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Abstract. Stream ciphers play an important role in symmetric cryptol-
ogy because of their suitability in high speed applications where block
ciphers fall short. A large number of fast stream ciphers or pseudoran-
dom bit generators (PRBG’s) can be found in the literature that are
based on arrays and simple operations such as modular additions, ro-
tations and memory accesses (e.g. RC4, RC4A, Py, Py6, ISAAC etc.).
This paper investigates the security of array-based stream ciphers (or
PRBG’s) against certain types of distinguishing attacks in a unified way.
We argue, counter-intuitively, that the most useful characteristic of an
array, namely, the association of array-elements with unique indices, may
turn out to be the origins of distinguishing attacks if adequate caution
is not maintained. In short, an adversary may attack a cipher simply ex-
ploiting the dependence of array-elements on the corresponding indices.
Most importantly, the weaknesses are not eliminated even if the indices
and the array-elements are made to follow uniform distributions sepa-
rately. Exploiting these weaknesses we build distinguishing attacks with
reasonable advantage on five recent stream ciphers (or PRBG’s), namely,
Py6 (2005, Biham et al.), IA, ISAAC (1996, Jenkins Jr.), NGG, GGHN
(2005, Gong et al.) with data complexities 268.61, 232.89, 216.89, 232.89 and
232.89 respectively. In all the cases we worked under the assumption that
the key-setup algorithms of the ciphers produced uniformly distributed
internal states. We only investigated the mixing of bits in the keystream
generation algorithms. In hindsight, we also observe that the previous
attacks on the other array-based stream ciphers (e.g. Py, etc.), can also
be explained in the general framework developed in this paper. We hope
that our analyses will be useful in the evaluation of the security of stream
ciphers based on arrays and modular addition.

1 Introduction

Stream ciphers are of paramount importance in fast cryptographic applications
such as encryption of streaming data where information is generated at a high
? This work was supported in part by the Concerted Research Action (GOA) Am-

biorix 2005/11 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.



speed. Unfortunately, the state-of-the art of this type of ciphers, to euphemize,
is not very promising as reflected in the failure of the NESSIE project to select a
single cipher for its profile [13] and also the attacks on a number of submissions
for the ongoing ECRYPT project [6]. Because of plenty of common features
as well as dissimilarities, it is almost impossible to classify the entire gamut
of stream ciphers into small, well-defined, disjoint groups, so that one group
of ciphers can be analyzed in isolation of the others. However, in view of the
identical data structures and similar operations in a number of stream ciphers
and the fact that they are vulnerable against certain kinds of attacks originating
from some basic flaws inherent in the design, it makes sense to scrutinize the
class of ciphers in a unified way. As the title suggests, the paper takes a closer
look at stream ciphers connected by a common feature that each of them uses (i)
one or more arrays1 as the main part of the internal state and (ii) the operation
modular addition in the pseudorandom bit generation algorithm. Apart from
addition over different groups (e.g, GF(2n) and GF(2)), the stream ciphers under
consideration only admit of simple operations such as memory access (direct and
indirect) and cyclic rotation of bits, which are typical of any fast stream cipher.
In the present discussion we omit the relatively rare class of stream ciphers which
may nominally use array and addition, but their security depends significantly
on special functions such as those based on algebraic hard problems, Rijndael
S-box etc.

To the best of our knowledge, the RC4 stream cipher, designed by Ron Rivest
in 1987, is the first stream cipher which exploits the features of an array in gen-
erating pseudorandom bits, using a few simple operations. Since then a large
number of array-based ciphers or PRBG’s – namely, RC4A [14], VMPC stream
cipher [20], IA, IBAA, ISAAC [10], Py [2], Py6 [4], Pypy [3], HC-256 [18], NGG
[12], GGHN [8] – have been proposed that are inspired by the RC4 design prin-
ciples. The Scream family of ciphers [9] also uses arrays and modular additions
in their round functions, however, the security of them hinges on a tailor-made
function derived from Rijndael S-box rather than mixing of additions over dif-
ferent groups (e.g., GF(2n) and GF(2)) and cyclic rotation of bits; therefore,
this family of ciphers is excluded from the class of ciphers to be discussed in the
paper.

First, in Table 1, we briefly review the pros and cons of the RC4 stream cipher
which is the predecessor of all the ciphers to be analyzed later. Unfortunately,
the RC4 cipher is compatible with the old fashioned 8-bit processors only. Except
RC4A and the VMPC cipher (which are designed to work on 8-bit processors),
all the other ciphers described before are suitable for modern 16/32-bit architec-
tures. Moreover, those 16/32-bit ciphers have been designed with an ambition of
incorporating all the positive aspects of RC4, while ruling out it’s negative prop-
erties as listed in Table 1. However, the paper observes that a certain amount of
caution is necessary to adapt RC4-like ciphers to 16/32-bit architecture. Here,
we mount distinguishing attacks on the ciphers (or PRBG’s) Py6, IA, ISAAC,

1 An array is a data structure containing a set of elements associated with unique
indices.
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Table 1. Pros and cons of the RC4 cipher

Advantages of RC4 Disadvantages of RC4

Arrays allow for huge secret internal state Not suitable for 16/32-bit architecture

Fast because of fewer operations per round Several distinguishing attacks

Simple Design Weak Key-setup algorithm

No key recovery attacks better than brute force

NGG, GGHN – all of them are designed to suit 16/32-bit processors – with data
268.61, 232.89, 216.89, 232.89 and 232.89 respectively, exploiting similar weaknesses
in their designs (note that another 32-bit array-based cipher Py has already
been attacked in a similar fashion [5, 15]). Summarily the attacks on the class
of ciphers described in this paper originate from the following basic although
not independent facts. However, note that our attacks are based on the assump-
tions that the key-setup algorithms of the ciphers are ‘perfect’, that is, after the
execution of the algorithms they produce uniformly distributed internal states
(more on that in Sect. 1.2).

– Array-elements are large (usually of size 16/32 bits), but the array-indices
are short (generally of size 8 bits).

– Only a few elements of the arrays undergo changes in consecutive rounds.
– Usage of both pseudorandom index-pointers and pseudorandom array-elements

in a round, which apparently seems to provide stronger security than the
ciphers with fixed pointers, may leave room for attacks arising from the cor-
relation between the index-pointers and the corresponding array-elements
(see discussion in Sect. 2.2).

– Usage of simple operations like addition over GF(2n) and GF(2) in output
generation.

Essentially our attacks based on the above facts have it origins in the fortuitous
states attack on RC4 by Fluhrer and McGrew [7].

A general framework to attack array-based stream ciphers with the above
characteristics is discussed in Sect. 2. Subsequently in Sect. 3.1, 3.2 and 3.3, as
concrete proofs of our argument, we show distinguishing attacks on five stream
ciphers (or PRBG’s). The purpose of the paper is, by no means, to claim that the
array-based ciphers are intrinsically insecure, and therefore, should be rejected
without analyzing its merits; rather, we stress that when such a PRBG turns
out to be extremely fast – such as Py, Py6, IA, ISAAC, NGG, GGHN – an alert
message should better be issued for the designers to recheck that they are free
from the weaknesses described here. In Sect. 3.5, we comment on the security of
three other array-based ciphers (or PRBG’s) IBAA, Pypy and HC-256 which,
for the moment, do not come under attacks, however they are slower than the
ones attacked in this paper.

1.1 Notation and Convention

– The symbols ⊕, +, −, ≪, ≫, �, � are used as per convention.
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– The ith bit of the variable X is denoted X(i) (the lsb is the 0th bit).
– The segment of m − n + 1 bits between the mth and the nth bits of the

variable X is denoted by X(m,n).
– The abbreviation for Pseudorandom Bit Generator is PRBG.
– P [A] denotes the probability of occurrence of the event A.
– Ec denotes the compliment of the event E.
– At any round t, some part of the internal state is updated before the output

generation and the rest is updated after that. Example: in Algorithm 3, the
variables a and m are updated before the output generation in line 5. The
variables i and b are updated after or at the same time with the output
generation. Our convention is: a variable S is denoted by St at the time of
output generation of round t. As each of the variables is modified in a single
line of the corresponding algorithm, after the modification its subscript is
incremented.

1.2 Assumption

In this paper we concentrate solely on the mixing of bits by the keystream gener-
ation algorithms (i.e., PRGB) of several array-based stream ciphers and assume
that the corresponding key-setup algorithms are perfect. A perfect key-setup
algorithm produces internal state that leaks no statistical information to the at-
tacker. In other words, because of the difficulty of deducing any relations between
the inputs and outputs of the key-setup algorithm, the internal state produced
by the key-setup algorithm is assumed to follow the uniform distribution.

2 Stream Ciphers Based on Arrays and Modular
Addition

2.1 Basic Working Principles

The basic working principle of the PRBG of a stream cipher, based on one or
multiple arrays, is shown in Fig. 1. For simplicity, we take snapshots of the
internal state, composed of only two arrays, at two close rounds denoted by
round t and round t′ = t + δ. However, our analysis is still valid with more
arrays and rounds than just two. Now we delineate the rudiments of the PRBG
of such ciphers.

– Components: the internal state of the cipher comprises all or part of the
following components.
1. One or more arrays of n-bit elements (X1 and X2 in Fig. 1).
2. One or more variables for indexing into the arrays, i.e., the index-pointers

(down arrows in Fig. 1).
3. One or more random variables usually of n-bit length (m1, m2, m′1, m′2

in Fig. 1).
– Modification to the Internal State at a round.
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Fig. 1. Internal State at (a) round t and (b) round t′ = t+ δ

1. Index Pointers: the most notable feature of such ciphers is that it has
two sets of index pointers. (i) Some of them are fixed or updated in a
known way, i.e., independent of the secret part of the state (solid arrows
in Fig. 1) and (ii) the other set of pointers are updated pseudorandomly,
i.e., based on one or more secret components of the internal state (dotted
arrows in Fig. 1).

2. Arrays: a few elements of the arrays are updated pseudorandomly based
on one or more components of the internal state (the shaded cells of
the arrays in Fig. 1). Note that, in two successive rounds, only a small
number of array-elements (e.g. one or two in each array) are updated.
Therefore, most of the array-elements remain identical in consecutive
rounds.

3. Other variables if any : they are updated using several components of the
internal state.

– Output generation: the output generation function at a round is a non-
linear combination of different components described above.

2.2 Weaknesses and General Attack Scenario

Before assessing the security of array-based ciphers in general, for easy under-
standing, we first deal with a simple toy-cipher with certain properties which
induce distinguishing attack on it. Output at round t is denoted by Zt.

Remark 1. The basis for the attacks described throughout the paper including
the one in the following example is searching for internal states for which the
outputs can be predicted with bias. This strategy is inspired by the fortuitous
states attacks by Fluhrer and McGrew on the RC4 stream cipher [7].

Example 1. Let the size of the internal state of a stream cipher with the follow-
ing properties be k bits.

Property 1. The outputs Zt1 , Zt2 are as follows.
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Zt1 = X ⊕ Y + (A≪ B) , (1)
Zt2 = M +N ⊕ (C≪ D) (2)

where X, Y , A, B, M , N , C, D are uniformly distributed and independent.

Property 2. [Bias-inducing State] If certain k′ bits (0 < k′ ≤ k) of the inter-
nal state are set to all 0’s (denote the occurrence of such state by event E) at
round t1, then the following equations hold good.

X = M, Y = N, B = D = 0, A = C.

Therefore, (1) and (2) become

Zt1 = X ⊕ Y +A , Zt2 = X + Y ⊕A .
Now, it follows directly form the above equations that, for a fraction of 2−k

′
of

all internal states,

P [Z(0) = (Zt1 ⊕ Zt2)(0) = 0|E] = 1. (3)

Property 3. If the internal state is chosen randomly from the rest of the states,
then

P [Z(0) = 0|Ec] =
1
2
. (4)

Combining (3) and (4) we get the overall bias for Z(0),

P [Z(0) = 0] =
1

2k′
· 1 + (1− 1

2k′
) · 1

2

=
1
2

(1 +
1

2k′
) (5)

Note that, if the cipher were a secure PRBG then P [Z(0) = 0] = 1
2 . �

Discussion. Now we argue that an array-based cipher has all the three proper-
ties of the above example; therefore, the style of attack presented in the example
can possibly be applied to an array-based cipher too. First, we discuss the op-
erations involved in the output generation of the PRBG. Let the internal state
consist of N arrays and M other variables. At round t, the arrays are denoted by
S1,t[·], S2,t[·], · · · , SN,t[·] and the variables by m1,t, m2,t, · · · , mM,t. We observe
that the output Zt is of the following form,

Zt = ROT[· · ·ROT[ROT[ROT[V1,t]~ ROT[V2,t]]
~ROT[V3,t]]~ · · ·~ ROT[Vk,t]] (6)

where Vi,t = mg,t or Sj,t[Il]; ROT[·] is the cyclic rotation function either constant
or variable depending on the secret state; the function ~[·, ·] is either bit-wise
XOR or addition modulo 2n.
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Now we describe a general technique to establish a distinguishing attack on
an array-based cipher from the above information. We recall that, at the first
round (round t1 in the present context), the internal state is assumed to be uni-
formly distributed (see Sect. 1.2).

Step 1. [Analogy with Property 1 of Example 1 ] Observe the elements of the in-
ternal state which are involved in the outputs Zt1 , Zt2 , · · · (i.e., the Vi,t’s in (6))
when the rounds in question are close (t1 < t2 < · · · ).

Step 2. [Bias-inducing state, Analogy with Property 2 of Example 1 ] Fix a
few bits of some array elements (or fix a relation among them) at the initial
round t1 such that indices of array-elements in later rounds can be predicted
with probability 1 or close to it. More specifically, we search for a partially spec-
ified internal state such that one or both of the following cases occur due to
predictable index-pointers.

1. The Vi,t’s involved in Zt1 , Zt2 , · · · are those array-elements whose bits are
already fixed.

2. Each Vi,t is dependent on one or more other variables in Zt1 , Zt2 , · · · .

Now, for this case, we compute the bias in the output bits. Below we identify the
reasons why an array-based cipher can potentially fall into the above scenarios.

Reason 1. Usually, an array-based cipher uses a number of pseudorandom
index-pointers which are updated by the elements of the array. This fact turns
out to be a weakness, as fixed values (or a relation) can be assigned to the
array-elements such that the index-pointers fetch values from known locations.
In other words, the weakness results from the correlation between index-pointers
and array-elements which are, although, uniformly distributed individually but
not independent of each other.

Reason 2. Barring a few, most of the array-elements do not change in rounds
which are close to each other. Therefore, by fixing bits, it is sometimes easy to
force the pseudorandom index-pointers fetch certain elements from the arrays in
successive rounds.

Reason 3. The size of an index-pointer is small, usually 8 bits irrespective
of the size of an array-element which is either 16 bits or 32 bits or 64 bits.
Therefore, fixing a small number of bits of the array-elements, it is possible to
assign appropriate values to the index-pointers. The less the number of fixed
bits, the greater is the bias (note the parameter k′ in (5)).

Reason 4. If the rotation operations in the output function are determined
by pseudorandom array elements (see (6)) then fixing a few bits of internal
state can simplify the function by freeing it from rotation operations. In many
cases rotation operations are not present in the function. In any case the output

7



function takes the following form.

Zt = V1,t ~ V2,t ~ V3,t ~ · · ·~ Vk,t.
Irrespective of whether ‘~’ denotes ‘⊕’ or ‘+’, the following equation holds for
the lsb of Zt.

Zt(0) = V1,t(0) ⊕ V2,t(0) ⊕ V3,t(0) ⊕ · · · ⊕ Vk,t(0).

Now by adjusting the index-pointers through fixing bits, if certain equalities

among the Vi,t’s are ensured then
t⊕
Zt(0) = 0 occurs with probability 1 rather

than probability 1/2.

Step 3. [Analogy with Property 3 of Example 1 ] Prove or provide strong evi-
dence that, for the rest of the states other than the bias-inducing state, the bias
generated in the previous step is not counterbalanced.

Reason. The internal state of such cipher is huge and uniformly distributed
at the initial round. The correlation, detected among the indices and array-
elements in Step 2, is fortuitous although not entirely surprising because the
variables are not independent. Therefore, the possibility that a bias, produced
by an accidental state, is totally counterbalanced by another accidental state
is negligible. In other words, if the bias-inducing state, as explained in Step 2,
does not occur, it is likely that at least one of the Vi,t’s in (6) is uniformly dis-
tributed and independent; this fact ensures that the outputs are also uniformly
distributed and independent.

Step 4. [Analogy with (5) of Example 1 ] Estimate the overall bias from the
results in Step 2 and 3. �

In the next section, we attack several array-based ciphers following the meth-
ods described in this section.

3 Distinguishing Attacks on Array-based Ciphers or
PRBG’s

This section describes distinguishing attacks on the ciphers (or PRBG’s) Py6,
IA, ISAAC, NGG and GGHN – each of which is based on arrays and modular
addition. Due to space constraints, full description of the ciphers is omitted; the
reader is kindly referred to the corresponding design papers for details. For each
of the ciphers, our task is essentially two-forked as summed up below.

1. Identification of a Bias-inducing State. This state is denoted by the
event E which adjusts the index-pointers in such a way that the lsb’s of the
outputs are biased. The lsb’s of the outputs are potentially vulnerable as
they are generated without any carry bits which are nonlinear combinations
of input bits (see Step 2 of the general technique described in Sect. 2.2).
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2. Computation of the Probability of Overall Bias. The probability is
calculated considering both E and Ec. As suggested in Step 3 of Sect. 2.2,
for each cipher, the lsb’s of the outputs are uniformly distributed if the event
E does not occur under the assumption mentioned in Sect. 1.2.

Note. For each of the five ciphers attacked in the subsequent sections, it can be
shown that, if E (i.e., the bias-inducing state) does not occur then the variable
under investigation is uniformly distributed under the assumption of uniformly
distributed internal state after the key-setup algorithm. We omit those proofs
due to space constraints.

3.1 Bias in the outputs of Py6

The stream cipher Py6, designed especially for fast software applications by Bi-
ham and Seberry in 2005, is one of the modern ciphers that are based on arrays
[2, 4].2 Although the cipher Py, a variant of Py6, was successfully attacked [15,
5], Py6 has so far remained alive. The PRBG of Py6 is described in Algorithm 1
(see [2, 4] for a detailed discussion).

Algorithm 1 Single Round of Py6
Input: Y [−3, ..., 64], P [0, ..., 63], a 32-bit variable s
Output: 64-bit random output

/*Update and rotate P*/
1: swap (P [0], P [Y [43]&63]);
2: rotate (P );

/* Update s*/
3: s+ = Y [P [18]]− Y [P [57]];
4: s = ROTL32(s, ((P [26] + 18)&31));

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25)⊕ Y [64]) + Y [P [8]]);
6: output (( s ⊕Y [−1]) + Y [P [21]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14)⊕ Y [−3]) + Y [P [48]];
8: rotate(Y );

Bias-producing State of Py6. Below we identify six conditions among the
elements of the S-box P , for which the distribution of Z1,1⊕Z2,3 is biased (Z1,t

and Z2,t denote the lower and upper 32 bits of output respectively, at round t).

C1. P2[26] ≡ −18(mod 32); C2. P3[26] ≡ 7(mod 32); C3. P2[18] = P3[57] + 1;
C4. P2[57] = P3[18] + 1; C5. P1[8] = 1; C6. P3[21] = 62.

Let the event E denote the simultaneous occurrence of the above conditions
(P [E] ≈ 2−33.86). It can be shown that, if E occurs then Z(0) = 0 where Z

2 The cipher has been submitted to the ECRYPT Project [6].
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denotes Z1,1⊕Z2,3 (see the full version of the paper [16]). Now we calculate the
probability of occurrence of Z(0).

P [Z(0) = 0] = P [Z(0) = 0|E] · P [E] + P [Z(0) = 0|Ec] · P [Ec]

= 1 · 2−33.86 +
1
2
· (1− 2−33.86)

=
1
2
· (1 + 2−33.86) . (7)

Note that, if Py6 had been an ideal PRBG then the above probability would
have been exactly 1

2 .

Remark 2. The above bias can be generalized for rounds t and t + 2 (t > 0)
rather than only rounds 1 and 3.

Remark 3. The main difference between Py and Py6 is that the locations of
S-box elements used by one cipher is different from those by the other. The
significance of the above results is that it shows that changing the locations
of array-elements is futile if the cipher retains some intrinsic weaknesses as ex-
plained in Sect. 2.2. Note that Py was attacked with 284.7 data while Py6 is with
268.61 (explained in Sect. 3.4)

3.2 Biased outputs in IA and ISAAC

At FSE 1996, R. Jenkins Jr. proposed two fast PRBG’s, namely IA and ISAAC,
along the lines of the RC4 stream cipher [10]. The round functions of IA and
ISAAC are shown in Algorithm 2 and Algorithm 3. Each of them uses an array
of 256 elements. The size of an array-element is 16 bits for IA and 32 bits for
ISAAC. However, IA and ISAAC can be adapted to work with array-elements
of larger size too. For IA, this is the first time that an attack is proposed. For
ISAAC, the earlier attack was by Pudovkina who claimed to have deduced its
internal state with time 4 · 67 · 101240 which was way more than the exhaustive
search through the keys of usual size of 256-bit or 128-bit [17]. On the other
hand, we shall see later in Sect. 3.4 that our distinguishing attacks can be built
with much lower time complexities. The Zt denotes the output at round t.

Algorithm 2 PRBG of IA
Input: m[0, 1, ...255], 16-bit random variable b
Output: 16-bit random output
1: i = 0;
2: x = m[i];
3: m[i] = y = m[ind(x)] + b mod 216; /* ind(x) = x(7,0) */
4: Output= b = m[ind(y � 8)] + x mod 216;
5: i = i+ 1 mod 256;
6: Go to step 2;
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Bias-inducing State of IA. Let mt[it + 1 mod 256] = a. If the following con-
dition

ind((a+ Zt)� 8) = ind(a) = it+1 (8)

is satisfied then

Z(0)(= Zt(0) ⊕ Zt+1(0)) = 0

A pictorial description of the state is provided in the full version of the paper
[16]. Let event E occur when (8) holds good. Note that P [E] = 2−16 assuming
a and Zt are independent and uniformly distributed. Therefore,

P [Z(0) = 0] = P [Z(0) = 0|E] · P [E] + P [Z(0) = 0|Ec] · P [Ec]

= 1 · 2−16 +
1
2
· (1− 2−16)

=
1
2
· (1 + 2−16) . (9)

Algorithm 3 PRBG of ISAAC
Input: m[0, 1, ...255], two 32-bit random variables a and b
Output: 32-bit random output
1: i = 0;
2: x = m[i];
3: a = a⊕ (a� R) +m[i+K mod 256] mod 232;
4: m[i+ 1] = y = m[ind(x)] + a+ b mod 232; /* ind(x) = x(9,2) */
5: Output= b = m[ind(y � 8)] + x mod 232;
6: i = i+ 1 mod 256;
7: Go to Step 2.

Bias-inducing State of ISAAC. For easy understanding, we rewrite the
PRBG of the ISAAC in a simplified manner in Algorithm 3. The variables R
and K, described in step 3 of Algorithm 3, depend on the parameter i (see [10]
for details); however, we show that our attack can be built independent of those
variables.

Let mt−1[it] = x. Let event E occur when the following equation is satisfied.

ind((mt−1[ind(x)] + at + bt−1)� 8) = it. (10)

If E occurs then Zt = x + x mod 232, i.e., Zt(0) = 0 (see the full version of the
paper [16]). As at, bt−1 and x are independent and each of them is uniformly
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distributed over Z232 , the following equation captures the bias in the output.

P [Zt(0) = 0] = P [Zt(0) = 0|E] · P [E] + P [Zt(0) = 0|Ec] · P [Ec]

= 1 · 2−8 +
1
2
· (1− 2−8)

=
1
2
· (1 + 2−8) . (11)

3.3 Biases in the outputs of NGG and GGHN

Gong et al. very recently have proposed two array-based ciphers NGG and
GGHN with 32/64-bit word-length [12, 8] for very fast software applications.
The PRBG’s of the ciphers are described in Algorithm 4 and Algorithm 5. Both
the ciphers are claimed to be more than three times as fast as RC4. Due to
the introduction of an extra 32-bit random variable k, the GGHN is evidently a
stronger version of NGG. We propose attacks on both the ciphers based on the
general technique described in Sect. 2.2. Note that the NGG cipher was already
experimentally attacked by Wu without theoretical quantification of the attack
parameters such as bias, required outputs [19]. For NGG, our attack is new,
theoretically justifiable and most importantly, conforms to the basic weaknesses
of an array-based cipher, as explained in Sect. 2.2. For GGHN, our attack is the
first attack on the cipher. In the following discussion, the Zt denotes the output
at round t.

Algorithm 4 Pseudorandom Bit Generation of NGG
Input: S[0, 1, ...255]
Output: 32-bit random output
1: i = 0, j = 0;
2: i = i+ 1 mod 256;
3: j = j + S[i] mod 256;
4: Swap (S[i], S[j]);
5: Output= S[S[i] + S[j] mod 256];
6: S[S[i] + S[j] mod 256] = S[i] + S[j] mod 232

7: Go to step 2;

Bias-inducing State of NGG. Let the event E occur, if it = jt and St+1[it+1]+
St+1[jt+1] = 2 · St[it] mod 256. We observe that, if E occurs then Zt+1(0) = 0
(see the full version of the paper [16]). Now we compute P [Zt+1(0) = 0] where
P [E] = 2−16.

P [Zt+1(0) = 0] = P [Zt+1(0) = 0|E] · P [E] + P [Zt+1(0) = 0|Ec] · P [Ec]

= 1 · 2−16 +
1
2
· (1− 2−16)

=
1
2
· (1 + 2−16) . (12)
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Algorithm 5 Pseudorandom Bit Generation of GGHN
Input: S[0, 1, ...255], k
Output: 16-bit random output
1: i = 0, j = 0;
2: i = i+ 1 mod 256;
3: j = j + S[i] mod 256;
4: k = k + S[j] mod 232;
5: Output= S[S[i] + S[j] mod 256] + k mod 232;
6: S[S[i] + S[j] mod 256] = k + S[i] mod 232;
7: Go to step 2;

Bias-producing State of GGHN. If St[it] = St+1[jt+1] and St[jt] = St+1[it+1]
(denote it by event E) then Zt+1(0) = 0 (see the full version of the paper [16]).
Now we compute P [Zt+1(0) = 0] where P [E] = 2−16.

P [Zt+1(0) = 0] = P [Zt+1(0) = 0|E] · P [E] + P [Zt+1(0) = 0|Ec] · P [Ec]

= 1 · 2−16 +
1
2
· (1− 2−16)

=
1
2
· (1 + 2−16) . (13)

3.4 Data and Time of the Distinguishing Attacks

In the section we compute the data and time complexities of the distinguishers
derived from the biases computed in the previous sections. A distinguisher is an
algorithm which distinguishes a stream of bits from a perfectly random stream
of bits, that is, a stream of bits that has been chosen according to the uniform
distribution. The advantage of a distinguisher is the measure of its success rate
(see [1] for a detailed discussion).

Let there be n binary random variables z1, z2, · · · , zn which are independent
of each other and each of them follows the distribution DBIAS. Let the uniform
distribution on alphabet Z2 be denoted by DUNI. Method to construct an optimal
distinguisher with a fixed number of samples is given in [1].3 While the detailed
description of an optimal distinguisher is omitted, the following theorem deter-
mines the number of samples required by an optimal distinguisher to attain an
advantage of 0.5 which is considered a reasonable goal.

Theorem 1. Let the input to an optimal distinguisher be a realization of the
binary random variables z1, z2, z3, · · · , zn where each zi follows DBIAS. To attain

3 Given a fixed number of samples, an optimal distinguisher attains the maximum
advantage.
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Table 2. Data and time of the distinguishers with advantage exceeding 0.5

PRBG M Bytes of a single stream = 0.4624 ·M2 Time

Py6 234.86 268.61 O(268.61)

IA 217 232.89 O(232.89)

ISAAC 29 216.89 O(216.89)

NGG 217 232.89 O(232.89)

GGHN 217 232.89 O(232.89)

an advantage of more than 0.5, the least number of samples required by the
optimal distinguisher is given by the following formula

n = 0.4624 ·M2 where

PDBIAS [zi = 0]− PDUNI [zi = 0] =
1
M

.

Proof. See Sect. 5 of [15] for the proof.

Now DUNI is known and DBIAS can be determined from (7) for Py6, (9) for IA,
(11) for ISAAC, (12) for NGG, (13) for GGHN. In Table 2, we list the data
and time complexities of the distinguishers. Our experiments agree well with the
theoretical results. The constant in O(m) is determined by the time taken by
single round of the corresponding cipher.

3.5 A Note on IBAA, Pypy and HC-256

IBAA, Pypy and HC-256 are the array-oriented ciphers/PRBG’s which are still
free from any attacks. The IBAA works in a similar way as the ISAAC works,
except for the variable a which plays an important role in the output generation
of IBAA [10]. It seems that a relation has to be discovered among the values
of the parameter a at different rounds to successfully attack IBAA. Pypy is a
slower variant of Py and Py6 [3]. Pypy produces 32 bits per round when each
of Py and Py6 produces 64 bits. To attack Pypy a relation need to be found
among the elements which are separated by at least three rounds. To attack
HC-256 [18], some correlations need to be known among the elements which are
cyclically rotated by constant number of bits.

4 Conclusion

In this paper, we have studied array-based stream ciphers or PRBG’s in a gen-
eral framework to assess their resistance against certain distinguishing attacks
originating from the correlation between index-pointers and array-elements. We
show that the weakness becomes more profound because of the usage of simple
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modular additions in the output generation function. In the unified framework
we have attacked five modern array-based stream ciphers (or PRBG’s) Py6, IA,
ISAAC, NGG, GGHN with data complexities 268.61, 232.89, 216.89, 232.89 and
232.89 respectively. We also note that some other array-based stream ciphers (or
PRBG’s) IBAA, Pypy, HC-256 still do not come under any threats, however, the
algorithms need to be analyzed more carefully in order to be considered secure.
We believe that our investigation will throw light on the security of array-based
stream ciphers in general and can possibly be extended to analyze other types
of ciphers too.
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