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Abstract. There have been active discussions on how to derive a consistent
cryptographic key from noisy data such as biometric templates, with the help
of some extra information called a sketch. It is desirable that the sketch reveals
little information about the biometric templates even in the worst case (i.e.,
the entropy loss should be low). The main difficulty is that many biometric
templates are represented as points in continuous domains with unknown dis-
tributions, whereas known results either work only in discrete domains, or lack
rigorous analysis on the entropy loss. A general approach to handle points in
continuous domains is to quantize (discretize) the points and apply a known
sketch scheme in the discrete domain. However, it can be difficult to analyze
the entropy loss due to quantization and to find the “optimal” quantizer. In
this paper, instead of trying to solve these problems directly, we propose to ex-
amine the relative entropy loss of any given scheme, which bounds the number
of additional bits we could have extracted if we used the optimal parameters.
We give a general scheme and show that the relative entropy loss due to sub-
optimal discretization is at most (n log 3), where n is the number of points, and
the bound is tight. We further illustrate how our scheme can be applied to real
biometric data by giving a concrete scheme for face biometrics.
Keywords: Secure sketch, biometric template, continuous domain.

1 Introduction

The main challenge in using biometric data in cryptography is that they cannot be
reproduced exactly. Some noise will be inevitably introduced into biometric samples
during acquisition and processing. There have been active discussions on how to extract
a reliable cryptographic key from such noisy data. Some recent techniques attempt to
correct the noise in the data by using some public information P derived from the
original biometric template X . These techniques include fuzzy commitment [12], fuzzy
vault [11], helper data [19], and secure sketch [7]. In this paper, we follow Dodis et al.
[7] and call such public information P a sketch.

Typically, there are two main components in a secure sketch scheme. The first is the
sketch generation algorithm, which we will refer to as the encoder. It takes the original
biometric template X as the input, and outputs a sketch P . The second algorithm is
the biometric template reconstruction algorithm, or the decoder, which takes another



biometric template Y and the sketch P as the input and outputs X ′. If Y and X are
sufficiently similar according to some similarity measure, we will have X = X ′. An
important requirement for such a scheme is that the sketch P should not reveal too
much information about the biometric template X . Dodis et al. [7] gives a notion of
entropy loss, which (informally speaking) measures the advantage that P gives to any
adversary in guessing X , when X is discrete in nature (Section 3 provides the details).
It is worth to note that the entropy loss is a worst case bound for all distributions of
X .

There are several difficulties in applying many known secure sketch techniques to
known types of biometric templates directly. Firstly, many biometric templates are
represented by sequences of n points in a continuous domain (say, R), or equivalently,
points in an n-dimensional space (say, R

n). In this case, since the entropy of the original
data can be very large, and the length of the extracted key is typically quite limited, the
“entropy loss” as defined in [7] can be very high for any possible scheme. For example, X
is often a discrete approximation of some points in a continuous domain (e.g., decimal
fractions obtained by rounding real numbers). As the precision of X gets higher, both
the entropy of X and the entropy loss from P become larger, but the extracted key
can become stronger. Hence, this notion of entropy loss alone is insufficient, and the
seemingly high entropy loss for this type of biometric data would be misleading. We
will discuss this issue in detail in Section 4, and give a complimentary definition of
relative entropy loss for noisy data in the continuous domain. Informally speaking, the
relative entropy loss of a sketch measures the imperfectness of the rounding, which is
the maximum amount of additional entropy we can obtain by the “optimal” rounding.
At the same time, the entropy loss from P serves as a measure of the security of the
sketch in the discrete domain.

Secondly, even if the biometric templates are represented in discrete form, there are
practical problems when the entropy of the original template is high. For example, the
iris pattern of an eye can be represented by a 2048 bit binary string called iris code, and
up to 20% of the bits could be changed under noise [9]. The fuzzy commitment scheme
based on binary error-correcting codes [12] seems to be applicable at the first glance.
However, it would be impractical to apply a binary error-correcting code on such a
long string with such a large error-correcting capability. A two-level error-correcting
technique is proposed in [9], which essentially changes the similarity measure. As a
result, the space is no longer a metric space.

Thirdly, the similarity measures for many known biometric templates can be quite
different from those considered in many theoretical works (such as Hamming distance,
set difference and edit distance in [7]). This can happen as a result of technical consid-
erations (e.g., in the case of iris codes). However, in many cases this is due to the nature
of biometric templates. For instance, a fingerprint template usually consists of a set of
minutiae (feature points in 2-D space), and two templates are considered as similar if
more than a certain number of minutiae in one template are near distinct minutiae in
the other. In this case, the similarity measure has to consider both Euclidean distance
and set difference at the same time.

The secure sketch for point sets [5] is perhaps the first rigorous approach to similarity
measures that do not define a metric space. A generic scheme is proposed in [5] for point



sets in bounded discrete d-dimensional space for any d, where the underlying similarity
measure is motivated by the similarity measure of fingerprint templates. While such a
scheme is potentially applicable to fingerprints represented as minutiae, other types of
biometrics are different both in representations and similarity measures, thus require
different considerations and different schemes.

In this paper, we study how to design secure sketch for biometric templates, where
the worst case bound can be proved. We observe that many biometric templates can
be represented in a general form: The original X can be considered as a list of n points,
where each point x of X is in a bounded continuous domain. Under noise, each point
can be perturbed by a distance less than δ, and on top of that, at most t points can be
replaced. Similar to [5], we will refer to the first noise as the white noise, and the second
replacement noise. We note that this similarity measure can be applied to handwritten
online signatures [8], iris patterns [9], voice features [15], and face biometrics [17]. This
formulation is different from that in [5] in two ways: (1) The points are in a continuous
domain, and (2) the points are always ordered.

To handle points in continuous domain, a general two step approach is to (1) quan-
tize (i.e., discretize) the points in X to a discrete domain with a scalar quantizer Qλ,
where λ is the step size, and (2) apply secure sketch techniques on the quantized points

X̂ = Qλ(X) in the quantized domain, which is discrete. For example, if points in X
are real numbers between 0 and 1, assume that we have a scalar quantizer Qλ with
step size λ = 0.01, such that Qλ(x) = x̂ if and only if x̂λ ≤ x < (x̂ + 1)λ, then every
point in X would be mapped to an integer in [0, 99]. After that, we can apply a secure
sketch for discrete points in the domain [0, 99]n to achieve error-tolerance.

However, there are two difficulties when this approach is applied. Firstly, if we follow
the notion of secure sketch and entropy loss as in [7], the quantization error X − X̂ in
the first step has to be kept in the sketch, since exact reconstruction of X is required
by definition. However, it can be difficult to give an upper bound on the entropy loss
from the quantization errors. Even if we can, it can be very large.

Furthermore, as the quantization step λ becomes very small, the bound on the
entropy loss in the quantized domain during the second step can be very high. For
instance, for x ∈ [0, 1) and δ = 0.01, when λ = 0.01, the entropy loss in Step (2) will be
log 3, and the bound is tight. When λ = 0.001, the entropy loss will be log 21. However,
the big difference in entropy loss in the quantized domain can be misleading. We will
revisit this example in Section 5, and will show that the second case actually results in
a stronger key if X is uniformly distributed.

To address the above problems, we consider the following strategy. Instead of trying
to answer the question of how much entropy is lost during quantization, we study how
different quantizers affect the strength of the key that we can finally extract from the
noisy data. In particular, given a secure sketch scheme in the discrete domain and
a quantizer Q1 with step size λ1, we consider any quantizer Q2 with step size λ2.
Assuming that m1 and m2 are the strengths of the keys under these two quantizers
respectively, we found that it is possible to give an upper bound on the difference
between m1 and m2, for any distribution of X , and any choices of λ2 (hence Q2)
within a certain range. This bound can be expressed as a function of λ1. In other words,
although we do not know what is the exact entropy loss due to the quantizer Q1, we



do know that at most how far away Q1 can be from the “optimal” one. Based on this,
we give a notion of relative entropy loss for data in continuous domain. Furthermore,
we show that if X is uniformly distributed, the relative entropy loss can be bounded
by a constant for any choice of λ1.

To illustrate how our general approach can be applied to practical biometric tem-
plates, we give a scheme based on the authentication scheme for face biometrics in
[17]. We will also discuss some practical issues in designing secure sketch schemes for
biometric templates.

We note that our proposed schemes and analysis can be applied for two parties
to extract secret keys given correlated random variables (e.g., [14]), where the random
variables take values in a continuous domain (e.g. R). The entropy loss in the quantized
domain measures how much information can be leaked to an eavesdropper, while the
relative entropy loss measures how many additional bits that we might be able to
extract.

We will give a review of related works in Section 2, followed by some preliminary
formal definitions in Section 3. Our definition of secure sketch and its security will be
presented in Section 4. We give a general similarity measure and our proposed schemes
in Section 5, together with a security analysis and some discussions on choosing the
parameters. A concrete secure sketch scheme for face biometrics will be given in 6.

2 Related Works

It is not surprising that the construction of the sketch largely depends on the represen-
tation of the biometric templates and the underlying distance function that measures
the similarity. Most of the known techniques assume that the noisy data under consid-
eration are represented as points in some metric space. The fuzzy commitment scheme
[12], which is based on binary error-correcting codes, considers binary strings where
the similarity is measured by Hamming distance. The fuzzy vault scheme [11] consid-
ers sets of elements in a finite field with set difference as the distance function, and
corrects errors by polynomial interpolation. Dodis et al. [7] further gives the notion of
fuzzy extractors, where a “strong extractor” (such as pair-wise independent hash func-
tions) is applied after the original X is reconstructed to obtain an almost uniform key.
Constructions and rigorous analysis of secure sketch are given in [7] for three metrics:
Hamming distance, set difference and edit distance. Secure sketch schemes for point
sets in [5] are motivated by the typical similarity measure used for fingerprints, where
each template consists of a set of points in 2-D space, and the similarity measure does
not define a metric space.

On the other hand, there have been a number of works on how to extract consistent
keys from real biometric templates, which have quite different representations and sim-
ilarity measures from the above theoretical works. Such biometric templates include
handwritten online signatures [8], fingerprints [20], iris patterns [9], voice features [15],
and face biometrics [17]. These works, however, do not have sufficiently rigorous treat-
ment of the security, compared to well-established cryptographic techniques. Some of
the works give analysis on the entropy of the biometrics, and approximated amount of
efforts required by a brute-force attacker.



Boyen [2] shows that a sketch scheme that is provably secure may be insecure when
multiple sketches of the same biometric data are obtained. Boyen et al. further study
the security of secure sketch schemes under more general attacker models in [1], and
techniques to achieve mutual authentication are proposed.

Linnartz and Tuyls [13] consider a similar problem for biometric authentication ap-
plications. They consider zero mean i.i.d. jointly Gaussian random vectors as biometric
templates, and use mutual information as the measure of security against dishonest
verifiers. Tuyls and Goseling [19] consider a similar notion of security, and develop
some general results when the distribution of the original is known and the verifier can
be trusted. Some practical results along this line also appear in [18].

3 Preliminaries

3.1 Entropy and Entropy Loss in Discrete Domain

In the case where X is discrete, we follow the definitions by Dodis et al. [7]. They
consider a variant of the average min-entropy of X given P , which is essentially the
minimum strength of the key that can be consistently extracted from X when P is
made public.

In particular, the min-entropy H∞(A) of a discrete random variable A is defined as
H∞(A) = − log(maxa Pr[A = a]). For two discrete random variables A and B, the av-

erage min-entropy of A given B is defined as H̃∞(A | B) = − log(Eb←B [2−H∞(A|B=b)]).
For discrete X , the entropy loss of the sketch P is defined as L = H∞(X) −

H̃∞(X |P ). This definition is useful in the analysis, since for any ℓ-bit string B, we

have H̃∞(A | B) ≥ H∞(A) − ℓ. For any secure sketch scheme for discrete X , let R
be the randomness invested in constructing the sketch, it is not difficult to show that
when R can be computed from X and P , we have

L = H∞(X) − H̃∞(X | P ) ≤ |P | − H∞(R). (1)

In other words, the entropy loss can be bounded from above by the difference between
the size of P and the amount of randomness we invested in computing P . This allows
us to conveniently find an upper bound of L for any distribution of X , since it is
independent of X .

3.2 Secure Sketch in Discrete Domain

Our definitions of secure sketch and entropy loss in the discrete domain follow that
in [7]. Let M be a finite set of points with a similarity relation S ⊆ M × M. When
(X, Y ) ∈ S, we say the Y is similar to X , or the pair (X, Y ) is similar.

Definition 1 A sketch scheme in discrete domain is a tuple (M, S, Enc, Dec), where
Enc : M → {0, 1}∗ is an encoder and Dec : M × {0, 1}∗ → M is a decoder such
that for all X, Y ∈ M, Dec(Y, Enc(X)) = X if (X, Y ) ∈ S. The string P = Enc(X)
is the sketch, and is to be made public. We say that the scheme is L-secure if for all
random variables X over M, the entropy loss of the sketch P is at most L. That is,
H∞(X) − H̃∞(X | Enc(X)) ≤ L.



We call H̃∞(X | P ) the left-over entropy, which in essence measures the “strength”
of the key that can be extracted from X given that P is made public. Note that in
most cases, the ultimate goal is to maximize the left-over entropy for some particular
distribution of X . However, in the discrete case, the min-entropy of X is fixed but can
be difficult to analyze. Hence, entropy loss becomes an equivalent measure which is
easier to quantify.

4 Secure Sketch in Continuous Domain

In this section we propose a general approach to handle noisy data in a continuous
domain. We consider points in a universe U , which is a set that may be uncountable.
Let S be a similarity relation on U , i.e., S ⊆ U × U . Let M be a set of finite points,
and let Q : U → M be a function that maps points in U to points in M. We will refer
to such a function Q as a quantizer.

Definition 2 A quantization-based sketch scheme is a tuple (U , S,Q,M, Enc, Dec),
where Enc : M → {0, 1}∗ is an encoder and Dec : M × {0, 1}∗ → M is an decoder
such that for all X, Y ∈ U , Dec(Q(Y ), Enc(Q(X))) = Q(X) if (X, Y ) ∈ S. The string
P = Enc(Q(X)) is the sketch. We say that the scheme is L-secure in the quantized
domain if for all random variable X over U , the entropy loss of P is at most L, i.e.,
H∞(Q(X)) − H̃∞(Q(X) | Enc(Q(X))) ≤ L

In other words, a quantization is applied to transform the points in the continuous
domain to a discrete domain, and a sketch scheme for discrete domain is applied to
obtain the sketch P . During reconstruction, we require the exact reconstruction of
the quantization Q(X) instead of the original X in the continuous domain. When
required, a strong extractor can be further applied to Q(X) to extract a key (as the
fuzzy extractor in [7]). That is, we treat Q(X) as the “discrete original”. Similarly, we

call H̃∞(Q(X) | P ) the left-over entropy.
When Q is fixed, we can use the entropy loss on Q(X) to analyze the security

of the scheme, and bound the entropy loss of P . However, using this entropy loss
alone may be misleading, since there are many ways to quantize X , and different
quantizer would make a difference in both the min-entropy of Q(X) and the entropy
loss. Since our ultimate goal is to maximize the left-over entropy (i.e., the average min-

entropy H̃∞(Q(X) | P )), the entropy loss alone is not sufficient to compare different
quantization strategies.

To illustrate the subtleties, we consider the following example. Let x be a point
uniformly distributed in the interval [0, 1), and under noise, it can be shifted but still
within the range [x − 0.01, x + 0.01). We can use a scalar quantizer Q1 with step size
0.01, such that all points in the interval [0, 1) are mapped to integers [0, 99]. In this case,
the min-entropy H∞(Q1(x)) = log 100. As we can see later, there is an easy way to
construct a secure sketch for such Q1(x) with entropy loss of log 3. Hence, the left-over
entropy is log(100/3) ≈ 5.06. Now we consider another scalar quantizer Q2 with step
size 0.001, such that the range of Q2(x) is [0, 999]. A similar scheme on Q2(x) would
give entropy loss of log 21, which seems much larger than the previous log 3. However,



the min-entropy of Q2(x) is also increased to log 1000, and the left-over entropy would
be log(1000/21) ≈ 5.57, which is slightly higher than the case where Q1 is used.

Intuitively, for a given class of methods of handling noisy data in the quantized
domain, it is important to examine how different precisions of the quantization process
affect the strength of the extracted key. For this purpose, we propose to consider not
just one, but a family of quantizers Q, where each quantizer Q drawn from Q defines
a mapping from U to a finite set MQ. Let M be the set of such MQ for all Q ∈ Q.
We also define a family of encoders E and decoders D, such that for each Q and MQ,
there exist uniquely defined EncQ ∈ E and DecQ ∈ D that can handle Q(X) in MQ.

Definition 3 A quantization-based sketch family is a tuple (U , S,Q,M,E,D), such
that for each quantizer Q ∈ Q, there exist M ∈ M, Enc ∈ E and Dec ∈ D, and
(U , S,Q,M, Enc, Dec) is a quantization-based sketch scheme. We say that such a scheme
is a member of the family, and is identified by Q.

Definition 4 A quantization-based sketch family (U , S,Q,M,E,D) is (L,R)-secure
for functions L,R : Q → R if for any member identified by Q1 (with encoder Enc1) it
holds that

1. This member is L(Q1)-secure in the quantized domain; and
2. For any random variable X, and any member identified by Q2 (with encoder Enc2),

we have

H̃∞(Q2(X) | Enc2(Q2(X))) − H̃∞(Q1(X) | Enc1(Q1(X))) ≤ R(Q1).

In other words, to measure the security of the family of schemes, we examine two
aspects of the family. Firstly, we consider the entropy loss in the quantized domain for
each member of the family. This is represented by the function L, which serves as a
measure of security when the quantizer is fixed. Secondly, given any quantizer in the
family, we consider the question: If we use another quantizer, how many more bits can
be extracted? We call this the relative entropy loss, which is represented by the function
R.

We observe that for some sketch families, the relative entropy loss for any given
member can be conveniently bounded by the size of of the sketch generated by that
member. We say that such sketch families are well-formed. More precisely, we have

Definition 5 A quantization-based sketch family (U , S,Q,M,E,D) is well-formed if
for any two members (U , S,Q1,M1, Enc1, Dec1) and (U , S,Q2,M2, Enc2, Dec2), it holds
for any random variable X that

H̃∞ (Q1(X) | 〈P1, P2〉) = H̃∞ (Q2(X) | 〈P1, P2〉) (2)

where P1 = Enc1(Q1(X)) and P2 = Enc2(Q2(X)).

Theorem 1 For any well-formed quantization-based sketch family, given any two mem-
bers (U , S,Q1,M1, Enc1, Dec1) and (U , S,Q2,M2, Enc2, Dec2), it holds for any random
variable X that

H̃∞(Q2(X) | P2) − H̃∞(Q1(X) | P1) ≤ |P1|

where P1 = Enc1(Q1(X)) and P2 = Enc2(Q2(X)).



Proof: First, it is not difficult to show that for any random variables A, B and C,
we have

H̃∞(A | B) − |C| ≤ H̃∞(A | 〈B, C〉) ≤ H̃∞(A | B). (3)

Let X̂1 = Q1(X) and X̂2 = Q2(X). Since the sketch family is well-formed,

H̃∞

(
X̂1 | 〈P1, P2〉

)
= H̃∞

(
X̂2 | 〈P1, P2〉

)
. (4)

Substituting B by P1, C by P2, and A by X̂1 and X̂2 respectively in (3), we have

H̃∞

(
X̂2 | P2

)
− |P1| ≤ H̃∞

(
X̂2 | 〈P1, P2〉

)

= H̃∞

(
X̂1 | 〈P1, P2〉

)
≤ H̃∞

(
X̂1 | P1

)
.

(5)

5 A General Scheme for Biometric Templates

We observe that many biometric templates can be represented as a sequence of points
in some bounded continuous domain. There are two types of noise that can occur. The
first noise, white noise, perturbs each points by a small distance, and the second noise,
replacement noise, replaces some points by different points.

Without loss of generality, we assume that each biometric template X can be written
as a sequence X = 〈x1, x2, · · · , xn〉, where each xi ∈ R and 0 ≤ xi < 1. In other words,
X ∈ U = [0, 1)n. For each pair of biometric templates X and Y , we say that (X, Y ) ∈ S

if there exists a subset C of {1, · · · , n}, such that |C| ≥ n− t for some threshold t, and
for every i ∈ C, it holds that |xi − yi| < δ, for some threshold δ.

Similar to the two-part approach in [5], we construct the sketch in two parts. The
first part, the white noise sketch, handles the white noise in the noisy data, and the
second part, the replacement noise sketch, corrects the replacement noise. We will
concentrate on the white noise sketch in this paper, and the replacement noise sketch
can be implemented using a known secure sketch scheme for set difference (e.g., that
in [7, 3]).

5.1 Proposed Quantization-Based Sketch Family

Each member of the family is parameterized by a λ such that λ ∈ R and 0 < λ ≤ δ.

Quantizer Qλ. Each quantizer Qλ in Q is a scalar quantizer with step size λ ∈ R. For
each x ∈ U , Qλ(x) = x̂ if and only if λx̂ ≤ x < λ(x̂ + 1), and the quantization of X is

defined as X̂ = Qλ(X) , 〈Qλ(x1), · · · ,Qλ(xn)〉. The corresponding quantized domain
is thus Mλ = [0, ⌈ 1

λ
⌉]n. The encoders and the decoders work only on the quantized

domain. The white noise appeared in the quantized domain is of level δ̂λ = ⌈δ/λ⌉. In
other words, under white noise, a point x̂ in the quantized domain can be shifted by a
distance of at most δ̂λ. Let us denote ∆λ , 2δ̂λ + 1.



Codebook Cλ. Furthermore, for each quantized domain Mλ we consider a codebook Cλ,
where every codeword c ∈ Cλ has the form c = k∆λ for some non-negative integer k.
We use Cλ(·) to denote the function such that given a quantized point x̂, it returns a

value c = Cλ(x̂) such that |x̂−c| ≤ δ̂λ. That is, the functions finds the unique codeword
c that is nearest to x̂ in the codebook.

Encoder Encλ. Given a quantized X̂ ∈ Mλ, the encoder Encλ does the following.

1. For each x̂i ∈ X̂, compute ci = Cλ(x̂i);

2. Output P = Encλ(X̂) = 〈d1, · · · , dn〉, where di = x̂i − ci for 1 ≤ i ≤ n.

In other words, for every x̂i, the encoder outputs the distance of x̂i from its nearest
codeword in the codebook Cλ.

Decoder Decλ. For a corrupted template Y , it is first quantized by Ŷ = Qλ(Y ). Given

P = 〈d1, · · · , dn〉 and Ŷ = 〈ŷ1, · · · , ŷn〉, and the decoder Decλ does the following.

1. For each ŷi ∈ Ŷ , compute ci = Cλ(ŷi − di);

2. Output X̃ = Decλ(Ŷ ) = 〈c1 + d1, · · · , cn + dn〉.

In other words, the decoder shifts every ŷi by di, maps it to the nearest codeword in
Cλ, and shifts it back by the same distance.

5.2 Security Analysis

For each member of the sketch family with parameter λ, the difference di between x̂i

and pi ranges from −δ̂λ to δ̂λ. Intuitively, log ∆λ bits are sufficient and necessary to
describe the white noise in the quantized domain (recall that ∆λ = 2δ̂λ+1 = 2⌈ δ

λ
⌉+1).

Hence, we have

Lemma 2 The quantization-based sketch scheme (U , S,Qλ,Mλ, Encλ, Decλ) is (n log ∆λ)-
secure in the quantized domain.

Proof: Note that the size of each di generated in the second step of the encoder
is log ∆λ. Hence the total size of the sketch is n log ∆λ. Therefore, the entropy loss of
the sketch P is at most n log∆λ by Equation (1).

It is not difficult to see that the above bound is tight. For example, when each x̂
is uniformly distributed in the quantized domain, the min-entropy of each x̂ after
quantization would be log⌈ 1

λ
⌉, and the average min-entropy of x̂ given P would be at

most log |Cλ| = log⌈ 1
λ
⌉ − log ∆λ.

Now we consider the relative entropy loss. First of all, we observe that the proposed
sketch family is well-formed according to Definition 5.

Lemma 3 The quantization-based sketch family defined in Section 5.1 is well-formed.



Proof: We consider any two members in the sketch family. The first is identified
by Qλ1

with step size λ1, and the second is identified by Qλ2
with step size λ2.

For any point x ∈ X , let x̂1 = Qλ1
(x). Recall that during encoding, a codeword

is computed as c1 = Cλ1
(x̂1), and the difference d1 = x̂1 − c1 is put into the sketch.

Similarly, let x̂2 = Qλ2
(x), c2 = Cλ2

(x̂2) and d2 = x̂2 − c2.
Since λ1 ≤ δ and λ2 ≤ δ, it is easy to see that if d1, d2 and x̂1 is known, we can

compute x̂2 deterministically. Similarly, given d1, d2 and x̂2, x̂1 can also be determined.
Thus, we have

H̃∞ (x̂1 | 〈d1, d2〉) = H̃∞ (〈x̂1, x̂2〉 | 〈d1, d2〉) = H̃∞ (x̂2 | 〈d1, d2〉) . (6)

The same arguments can be applied to all the points in X . Hence, let P1 = Encλ1
(X)

and P2 = Encλ2
(X), we have

H̃∞

(
X̂1 | 〈P1, P2〉

)
= H̃∞

(〈
X̂1, X̂2

〉
| 〈P1, P2〉

)
= H̃∞

(
X̂2 | 〈P1, P2〉

)
. (7)

That is, the proposed sketch family is well-formed.

By combining Theorem 1 and Lemma 3, and considering that for the member of
the sketch family identified by Qλ1

with step size λ1, the size of the sketch |P1| =
n(log ∆λ1

), we have the following lemma.

Lemma 4 For the quantization-based sketch family defined in Section 5.1, given any
member identified by Qλ1

with step size λ1 and encoder Encλ1
it holds that, for every

random variable X ∈ U and any member identified by Qλ2
with step size λ2 and encoder

Encλ2
, we have

H̃∞(Qλ2
(X) | Encλ2

(Qλ2
(X))) − H̃∞(Qλ1

(X) | Encλ1
(Qλ1

(X))) ≤ n(log ∆λ1
).

In other words, the relative entropy loss is at most n(log ∆λ1
) for Qλ1

.

Not only the above is a worst case bound, we can show that the worst case can
indeed happen.

Lemma 5 The relative entropy loss in Lemma 4 is tight for sufficiently small δ.

Proof: For any given λ1, we find a λ2 such that it is possible to find ∆λ1
,

(2⌈δ/λ1⌉ + 1) points W = {w0, · · · , w∆λ1
−1} such that Qλ1

(wi) − Cλ1
(Qλ1

(w1)) =
i − ⌈δ/λ1⌉, and Cλ2

(wi) = ci for some codeword ci ∈ Cλ2
. In other words, we want

to find points such that each of them would generate a different di in the final sketch
with Qλ1

, but would generate exactly the same number (i.e., 0) in the sketch when
Qλ2

is used. Note that when δ is sufficiently small, there would be sufficiently many
codewords in Cλ1

, and it is always possible to find such λ2 (e.g., λ2 = λ1/2).
When each x ∈ X is uniformly distributed over W , we can see that the sketch from

the scheme identified by Qλ1
would reveal all information about X , but in the case of

Qλ2
, the left-over entropy would be exactly log ∆λ1

.

Therefore, combining lemmas 2, 4 and 5 we have



Theorem 6 The quantization-based sketch family defined in Section 5.1 is (L,R)-
secure where for each member in the family identified by Qλ with step size λ, where
L(Qλ) = R(Qλ) = n log ∆λ. Furthermore, the bounds are tight.

For example, if λ = δ, we would have L(Qλ) = R(Qλ) = n(log 3). Note that
although decreasing λ might give a larger left-over entropy, this is not guaranteed. In
fact, if we use a λ′ < λ, by applying the above theorem on Qλ′ , we can see that it may
result in a smaller left-over entropy than using Qλ (e.g., consider the example in the
proof of Lemma 5).

5.3 A Special Case

We further study a special case when each point x ∈ X is independently and uniformly
distributed over [0, 1). We further assume that 1/δ is an integer, and the family of
schemes only consists of members with step size λ such that 1/λ is an integer that is a
multiple of ∆λ. This additional assumption is only for the convenience of the analysis,
and would not make too much difference in practice.

In this case, the entropy loss in the quantized domain for the member identified by
Qλ with step size λ would be exactly n(log ∆λ), which shows that Lemma 2 is tight.
Moreover, it is interesting that the relative entropy loss in this case can be bounded by
a constant.

Corollary 7 When each x ∈ X is independently and uniformly distributed, the
quantization-based sketch family defined in Section 5.1 is (L,R)-secure where for each
member in the family identified by Qλ with step size λ, where L(Qλ) = n(log ∆λ), and
R(Qλ) = n log(1 + λ

2δ
) ≤ n log(3/2).

Proof: The claim L(Qλ) = n(log ∆λ) follows directly from Lemma 2, so we only
focus on R. Consider two members of the family identified by Qλ1

and Qλ2
respectively.

Without loss of generality, we assume λ1 > λ2. Consider any x ∈ X , let x̂1 = Qλ1
(x),

c1 = Cλ1
(x̂1). Similarly we define x̂2 = Qλ2

(x) and c2 = Cλ2
(x̂2). Hence, the min-

entropy in the quantized domain would be log(1/λ1) and log(1/λ2) respectively.
Clearly, c1 and c2 are also uniformly distributed over Cλ1

and Cλ2
respectively, and

do not depend on d1 and d2. Hence, the left-over entropy for these two members would
be log(|Cλ1

|) = log 1
λ1+2δ

and log(|Cλ2
|) = log 1

λ2+2δ
respectively. Furthermore, recall

that 0 < λ2 < λ1 ≤ δ, and the difference between these two quantities can be bounded
as

log(|Cλ2
|) − log(|Cλ1

|) = log
λ1 + 2δ

λ2 + 2δ
< log(1 +

λ1

2δ
) ≤ log

3

2
.

Therefore, the relative entropy loss is bounded by n log(3/2) as claimed.

5.4 Remarks

Choosing the step size λ. We can view the step size λ as a measure of the precision
of X̂. Since the white noise in the continuous domain is fixed at δ, when λ becomes



smaller, the corresponding white noise in the quantized domain would increase, and
vice versa. That is intuitively why it is not possible to obtain much more left-over
entropy by simply having X represented in a higher precision. In fact, it is not difficult
to show that there are certain distributions of X such that a smaller step size would
reveal more information. Furthermore, the scheme can be more efficient if we use a
relatively larger step size, since we would need fewer bits to represent both X and the
white noise in the quantized domain. If we use the same quantizer for both encoding
and decoding, the simplest form of white noise in the quantized domain can be achieved
when λ = δ, where a quantized x̂ can be either left unchanged, or shifted by 1. In this
case, from Theorem 6, we can get at most n log 3 additional bits if we choose other
λ′ < δ. If X is uniformly distributed, the increment is at most n log(3/2) by Corollary
7.

When λ > δ, the form of white noise in the quantized domain would remain un-
changed, but we may lose too much information about X due to the large quantization
step, which may result in a much lower left-over entropy. Therefore, it is not desirable
to have a step size larger than δ in general. If different quantizers are used during
encoding and decoding, with large step size (e.g., 2δ), it is possible to reduce the white
noise in the quantized domain to a special 0-1 noise, under which an x̂ is either left
unchanged or shifted to x̂ + 1, as observed in [4]. Nevertheless, this strategy may give
lower left-over entropy.

Handling replacement noise. After the white noise has been corrected, an existing
scheme for set difference can be applied in the quantized domain to correct the re-
placement noise. There are known schemes that can achieve entropy loss of O(t log⌈ 1

λ
⌉)

with small leading constant, such as those in [7, 3]. Although the replacement noise is
not considered for the face biometrics that we study in Section 6, it may need to be
addressed for other biometric templates (e.g., iris patterns [9]).

Extension to higher dimensions. It is straightforward to extend our scheme to higher
dimensions, where each x ∈ X is a point in some d-dimensional space. For example,
we can apply a scalar quantizer on each coordinate of every point, and let the distance
of two points in d-dimensional space be measured by max-norm (i.e., the maximum
distance in all dimensions). The entropy loss of the resulting scheme would be d times
that in the current construction for 1-D points. If there is no replacement noise, we
could also expand the n points in d-dimensional space into nd points in 1-D and apply
the proposed scheme.

The choice of the sketch family. It is important to note that even if a quantization-
based sketch family is well-formed, it does not guarantee the existence of a “good”
quantizer in that family. Nevertheless, it does allow us to evaluate any given member
in the family with respect to the “optimal” member in the family. We consider it a
challenging open problem to find a general algorithm to find the optimal quantizer
among all possible quantizers, given certain practical constraints (e.g., the smallest
possible quantization step and the distribution of X).



6 A Concrete Construction for Face Biometrics

Face images, especially those taken from a controlled environment, can be used as the
basis of identity verification, Here we follow the techniques employed in [17] and make
use of the singular value decomposition (SVD) of the face images for verification, which
is a well-known strategy in the face recognition literature (such as [10, 6]). Given a face
image A of size M×N , we can always find matrices U , Σ and V such that A = UΣV T ,
where Σ is an M × N matrix with min(M, N) non-zero elements ordered according
to their significance. As noted in [17], some (say, n) most significant coefficients of Σ
contain significant identity information of the individual. Typically n is chosen such that
the sum of these n coefficients is more than, say, 98% of the sum of all the coefficients.

In [17], the biometric template of an individual is obtained as follows. First, we take
a few face images, compute the SVD, and obtain the minimum mini and maximum
maxi of the i-th significant coefficient, for 1 ≤ i ≤ n, where n is chosen to be 20. The
mean value ai = (maxi +mini)/2 is then taken as a point in the template. When a new
face image is presented for verification, its SVD is computed, and if for 1 ≤ i ≤ n, the i-
th significant coefficient is sufficiently close to ai, it is considered as authenticated. The
scheme in [17] is applied to face images from the Essex Faces94 Database [16], which
contains 152 faces with 20 images for each face (24bit color JPEG). Twelve images per
face are randomly chosen to compute the templates, and the rest 8 are used for testing.
The experiments show that when the false accept rate is 0.005, the false reject rate is
less than 0.045.

To apply our sketch scheme, for each coefficient, we further compute the minimum
min and the maximum max of all the templates in the database (assuming that the
number of templates is large). Hence, we can compute our biometric template X as
a sequence of n points, where the i-th point xi = ai−min

max−min . We set the noise level

δi = k(maxi−ai)
max−min for some constant k ≥ 1. In this way, each point xi will be between 0

and 1 so that our scheme can be applied. There is a difference, however, that we have
a different δi for each point, which we have to put as part of the sketch. Nevertheless,
our analysis on the entropy loss can be easily adapted to this case, and the difference
here will not affect the security of the scheme. Here we choose λi = δi for all 1 ≤ i ≤ n.

In this way, the sketch produced by our proposed scheme, would be the tuple

P = (min, max, λ1, · · · , λn, x̂1 − Cλ1
(x̂1), · · · , x̂n − Cλn

(x̂n))

where x̂i = Qλi
(xi) for 1 ≤ i ≤ n. By applying the arguments in Theorem 6 and

Corollary 7 to each point in X , we have

Corollary 8 The entropy loss in the quantized domain for the aforementioned scheme
is at most n log 3. Let m be the left-over entropy. When λi < δi for any i, 1 ≤ i ≤ n,
let the left-over entropy be m′. We have m′ − m ≤ n log 3. If all points are uniformly
distributed, we have m′ − m ≤ n log(3/2).

When n = 20, the above bounds are approximately 31.7 and 11.7 respectively.
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