, A1 and P1 execute the same procedures as those of A0

and P0 except that they execute these procedures using not C0 but C1. That is,
P1 “sends” C1 to A1 via the “virtual” channel. After “receiving” C1 from P1, A1

makes query C1 to the decryption oracle. Then the decryption oracle sends back
a message M ′ to A1 as the answer to the query C1. (Note that the decryption
oracle sends back a message M ′ = M1 = Decsk(C1), although an extractor K
may send back a message M ′ other than M1).

After that, A1 sends M ′ to P1 via the communication channel which enables
A1 to query. P1 checks whether M1 = M ′ or not. Then P1 sets S = 1 if M1 = M ′,
otherwise sets S = 0. After that, P1 “sends” S to A1 via the “virtual” channel.
Finally, A1 outputs S.

Then, for some extractor K, ExpPA2-Ext
Π,A1,K,P′(κ) is computationally indistin-

guishable from ExpPA2-Dec
Π,A1,P′(κ) for any P ′. In particular, ExpPA2-Ext

Π,A1,K,P1
(κ) is

computationally indistinguishable from ExpPA2-Dec
Π,A1,P1

(κ).

We show that ExpPA2-Ext
Π,A1,K,P1

(κ) is, in fact, statistically indistinguishable

from ExpPA2-Dec
Π,A1,P1

(κ). In the case where A1 and P1 are in the real experiment

ExpPA2-Dec
Π,A1,P1

(κ), the output S of A1 is always 1. Recall that A1 cannot compu-

tationally distinguish ExpPA2-Ext
Π,A1,K,P1

(κ) from ExpPA2-Dec
Π,A1,P1

(κ). Therefore, even in

the experiment ExpPA2-Ext
Π,A1,K,P1

(κ), S = 1 is satisfied with overwhelming proba-



bility. Recall that S = 1 holds if and only if M ′ = M . Hence, K succeeds in
outputting the correct message M corresponding to C ′

1 = C1 = Encpk(M) with

overwhelming probability. This means that ExpPA2-Ext
Π,A1,K,P1

(κ) is statistically in-

distinguishable from ExpPA2-Dec
Π,A1,P1

(κ).
We next construct a plaintext creator P2, by modifying P1. Let (pk0, C0)

be an instance of the onewayness game, and sk0 be the unknown secret key
corresponding to pk0. Our goal is to compute M0 = Decsk0(C0). The description
of P2 is equal to that of P1, except that (1) P2 takes C0 as an input, (2) P2 does
not use a ciphertext C1 generated by P2 itself but instead uses a part C0 of the
instance (pk0, C0) of the onewayness game, and (3) P2 always sets S = 1.

We consider a modified version of the experiment ExpPA2-Ext
Π,A1,K,P2

(κ), named

ExpPA2-Ext∗
Π,A1,K,P2

(κ, pk0, C0), in which the experimenter uses not the public key
pk generated by Gen(1κ) but instead uses a part pk0 of the instance (pk0, C0)
of the onewayness game. Recall that both P1 in ExpPA2-Ext

Π,A1,K,P1
(κ) and P2 in

ExpPA2-Ext∗
Π,A1,K,P2

(κ, pk0, C0) set S = 1 with overwhelming probability. Moreover,
the distribution of (pk0, C0) is equal to that of (pk, C) selected randomly. Hence,
the behavior of P1 in ExpPA2-Ext

Π,A1,K,P1
(κ) is statistically indistinguishable from that

of P2 in ExpPA2-Ext∗
Π,A1,K,P2

(κ, pk0, C0). (Recall that K is not input the random coin
of a plaintext creator. Therefore, K cannot distinguish the behavior of P1 from
that of P2).

Therefore, the distribution of the output of ExpPA2-Ext∗
Π,A1,K,P2

(κ, pk0, C0) is sta-

tistically indistinguishable from that of the output of ExpPA2-Ext
Π,A1,K,P1

(κ). Re-

call that, in the experiment ExpPA2-Ext
Π,A1,K,P1

(κ), the output M ′ of K is equal to
M1 = Decsk0

(C1) with overwhelming probability. Therefore, even in the experi-
ment ExpPA2-Ext∗

Π,A1,K,P2
(κ, pk0, C0), the output M ′ of K is equal to M0 = Decsk0

(C0)
with overwhelming probability. This means that K succeeds in obtaining the
unknown plaintext M0 = Decsk0

(C0) with overwhelming probability. 2

We see that Theorem 4 does not hold in the case of the random oracle PA2.
See Appendix A for the definition of the random oracle PA2.1

Proposition 6 Suppose that there exists a group G on which the DDH problem
is easy although the CDH problem is hard. (For instance, we can set G to an
elliptic curve group on which a bilinear pairing [BF01,MOV93,JN03,SOK01] is
defined). Then there exists a public-key encryption scheme Π = (Gen, Enc, Dec)
which satisfies the random oracle PA2 security and the onewayness but does not
satisfy the IND-CPA security.

Proof (sketch). The desired encryption scheme is the Fujisaki-Okamoto [FO99]
padded ElGamal encryption scheme such that a message and elements g and h of
a public key (g, h) are taken from the above G. Similar to the case of the original

1 The definition of the random oracle PA2 differ subtly depending on papers. Our
definitions are those of [BR94,FOPS01]. In some papers, such as [BDPR98,F06], the
authors say that a public-key encryption scheme satisfies the random oracle PA2, if
it satisfies both our definition and the IND-CPA security.



Fujisaki-Okamoto padded ElGamal encryption scheme, we can prove that the
encryption scheme satisfies the random oracle model PA2 security. Moreover, it
satisfies onewayness since the CDH problem is hard on G. However, it does not
satisfy the IND-CPA security since the DDH problem on G is easy. 2

By applying the similar idea to the Damg̊ard scheme [D91], one can also show
that there exists a public-key encryption scheme which satisfies the standard
model PA1 security [BP04] and the onewayness but does not satisfy the IND-
CPA security. See Appendix A for the definition of the standard model PA1.

5 Conclusion

In this paper, we studied the relationship between the standard model PA2 and
the property about message hiding, that is, IND-CPA. Although it seems that
these two are independent notions at first glance, we showed that all of the per-
fect, statistical, and computational PA2 in the standard model imply the IND-
CPA security if the encryption function is oneway. This result combining with
the fundamental theorem implies the stronger variant of the fundamental the-
orem, “(perfect, statistical or computational) PA2 + Oneway ⇒ IND-CCA2”.
It shows the “all-or-nothing” aspect of the PA2. That is, a (perfect, statisti-
cal, or computational) PA2 secure public-key encryption scheme either satisfies
the strongest message hiding property, IND-CCA2, or does not satisfy even the
weakest message hiding property, onewayness.

We also showed that the computational PA2 notion is strictly stronger than
the statistical one. By comparing Fujisaki’s result [F06] with our result, we can
say that statistical and computational standard model PA2 notions is related to
the random oracle PA2 and the plaintext simulatability [F06], respectively.
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A Definitions

A.1 Security Definitions of an Encryption Scheme

Definition 7 (IND-CPA/CCA1/CCA2) Let Π = (Gen, Enc, Dec) be a public-
key encryption scheme and κ be a security parameter. For a public key/secret
key pair (pk, sk) for Π , we let Odec(sk, ·) be the oracle (named decryption ora-
cle) such that it returns Decsk(C) to an adversary when the adversary sends a
ciphertext C to it. Let b be a bit. We also let Oenc(b, pk, ·) be the oracle (named
encryption oracle) such that it returns Encpk(Mb) to an adversary when the ad-
versary sends a pair (M0, M1) of messages with the same length to it. We call
Encpk(Mb) the challenge ciphertext.

For a bit b and a polytime adversary A, we set

P
(b)
Π,A(κ) = Pr((pk, sk)← Gen(1κ), b′ ← AOenc(b,pk,·),Odec(sk,·)(pk) : b′ = 1),

and AdvIND
Π,A(κ) = |P

(1)
Π,A(κ)−P

(0)
Π,A(κ)|.

Above, A can make a query to Oenc(b, pk, ·) only once. Moreover, A is not
allowed to send the challenge ciphertext to Odec(sk, ·).

We say that Π is IND-CPA secure if AdvIND
Π,A(κ) is negligible for any polytime

adversary A such that A has made no query to Odec(sk, ·). We say that Π is
IND-CCA1 secure if AdvIND

Π,A(κ) is negligible for any polytime adversary A such
that A has made no query to Odec(sk, ·) after receiving the challenge ciphertext
from Oenc(b, pk, ·). We also say that Π is IND-CCA2 secure if AdvIND

Π,A(κ) is
negligible for any polytime adversary A.

Definition 8 (Onewayness) Let κ be a security parameter, Π = (Gen, Enc, Dec)
be a public-key encryption scheme, and Mpk be a message space of Π in the
case where the public key is pk. We say that Π is oneway (against CPA attack)
if for any polytime adversary I (named inverter), the probability

Pr((pk, sk)← Gen(1κ), M ←Mpk, C ← Encpk(M), M ′ ← I(pk, C) : M = M ′)

is negligible for κ.

Plaintext Awareness defined in [BR94,BDPR98] We review the defini-
tions of the PA1 and the PA2 in the random oracle model, defined in [BR94,BDPR98].

Definition 9 (Random Oracle PA2) Let Π = (Gen, Enc, Dec) be a public-
key encryption scheme which uses a hash function. For a hash function Hash,
we let GenHash, EncHash, and DecHash denote the key generation, encryption, and
decryption algorithms instantiated by the hash function Hash. Let A and K be
polytime machines, which are respectively called adversary and extractor. For a
security parameter κ ∈ N, let ExpPA2-RO

Π,A,K (κ) denote the experiment described in
Fig. 3.



Hash← (Set of all hash functions), (pk, sk)← GenHash(1κ).

C ← AHash,EncHash
pk (pk).

HList←(The list of all pairs of hash queries of A and the corresponding answers),

CList←(The list of all answers of the oracle EncHash
pk ).

M ← K(pk, C, HList, CList).
If M = DecHash

sk (C), return 1. Otherwise return 0.

Fig. 3. Experiment used to define the random oracle PA2

In this experiment, C must not be an element of CList. We say the public-
key encryption scheme Π = (Gen, Enc, Dec) is random oracle PA2 secure, if there
exists K such that, for any A, the success probability

SuccPA2-RO
Π,A,K (κ) = Pr(ExpPA2-RO

Π,A,K (κ) = 1)

is overwhelming for κ.

Definition 10 (Random Oracle PA1) We say that a public-key encryption
scheme Π = (Gen, Enc, Dec) satisfies the random oracle PA1, if there exists
an extractor K such that, for any adversary A which makes no query to the
encryption oracle, the success probability SuccPA2-RO

Π,A,K (κ) is negligible for κ.

Theorem 11. (Fundamental Theorem for the random oracle PA [BR94,
BDPR98]) Let Π be an IND-CPA secure public-key encryption scheme in the
random oracle model. If Π satisfies the random oracle PA1 or PA2 security,
then Π is IND-CCA1 or IND-CCA2 secure respectively.

Standard Model PA1 We next review the definition of the PA1 in the sense of
[BP04]. We use two experiments for defining PA1. These experiments are almost
the same as those for PA2, except that an adversary makes no query to the
plaintext creator P . Since the experiments do not depend on P , we denote them
by ExpPA1-Dec

Π,A (κ) and ExpPA1-Ext
Π,A,K (κ).

Definition 12 (standard model PA1) We say that a public-key encryption
scheme Π = (Gen, Enc, Dec) is perfect/statistical/computational PA1 secure in
the sense of [BP04], or easily perfect/statistical/computational PA1 secure, if for
each adversary A such that it makes no query to the plaintext creator, there
exists K such that the two experiments ExpPA1-Dec

Π,A (κ) and ExpPA1-Ext
Π,A,K (κ) are

perfectly/statistically/computationally indistinguishable. We simply say that Π
is PA1 secure in the sense of [BP04], (or PA1 secure) if Π is computationally
PA1 secure.

Theorem 13 (Fundamental Theorem for Standard Model PA1 [BP04]).
Let Π be an IND-CPA secure public-key encryption scheme. If Π is (perfect, sta-
tistical, or computational) PA1 secure, then Π is IND-CCA1 secure.


