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Abstract. Definition of security under the framework of Environmental Secu-
rity (a.k.a Network-Aware Security or Universally Composable Security) typi-
cally requires “extractability” of the private inputs of parties running a proto-
col. Formalizing concepts that appeared in an earlier work [19], we introduce
a framework of “Monitored Functionalities,” which allows us to avoid such a
requirement from the security definition, while still providing very strong compo-
sition properties. We also consider a specialization of the Environmental Secu-
rity framework by designating one party as a “server” and all other parties as
clients. Both these contributions in the work are aimed at being able to provide
weaker Environmental Security guarantees to simpler protocols. We illustrate the
usability of the Monitored Functionalities framework by providing much simpler
protocols in the plain model than in [19] for some limited functionalities in the
server-client model.

1 Introduction

At the onset of theoretical investigations into defining and achieving cryptographic se-
curity, idealized settings involving just one protocol were used. A highly successful
theory was developed which gave satisfactory solutions to a multitude of cryptographic
problems like encryption and multi-party computation, reducing the nebulous questions
of security to concrete problems in computational complexity theory. Having success-
fully tackled these problems, this nascent field of computer science started focusing on
more challenging problems, thrown its way by the new requirements of the fast chang-
ing world of information technology.

An important challenge was to enhance the theory so that it could handle less ideal-
ized settings relevant to the modern world – where there are many computers connected
to an unreliable network. Rather annoyingly, this complicated the situation spectacu-
larly. Definitions of security turned out to be inadequate as new attacks came into the
picture. Protocols which were provably secure earlier either became insecure, or worse
still, remained open challenges to be proven secure or insecure.

Two important works which explored these complications identified Non-malleability [8]
and Concurrent simulation [9] as two most basic problems to be studied. Since then a



significant amount of work went into tackling these basic aspects. While there has been
quite some success in resolving many challenges, the new protocols kept getting more
complicated and less efficient. A fresh look at the problem was taken in [3], which
offered a comprehensive definition of security, namely that of Environmental Security
(ES, for short) or Network-Aware Security. (It was introduced in [3] under the name
Universally Composable (UC) Security; hence we shall refer to this version of En-
vironmental Security as ES/UC.) ES/UC security, at once subsumes non-malleability
and concurrency. This allowed simpler and intuitive compositions of protocols. Using
a setup called the “common reference string,” (where all parties are provided a string
produced by a trusted party), or alternatively using a trust assumption of “honest ma-
jority” (where majority of players among a pre-defined subset of parties are trusted to
be honest), it was shown how to do “secure multi-party computation,” arguably the ul-
timate cryptographic task [3, 7]. However it fell short of offering a viable solution to
the protocol designers: it was shown that to achieve provable security under this new
model, some “trust assumption” would be necessary in most cases of interest [3, 4, 6].
Recently [19] showed a way to get around the need for trust assumption by modifying
the ES/UC framework to obtain what is called the generalized Environmental Security
(gES), or generalized Network-Aware Security, framework.
This Work. Environmental Security (ES/UC as well as gES) addresses the concern that
protocols are run in an arbitrary environment along with other processes and network
activity. However the comprehensive definitions of security offered by these frame-
works tend to require complex protocols. The thesis of this work is that we need to
develop relaxed notions of Environmental Security which will help us prove some level
of security for simpler protocols, at least for certain limited applications. We explore
two separate directions simultaneously.

First, we develop a model intended to remove some of the concerns of universal
composability from environmental security. The model restricts the protocol executions
for which security analysis will be applied, by requiring “fixed roles” for the participants
across all protocol executions. (This can be viewed as a generalization of the setup
introduced in concurrent zero knowledge [9], to the ES setting.) This restriction frees us
from concerns of certain “man-in-the-middle” attacks (or malleability of the protocols).
Our interest in the client-server model is as a useful theoretical construct in itself – a
platform for tackling some of the Environmental Security issues without having to deal
with all the composition issues. For the protocols in this work, use of this model is not
crucial, but it leads to somewhat simpler protocols, simpler assumptions and simpler
analysis.

Second – and this is the main focus in this work – we introduce a significant relax-
ation of the security requirements in the ES framework, in a new framework of Mon-
itored Functionalities. Indeed, [19] shows how to relax ES/UC, without much loss in
applicability.3 gES removes the restriction in the ES/UC framework that the “simula-
tion” used to define security should be computationally bounded, and still manages to
retain Universal Composability. However the gES protocols in [19] are still complex.

3 Technically, security in gES framework is not a relaxation of security in ES/UC framework,
but involves a relaxation followed by a strengthening, which in general makes it incomparable
with the latter.



We go one step further, and redefine security in such a way that one more requirement
from the ES/UC framework is removed – namely that of “extractability.” We show how
to define meaningful notions of security without the extractability requirement, and yet
obtain Environmentally Secure and Universally Composable protocols. This is achieved
by introducing a new entity alongside the “trusted party” in the ideal world: it is a com-
putationally unbounded “monitor” which can watch over the ideal world execution and
raise an alarm if some specific condition is violated.

Two of our protocols (for commitment and zero-knowledge proofs) are adapted
from [19], with simplifications allowed by the client-server model. The results in [19]
do show that those protocols can be used to obtain full-fledged gES security for these
tasks (against static adversaries, without the client-server restriction, and without re-
sorting to monitored functionalities). However it is far from a direct use: they are used
as subroutines within a larger protocol for commitment. Our attempt is to use these
protocols in a more direct fashion and obtain much simpler protocols.

Our Results. We introduce a new framework of Environmental Security, where the cor-
rectness and security requirements of a protocol are separately defined (unlike [3, 19]).
Further, we consider a model, called “client-server model,” which considers restricted
patterns of executions of the protocols analysed. Both are aimed at getting relaxations of
the existing ES frameworks, so that possibly weaker levels of Environmental Security
can be defined and proven for simpler protocols.

Then we show how to realize tools like commitment, zero knowledge proof and
commit-and-prove functionalities in this setting. We illustrate the use of these tools in
implementing a special class of functionalities called the “server-client” functionali-
ties. All our protocols are very simple and relatively efficient (compared to protocols
in ES/UC and gES models). The protocols are all in the “plain-model” (no common
reference string, or other trust assumptions), and are much more efficient than even the
ones in [19] (which solve a more difficult problem).

We point out that the 4 message zero knowledge protocol we give is, in particular, a
concurrent zero knowledge argument with only 4 messages, wherein the simulator (and
corrupt verifiers) are allowed some super polynomial computational power. Previous
results (which worked with polynomial time simulators) gave either protocols with a
large number of rounds (dependent on the security parameter), or were dependent on
the number of verifiers that the protocol was secure against. Further, our protocol is a
simple variant of a well-known simple protocol which has been around for many years,
but for which no such strong composability has been proven till now.
Limitations of Our Results. There are some serious limitations to our current results.
It is not clear if the approach in this work can directly yield protocols for the most
general kind of functionalities. Firstly, our 2-party protocol is for a very special kind
of multi-party computations only, which we term the server-client computation. (In a
server-client computation, the client receives as output some function of its input and
the server’s input. But the server receives as output, the client’s input.)

But a more serious limitation lies with the nature of security guarantee provided.
Along with correctness and secrecy guarantees, one would like to have a guarantee
that the server’s input to the function is independent of the client’s input. The security
definition provided in this work does not make this last guarantee. Nevertheless, we



sketch how this can be remedied under the condition that the client never uses its input
previously (the full technical details of which will be published elsewhere).

Despite the limitations, our new framework is a step in the direction of formalizing
relaxed notions of security (relaxed, but still accounting for a general environment),
which will help prove security guarantees for simpler and more efficient protocols.
Previous Results. As mentioned above [3, 17] introduced the ES/UC framework, as a
model to consider general composability and complex environments. But in the plain-
model very little was available in terms of positive results. Recently, [19] introduced a
modified notion of security, by allowing the IDEAL world environment and adversary
access to super-polynomial powers. This made it possible to achieve secure multi-party
computation in the plain model. However the protocols in [19] are still much more
involved than the ones presented here. An earlier attempt at reducing the requirements
of the ES/UC framework was in [5], which also introduced a semi-functionality-like
notion in the context of secure Key-Exchange.

Work on concurrent model stretches back to [9], who introduced it in the context of
Zero Knowledge proofs, followed by a sequence of works in the same context [20, 11,
18], where an arbitrary polynomial number of concurrent executions can be handled,
but with the number of rounds in the protocol growing with the security parameter. [1]
gave a constant round protocol for bounded concurrent ZK, in which the communica-
tion complexity depended on the number of concurrent sessions that can be handled. A
similar result, but with similar limitations, was shown for general 2-party computations
(general, as opposed to our Client-Server Computation) recently [12, 16]. All these pro-
tocols are somewhat complicated and conceptually involved. Relaxing the requirement
of polynomial time simulation in the definition of security was used in some earlier
works [13, 14] too, in the context of zero knowledge proofs.
Connections with [19]. Our starting point is the two “semi-functionalities” for com-
mitment and zero-knowledge proofs, introduced in [19]. There they are used for the
specific purpose of implementing a (full-fledged gES) commitment functionality. How-
ever we seek to directly use them for “end uses.” Our new framework for monitored
functionalities lets us extend the approach there to a formal definition of security. We
introduce two more semi-functionalities, namely commit-and-prove and server-client
computation. We give protocols for these semi-functionalities and also prove that these
semi-functionalities have the required correctness property in our framework. We then
observe that for such functionalities to be more useful, it would help if the correctness
guarantees on the semi-functionalities are strengthened. We show that such a strength-
ening can indeed be formalized and proven (see Section 6.2).

2 Basic Ideas

The next few subsections introduce the novel tools and concepts we employ. All these
are new, except the ideas in Section 2.3 (which were recently introduced in [19]).

2.1 Client-Server Model

We present the Client-Server model as a simplified setting to investigate some of the
Environmental Security issues, without having to deal with all the composition issues.



In this model, the security guarantees will be given only to sessions of protocols in all
of which the participants have the same “fixed roles.” The inspiration for this model is
the model used for concurrent zero knowledge proofs [9].

The specific fixed role restriction in our model is as follows. There is a special
party called the server

�
. All the other parties are considered clients. We shall use � to

denote a generic client. We allow only static adversaries, i.e., parties can be corrupted
only at the beginning of the system. (Recall that the concurrent ZK-model also has
a static adversary.) In this model we shall typically investigate functionalities where

�
plays a special role: for instance, a commitment functionality where

�
is the committing

party (and a client receives the commitment), or a zero knowledge proof where
�

is the
prover. We also consider a class of multi-party computation problems where

�
has a

special role. Universal composition in the client-server model is limited to concurrent
sessions of the protocols where the same party plays the server in all sessions. Thus, in
particular, we do not offer general non-malleability, just as in the case of concurrent zero
knowledge. However unlike there, we require environmental security: i.e., the security
definition incorporates the presence of an arbitrary environment.

Note that the client-server model does not have a different definition of security, but
rather inherits it from the underlying ES model. (The new security definition we intro-
duce in this work is given in Section 2.2). It only specifies restrictions on the protocol
executions for which security will be defined.

The main purpose of introducing the client-server model is to allow simplification
of protocols, by exploiting the asymmetry in the model. It allows us to use simpler
assumptions, as will be described in Section 2.3.

2.2 A New Framework for Specifying Security

In the concurrent ZK-model security requirement (for concurrent ZK proofs) is spec-
ified by the two properties: zero-knowledge (secrecy) and soundness (correctness). In
contrast, in the ES/UC model security requirements are specified by giving an ideal
functionality, which totally captures both these requirements. We propose a new frame-
work, where we still require Environmental Security for the more subtle secrecy re-
quirement. But the correctness requirement is specified separately, as in the concurrent
ZK model. Below we elaborate on this.

“Semi-Functionalities” and “Monitors.” In the ES/UC-model, a 2-party IDEAL func-
tionality usually interacts with both the parties in an ideal way. For instance the IDEAL
commitment functionality would involve receiving a value from the sender secretly, and
notifying the receiver (and adversary) of the receipt, and later on receiving a command
to reveal from the sender, sending the original value to the receiver. This functionality
makes sure that the sender is bound to a value on committing (this is the “correctness
guarantee”) and that the value remains secret (“secrecy guarantee”). The idea behind
defining a semi-functionality is to free one of these requirements from the IDEAL func-
tionality, and somehow enforce that requirement separately.

A monitored functionality (e.g., ���
	COM � described in Figure 1(a)) consists of a semi-
functionality ( ��	COM in Figure 1(a)) and some conditions on the semi-functionality. The
semi-functionality is syntactically just a functionality, but it is not “ideal” enough. It is



Commitment: 
����COM �
Semi-Functionality � �COM:

COMMIT PHASE

��� � �COM � Arbitrary protocol���COM ������� � commit
REVEAL PHASE

��� � �COM � Arbitrary Protocol���COM ������� ��� reveal �! #" determined

arbitrarily by ���COM

Completeness: If
�

is honest, � �COM never
aborts.
Monitor: When ���COM sends the message
commit, the monitor must record one value %$ as the committed value. If

�
is honest this

value must be the intended value for commit-
ment. Later if ���COM sends � reveal �& '" but )(*  $ then the monitor notifies the receiver
by raising an alarm.

(a) Commitment

Zero Knowledge Proof: 
��,+ZK �
Parametrized by a polynomial time relation- �/.%0 �'132#4&5�6 .30 �'132'4879� .30 �#132 . Common
input to

�
and � : :�; .%0 �'1%2 4&5 .

Semi-Functionality:��� � +ZK � Arbitrary protocol�<+ZK �=����� �>� proven � : "
Completeness: If

�
is honest, �,+ZK sends the

proven message to � .
Monitor: If � +ZK sends the message� proven � : " to the verifier, and there
exists no ?�; .30 �'132 487 such that

- � : � ? " * 1
then the monitor notifies the verifier by
raising an alarm.

(b) Zero Knowledge Proof

Commit and Prove: 
�� �CAP �
Parametrized by a polynomial time relation- �@.%0 �'1%2 4&5 6 .30 �A132 487 6 .30 �#132 48B � .%0 �'132 .
Semi-Functionality:

COMMIT PHASE:

�C� �D�CAP � Arbitrary protocol� �CAP �����&� � commit
PROOF PHASE (CAN BE MULTIPLE TIMES):

� � �D�CAP �����&� � :�C� � �CAP � Arbitrary Protocol� �CAP �����&� �>� proven � : "
Completeness: Interacting with an honest
prover

�
, �D�CAP never aborts.

Monitor: At the end of the commit phase,
the monitor internally records a value E . If
the �,�CAP sends � proven � : " later in the proof
phase then the monitor checks if there is a
value ? such that

- � E � : � ? " * 1 . If not it
raises an alarm.

(c) Commit and Prove

Client-Server Computation: 
��,�CSC �
Parametrized by a function F .
Semi-Functionality:�C� �<�CSC � Arbitrary Protocol�<�CSC �G���&� � commit�H� � �CSC � � ��� � :JI�C� �<�CSC � Arbitrary Protocol�<�CSC �G���&� �LK ( K determined

arbitrarily by �,�CSC)

Completeness: Interacting with an honest
prover

�
with input :NM , if � sends it input : I ,�<�CSC sends :JI to

�
and K * F � : M � :JI " to � .

Monitor: At the end of the first step, the
monitor internally records a value : $ . If � �CSC

sends : I to
�

and K to � , the monitor checks
if K * F � : $ � :JI " . If not it raises an alarm.

(d) 2-Party Client-Server Computation

Fig. 1. Monitored Functionalities 
�� �COM � , 
�� +ZK � , 
�� �CAP � and 
�� �CSC � .



typically defined based on an arbitrary protocol. For instance the specification of �O	COM

consists of arbitrary interaction between the server and �P	COM (which is unspecified in
Figure 1(a), but will be later specified in such a way that binding property can be argued
separately). Note that the arbitrary protocol is carried out between the semi-functionality
and a party, and not between the two parties. This is why the semi-functionality guar-
antees secrecy – in the case of �
	COM , the only message it sends to the receiver and the
adversary before the reveal phase is commit. To complete the specification of the ideal
functionality we need to also give a guarantee that the semi-functionality is functional
(i.e., it can be used by the server to make commitments) and correct (i.e., it is binding
on the server). These requirements are specified separately as properties that the semi-
functionality needs to satisfy. It is all these three requirements together that make up
the specification of the ideal commitment functionality. We shall call such a collection
of requirements a monitored functionality.

IDEAL world of Monitored Functionality. The Monitored Functionality is proposed as
an IDEAL functionality, which captures all the security properties of a given task. In
Figure 1 we show the four Monitored Functionalities used in this work. We point out
some of the important features of this new formalism.

In Figure 1, the semi-functionalities are not fully specified, but allows arbitrary
interaction between the server and the semi-functionalities. Once a protocol is cho-
sen, the semi-functionality will be specialized to suit that protocol. That is, the semi-
functionality will carry out the client’s part in the protocol. Note that the view of the
server is unchanged if we replace the interaction with the semi-functionality by the pro-
tocol with the client. The important thing here is that irrespective of the protocol that
is used, these semi-functionalities are designed to capture the secrecy requirements of
the respective tasks. For instance, in commitment, the only messages sent to the client
are “commit” and “ Q reveal R#S%T .” Indeed, in all four semi-functionalities the mes-
sages reaching the client and the IDEAL world adversary are exactly those messages
that a corresponding IDEAL functionality in the ES/UC model would specify. The name
semi-functionality is to emphasize that they provide only the secrecy guarantee, and
correctness needs to be ensured separately. But otherwise there is nothing “semi” about
them – technically these are full-fledged functionalities in the ES/UC model.

Next, we draw the reader’s attention to the way the correctness requirement is spec-
ified. For convenience and concreteness, we employ a new notion, called monitors. A
monitor is a conceptual device used to specify the security requirements of a function-
ality. If the security requirement is violated we want the monitor to alert the parties by
“raising an alarm.” Each session of the functionality has its own monitor. A monitor is
a (computationally unbounded) function which can inspect the entire system including
all parties and functionalities (except any other monitors) and maintain its own internal
state. This is in contrast to the PPT functionalities. There is only one way a monitor can
affect the system, namely, by raising an alarm.

Securely Realizing a Monitored Functionality in REAL world. In the REAL world we
would like to have protocols which can replace Monitored Functionalities. That is, if we
replace the IDEAL monitored functionality (i.e., the semi-functionality and monitor) by
a protocol, no environment should be able to detect the difference (we are allowed also



to replace the REAL adversary U , by an IDEAL adversary V ). This involves two things:
first the protocol should securely realize the semi-functionality (in the conventional
sense of [3]). But in addition, it should be able to mimic being monitored. But clearly
there are no monitors in the REAL world. So we require that even in the IDEAL world
having the monitor should not be detectable to the environment. Note that this is a
requirement on the functionality, and not on the protocol. However, it depends on the
protocol in that the functionality is fully specified depending on the protocol.

Definition 1 We say a protocol securely realizes a monitored functionality if

1. for every adversary there exists a simulator such that no environment can tell be-
tween interacting with the protocol in the REAL world (running the protocol) and
interacting with the semi-functionality of the monitored functionality in the IDEAL
world (this is the condition for the UC theorem to hold), and

2. there exists a monitor satisfying the specified requirements, such that for any en-
vironment and adversary, the probability that the monitor raises an alarm is neg-
ligible, even when there are other protocols, functionalities and monitors in the
system.

Note that in the above definition, the first condition is stated for a stand-alone setting, as
the UC theorem [3, 19] ensures that it holds in a composed setting also. But the second
condition needs to be met for the composed setting, as we do not have a composition
theorem for (computationally unbounded) monitors. (i.e., a monitor may behave en-
tirely differently when, in some part of the system, a REAL protocol is replaced by an
IDEAL functionality). Hence we need to show the existence of a monitor for the com-
posed setting- i.e., after all REAL protocols have been transformed to IDEAL function-
alities or semi-functionalities. Further there may be other monitors in the system. But
the monitors are independent of each other and the only way a monitor interferes with
the system is by raising an alarm. Hence other monitors can be ignored for analysing
the monitor of a particular session.

Expiring Monitors. For concreteness in our analysis, we shall consider monitors WYX
which expire after time Z from the start of the protocol. The guarantee given by the
monitor holds only till it expires. But for any Z polynomial in the security parameter,
we shall show that the monitor raises an alarm with negligible probability. Thus for anyZ polynomially large in the security parameter, the guarantee would hold.

Locked States. For our guarantees to be useful, we would often require that the monitor
cannot inspect some parts of the system. In ��	CSC , for example, we would like the moni-
tor to record the server’s input independent of the client’s input. We cannot make such a
guarantee if the client has released its input into the system earlier (either explicitly, or
by giving out a commitment, even if the commitment is perfectly hiding). However, if
the client’s input is kept “locked” and unused until after the sever makes its commitment
step, then we should provide the above guarantee. We do this in Section 6.2.



2.3 Generalized Environmental Security

We assume that the reader is somewhat familiar with the ES/UC framework [3]. An
IDEALfunctionality is specified to define a task as well as the security requirements
on it. A REAL world protocol is said to securely realize the IDEAL functionality, if
replacing access to the IDEAL functionality by execution of the REAL protocol does not
let the adversaries take advantage of this in any environment. That is, for every REAL
world adversary U , there is an IDEAL world adversary V , such that no environment will
behave differently when in the REAL world (running the protocol), instead of the IDEAL
world (with access to the functionality). All the parties, the adversary, the environment
and the IDEAL functionalities are probabilistic polynomial time (PPT) machines.

However for most of the interesting cryptographic tasks, there are no protocols
which are secure under the ES/UC model, in the standard model [3, 4, 6]. The only pro-
tocols for these tasks, which are ES/UC secure require some strong trust assumptions
in the model (eg. honest majority, or a trusted common random string) In [19] this diffi-
culty was overcome by altering the definition of security, to obtain a new framework
called the generalized Environmental Security (gES) framework.4 There the IDEAL
world adversary is given extra computational power via oracle access to an exponential
time machine (referred to as the “Imaginary Angel,” or simply Angel). When an imagi-
nary angel Γ is used, the resulting model will be called the Γ-ES model. A protocol for
a functionality is said to Γ-ES-realize the functionality against PPT adversaries, if for
every PPT adversary U , we can demonstrate a PPT simulator V with oracle access to Γ.

As in [19], here the information provided by the imaginary angel will be about a
hash function. Suitable assumptions of hardness related to this hash function will be
made in Section 2.3. The specification of the imaginary angel is given in Section 2.3.
Though our assumptions on the hash function and our imaginary angel are similar to
those in [19], they are somewhat simpler in our case. In fact, we avoid a strong “non-
malleability flavored” assumption. (Correspondingly, however, we restrict ourselves to
the client-server model introduced in Section 2.1.)

[19] proves the composition theorem below for the generalized setting, for any
imaginary angel, which when queried, returns a (probabilistic) function of the set of
corrupted parties and the query. For further details, we refer the reader to [19].

Theorem 1. (Extended Universal Composition Theorem- Informal Statement) [19]
Let [ be a class of real-world adversaries and � be an ideal functionality. Let \ be an] -party protocol that Γ-ES-realizes � against adversaries of class [ . Also, suppose ^
is an ] -party protocol in the � -hybrid model which Γ-ES-realizes a functionality � ’
against adversaries of class [ . Then the protocol ^`_ (obtained from ^ by replacing in-
vocations of � by invocations of the protocol \ ) Γ-ES-realizes � ’ against adversaries
of class [ .

Hash Function As in [19], our computational assumptions have to do with a “hash
function.” However our assumptions are weaker than those there. We assume a hash
function acb/dfe/R3g@hLi 5kj dleJRmg@hli 7�j dfeJRmg@honpdfe/R3g@hmq , with the following properties:

4 In [19] it was called generalized Environmental Security.



A1 (Difficult to find collisions with same prefix): For all PPT circuits r , for a ran-
dom sutvdleJR3gwh i 5 , probability that rxQys@T outputs Qyz`R|{JT such that a}Q�sLR|z~RAe�TO�a}QysLR�{�R3gfT is negligible.

A2 (Collisions and Indistinguishability): For every s��}dfe/R3gwh i 5 , there is a distribution�o�
over the set d�Q�z~R|{�RA��Tm� a}Q�sLR|z`R�e�T<��a}QysLR�{�R3gfT<���Jh����� , such that

d�Q�z~R��>T3��Qyz`R|{�R��>T�t �o� h���d�Qyz`R��>T3� z�tpdleJR3gwh i 7 RA����a}Q�sLR|z~RAe�T'h
d>Qy{�R��>T3��Qyz`R|{�R��>T�t � � h���d>Qy{�R��>T3� {�tpdleJRmg@h i 7 RA����a�QysLR|{�RmgfT#h

Further, given sampling access to
� �

to a distinguisher, these distributions still
remain indistinguishable.

The last condition essentially says that the hash function is “equivocable”: i.e., for everys it is possible (but computationally infeasible) to give a � such that � can be explained
as a hash of 0 ( a}QysLR�z~RAe�T for some z ) as well as a hash of 1 ( a}Q�sLR|{�R3glT for some { ),
and both explanations look as if it came from a uniform choice of z or { . Note that
for random oracles all these conditions trivially hold (where � � R#� � R!� are polynomially
related).

These assumptions suffice for achieving concurrent Zero Knowledge proofs and
commit-and-prove functionality. To securely realize “client-server computation,” we
make one more assumption (a stronger variety of trapdoor permutations) in Section 5.1.
All these assumptions were used in [19] as well (where, in fact, the assumptions used
are stronger than the ones here).

Imaginary Angel Γ We specify the imaginary angel Γ that we use through out this
work. Γ first checks if the server

�
is corrupted or not (recall that we do not allow

�
to be adaptively corrupted). If it is corrupted Γ functions as a null-angel, i.e., it returns�

on any query. But if
�

is not corrupted, then when queried with a string s Γ draws
a sample from

�o�
described above and returns it. This is very similar to the imagnary

angel used in [19], but slightly simpler.

3 Monitored Commitment and Zero Knowledge Proof

The semi-functionalities �
	COM and �k�ZK were introduced in [19] where protocols were
given for these semi-functionalities. Further, lemmas were proved there which showed
binding and soundness properties of these functionalities. Our protocols in this section
are very similar to (but slightly simpler than) the corresponding ones in [19]. The proofs
are similar too, except that the binding and soundness properties are now proven in
terms of the probability with which a monitor raises alarm.

3.1 Monitored Commitment

The monitored functionality for Commitment �y�P	COM � was described in Figure 1(a), as
composed of the Commitment semi-functionality �P	COM and a monitor to ensure binding.
Now we give a protocol which realizes this functionality, in Figure 2.



Commitment Protocol COM

The committing party is the server
�

, and the receiving party is some client � .

COMMIT PHASE

��� � �f����.%0 �'1%2m� 5� �=� �f  *¢¡ �£� � �3¤ �� #" where �m¤>��.%0 �'1323� 7
REVEAL PHASE� �=� ���  m� � ¤ "� � if ¡ �£� � �3¤ �! '" *   then accept  as revealed

Fig. 2. Commitment Protocol COM

(Given the protocol, we can go back to the specification of ���O	COM � and complete the
semi-functionality specification, by replacing the “Arbitrary protocol” steps with the
corresponding steps from the protocol.)

As mentioned earlier, we call the protocol secure if it achieves the semi-functionality
and there exists a monitor as specified by the functionality, which will raise an alarm
with negligible probability. The following lemmas which assure us of this.

Lemma 1. For any polynomial (in the security parameter � ) Z , under assumption A1,
there is a monitor satisfying the requirements specified by ���P	COM � , such that the proba-
bility of the monitor raising an alarm within time Z is negligible.

Proof. Firstly, if the adversary does not corrupt the sender, then the monitor reads the
committed value from the honest sender’s input to the protocol and sets SL¥ to that value.
It is easy to verify that this monitor meets all the requirements and never raises an alarm.

So suppose the adversary corrupts the sender. In this case the imaginary oracle func-
tions as a null-oracle. Thus the entire system of all the parties and the environment
is probabilistic polynomial time. (We need not consider other monitors, as explained
above.) The monitor W X chooses S ¥ as follows: examine the state of the entire system
and determine the probability ¦¨§ of the sender (legally) revealing this commitment as
0 within time Z , and the probability ¦ � of the sender revealing it as 1 within that time.
Choose Sm¥k�©e if ¦ §9ª ¦ � ; else choose Sm¥k�«g .

We shall demonstrate a (non-uniform) PPT machine r which accepts sotpdleJR3gwh i
and outputs Qyz~R�{JT such that a}QysLR�z~RAe�T��¬a}Q�sLR|{�R3glT , with a probability polynomially
related to the probability of the monitor raising an alarm.r simulates the system internally, starting at the point the session is initiated. Recall
that this session is to be run with access to the IDEAL semi-functionality. But instead, r
will play the role of the semi-functionality for this session. It sends the input it receiveds as the first message to the sender. Then the sender responds with a string ­ . At this
point r makes two copies of the system, and runs them with independent randomness,
for time Z each. If the sender eventually reveals the commitment as Qyz`R�e�T in one run
and as Q�{�R3gfT in the other run, then r outputs Q�z~R�{®T .



Define random variable ¦ § (respectively, ¦ � ) as the probability that after sending ­
the sender reveals the commitment as 0 (respectively, 1) within time Z . The probability
that the monitor raises an alarm is at most

¯�° ±�²�³ dA¦/§�R�¦ � h%´~µ ¯�°·¶ ¦/§�¦ � ´`µ�¸ ¯�° ¦/§�¦ � ´��
¹ gº9»C¼ ° r succeedś

because after forking two copies of the system, r succeeds (i.e., it manages to out-
put Q�z~R�{®T such that a}Q�sLR|z~RAe�TP��a}QysLR�{¨RmgfT ) when in one of the runs the event with
probability ¦ § occurs and in the other the event with probability ¦ � .

Since the probability that r succeeds is negligible by assumption on a , so is the
probability that the monitor W X raises an alarm. Clearly this holds for any Z polynomial
in the security parameter.

Lemma 2. COM Γ-ES-realizes �
	COM against static adversaries, under assumption A2.

Proof (sketch): For every PPT adversary U we demonstrate a PPT simulator V such
that no PPT environment ½ can distinguish between interacting with the parties and U
in the REAL world, and interacting with the parties and V in the IDEAL world. We do
this in the presence of the imaginary oracle Γ.
Corrupt Server. Note that the semi-functionality is designed such that choosing the
simulator V to be identical to U (except that it sends the messages to �O	COM instead of to� ) works.
Honest Server. During simulation V runs U internally. When U starts the commitment
protocol, V initiates a session with the IDEAL functionality. When U sends out the first
message in the protocol s , V forwards this to the oracle Γ and receives Qyz`R|{�R��>T)t� �

. Then, when ��	COM gives the commit message, V provides U with � as the mes-
sage from

�
to � (whether � is corrupted or not). Later if �O	COM gives the messageQ reveal R�e�T , V provides U with Q�e/R|z�T as the REAL message, and if �O	COM gives the

message Q reveal RmgfT , V provides Q|gwR|{JT to U . Under the assumption on
� �

, it can be
shown that this is a good simulation.

3.2 Monitored Zero Knowledge Proof

In Figure 3 we show a simple protocol ZK in the �P	COM-hybrid model which Γ-ES-
realizes �y�k�ZK � against static adversaries. The particular relation ¾ used in ���¿�ZK � is of
Hamiltonicity (ie, given a graph, whether it contains a Hamiltonian cycle or not). The
protocol is a simple adaptation of the well-known zero knowledge protocol for this
relation. However that protocol (as well as its previous variants) is not known to be
secure in a concurrent setting.
Multi-bit Commitment. Multiple bits can be committed to by running independent copies
of the protocol in Section 3.1 in parallel. (Better efficiency can be achieved by making
suitable assumptions on the hash function a . But in this work we do not address this
aspect of efficiency.) For convenience, we denote this collection of sessions of �O	COM

by �
¥	COM
. For simplifying the description, we shall use the notation

�ÁÀ �)¥	COM
nÂ�Ãb

COM QÄr«T to denote a step where
�

sends a commitment to the bits of r , to � through



the semi-functionality �O¥	COM
, and

�ÅÀ �P¥	COM
nÆ�Çb REV Q8r�È�T will denote a reveal tor�ÈÊÉ�r later using (the same copy of) �O¥	COM
.

Note that we are providing the protocol ZK in the � ¥	COM
-hybrid model. So in the

semi-functionality �k�ZK , the “arbitrary protocol” will involve interaction of �¿�ZK (and
�

)
with �P¥	COM

. This simply means that �O¥	COM
is internally run by �k�ZK, when interacting with�

.
The prover receives a Hamiltonian cycle ËÌÉÎÍ as witness. First it verifies that theË is indeed a valid Hamiltonian cycle in Í . (Else it aborts the protocol.) We use the

above notation for commitments and reveals of ] j ] matrices. The adjacency matrix
of a graph is naturally represented as an ] j ] bit-matrix. For convenience we let a
permutation � of

° ] ´ also to be represented by an ] j ] bit-matrix Ï defined as ÏDÐ·Ñ��«g
iff �ÒQyÓ!T,�uÔ (else Ï�ÐÕÑ��©e ).

The idea is that the prover has to commit to the pair of ] j ] matrices Q8r � RAr � T
where the verifier expects r � �Ö�ÒQ�ÍoT and r � �×Ï for some permutation � with
the representation Ï . In response to sending SÁ�Øe the verifier expects the prover to
reveal all of r � and r � , where as for S9�¬g it expects the prover to reveal the bits inr � corresponding to a Hamiltonian cycle in �ÒQ8ÍoT . An edge is represented by an indexQyÓ#RÄÔ>T into this matrix. Given a set of edges Ù , we use r¬� Ú to denote the entries in the
matrix r given by the edges in Ù .
Lemma 3. For any polynomial (in the security parameter � ) Z , there is a monitor sat-
isfying the requirements specified by �y�¿�ZK � , such that the probability of the monitor
raising an alarm within time Z is negligible.

Proof. Our monitor does exactly what the specification requires: it checks if Í is
Hamiltonian. If not and if �k�ZK sends the message HAMILTONIAN to � , then the monitor
raises an alarm.

We shall use the result that �
	COM has a monitor, to argue that the probability this
monitor raises an alarm is negligible. For each of the ] parallel sessions, consider the
behaviour of the monitors for �
	COM for the

º ] � sessions of �
	COM . These monitors record
values Sm¥ÐÕÑ , QyÓ#RÄÔ>TÛ� ° ] ´ j ° º ] ´ internally.

For convenience, we define the following events: ALARM is the above event that the
monitor raises an alarm; BADCOM is the event that some �P	COM monitor raises an alarm;
ALLGOODQUERIES is the event that in each of the ] sessions, for the bit selected by� the bits recorded by commitment monitors define a valid answer (i.e., for S��«e the
monitors have recorded r � �H�ÒQ8ÍoT'RAr � �©Ï and for SÛ�Üg the monitors have recorded
an r � with Hamiltonian cycle. If any pair QÄr � RAr � T recorded by the monitors defines
a valid answer for both SC��e and SC�Ýg , it implies that the graph is Hamiltonian; else
we call the pair “bad.” Let ALLBADPAIRS be the event that in all the ] sessions, bits
recorded by the commitment monitors give bad pairs of matrices. Then it is easy to see
(as shown in the soundness proof for the corresponding protocol, in [19]) that

»C¼ ° ALARM ´~µ »C¼ ° ALLGOODQUERIES � ALLBADPAIRS ´®Þ »C¼ ° BADCOM ´�ß
If a pair is bad it can define a valid answer for at most one of the two possible queries.
That is, with probability at most

�� , � makes a good query on that pair. So,

»C¼ ° ALLGOODQUERIES � ALLBADPAIRS ´`µ º®à�á



Zero Knowledge Proof Protocol: ZK

Common input to
�

and � : a graph â .

REPEAT IN PARALLEL ã TIMES:

�C� � $�COM �=� � COM ��ä � *¢å � â "�� ä � *çæ "�� where å (represented by the matrix æ )

is a randomly chosen permutation of è ã®é .
�H� � �  �c.30 �'132

IF  * 0�C� � $�COM �=� � REV ��ä � � ä � "
ELSE�C� � $�COM �=� � REV ��ä �3ê ë "

where ì corresponds to the edges of the cycle å �yí "
ENDIF

END REPEAT

� � if in all parallel repetitions

 * 0 */î ä � represents a permutation å , and ä � represents a graph

such that å � â " * ä � * 1 */î ì corresponds to the edges of a Hamiltonian cycle,

and ï �£ð �yñL" ;�ì � ä �|ò ó * 1
then ACCEPT

Fig. 3. Protocol for the Monitored Functionality for ZK Proof

Since »C¼ ° BADCOM ´ is also negligible, we conclude that »C¼ ° ALARM ´ is negligible.

Lemma 4. ZK Γ-ES-realizes �k�ZK against static adversaries in the �P	COM-hybrid model.

Proof. Corrupt Server. Just as in the case of �O	COM , if the server is corrupt, a trivial
simulator in the IDEAL world, which acts transparently between an internal copy ofU and the semi-functionality �k�ZK perfectly simulates the protocol between the corrupt
server and an honest client.
Server not Corrupt. Recall that the protocol is in the �O	COM-hybrid model. If the server
is not corrupt, the only protocol messages that U can see are the statement to be proven,
the length of the messages from

�
to �
	COM , the commit messages from �
	COM , the bitS sent by � ( � may be corrupt or honest), and the final proven message. All these

are available to simulator V in the IDEAL execution too. Note that if � is not corrupted,
the bit S can be chosen uniformly at random during simulation. On the other hand, if �
is corrupted (before it sends out S ), then this bit is indeed produced by the copy of U
that

�
runs internally. Then it is easily verified that V can indeed simulate in this case

perfectly.



The above two lemmas can be summarized as follows.

Lemma 5. Protocol ZK in �
	COM-hybrid model Γ-ES-realizes �y�k�ZK � against static ad-
versaries.

Using the composition theorem Theorem 1 and Lemma 2 we get a protocol ZKCOM in
the REAL world which Γ-ES-realizes �y�¿�ZK � against static adversaries. Note that ZKCOM

is a 4-round protocol. In the language of Zero-Knowledge proofs, we can state this
result as follows.

Theorem 2. There is a 4-round concurrent Zero Knowledge argument for Hamiltonic-
ity when the simulator (as well as corrupt verifiers) has sampling access to

���
for alls��}dfe/R3g@h i 5 .

4 Monitored Commit and Prove

Somewhat surprisingly, our model of security allows very simple protocols for the
commit and prove (monitored) functionality (Figure 1(c)) as well. Below is the semi-
functionality �¿	CAP , with respect to a relation ¾ , and monitor for it.

For the commit phase, we use a straight-forward extension of the bit commitment
protocol COM to multiple bits (see Section 3.2). A transcript of the commitment phase
consists of two messages QysLR�­mT , where ­ô� a�QysLR|s È R|õ�T , where s È is a random string
privately chosen by

�
and õ is the string committed to. aöbDdfe/R3g@h i 5Ä÷ j dleJRmg@h i 7!÷ jdfeJRmg@h ÷ npdfe/R3g@h q ÷ is a multi-bit version of a : aÅQ|Qys ��ømø3ø s ÷ T'RfQysLÈ� ø3ømø sLÈ÷ T%RmQyõ ��ø3ø3ø õ ÷ T|T<�Q£a}Q�s � R|sLÈ� R|õ � T'R ømø3ø R|a}Qys ÷ R|sLÈ÷ R�õ ÷ T|T .We introduce some more notation to conveniently describe the protocol. Let

�çÀ
���ZK nù� : ZKP úûQ�z~ü�sLR�­mT denote the following specification: first, parties

�
and � reduce

the problem “ ý®õoR|{�R|s@È such that ¾CÈÄQyõoR�z~R�sLR|sLÈ&R�­LR�{JTC�Øg ” to a Hamiltonicity problem
instance Í
Qyz`R|sLRA­3T , where ¾CÈÄQyõ�R|z~R�sLR|sLÈ&R�­@R|{JT��þg if and only if ¾�QyõoR�z~R|{JT��þg anda}QysLR�s È R�õ�T,�H­ . This reduction is carried out in such a way that given a Hamiltonian cy-
cle in Í , it is possible to recover Q�õoR|swÈ&R|{JT as above. Then

�
uses the semi-functionality���ZK to prove to � that Í is Hamiltonian.

The protocol is given in Figure 4. We shall prove the following:

Lemma 6. Protocol CAP Γ-ES-realizes monitored functionality �y��	CAP � against static
adversaries, under assumptions A1 and A2.

Proof. 1. CAP Γ-ES-realizes �k	CSC against static adversaries in the �¿�ZK-hybrid model.
Corrupt Server. Just as in the case of �P	COM and ���ZK, a trivial simulator which acts
transparently between an internal copy of U and the semi-functionality �C	CAP perfectly
simulates the protocol between the corrupt server and an honest client.
Server not Corrupt. The protocol is in the ���ZK-hybrid model, and hence so is the semi-
functionality �¿	CAP . When the server is not corrupted, the only protocols messages U
can see are the initial commitment messages s and ­ , lengths of the messages from

�
to���ZK , and the Q proven R�Í
Q�z~R|sLRA­3T|T message from �¿�ZK at the end of each proof phase.

The only non-trivial task for the simulator is to produce the commitment text ­ . Since ­
will never be revealed (because the server is honest and the adversary cannot adaptively



Commit and Prove Protocol: CAP
COMMIT PHASE:

�H� � �m���Ø.%0 �'1%2m� 5� �=� �m  * ¡ �£� � �3¤ � E " where �3¤J��.%0 �'1%2m� 7
PROOF PHASE (CAN BE MULTIPLE TIMES):

� �=� � :�C� � +ZK �=� � ZKP ÿ � :��   "� � Accept if accepted in the above protocol

Fig. 4. Protocol for the Monitored Functionality for Commit and Prove

corrupt
�

), V can simply use a commitment to a random text using s to produce a
purported commitment of õ .

Note that assumption A2 implies that the distributions of commitments to 0 and to
1 are indistinguishable (even with access to

� �
): that is, for all s���dfeJRmg@h i 5

df��� zOtpdleJR3gwh i 7 RA����a}Q�sLR|z`R�e�T'h���dl�¨� {�tpdleJR3gwh i 7 RA����a}Q�sLR|{�R3glT#h�R
because both the distributions are indistinguishable from df����Qyz~R�{�R��>TOt � � h . From
this, it is a routine exercise to show that no PPT environment (with access to the imag-
inary oracle Γ) can distinguish between the simulation in the IDEAL world and the
execution in the �k�ZK-hybrid model.
2. For any polynomial (in the security parameter � ) Z , there is a monitor satisfying the
requirements specified by ����	CAP � , such that the probability of the monitor raising an
alarm within time Z is negligible.

We restrict ourselves to the case when ����	CAP � allows only one proof phase per ses-
sion. It is possible to extend it to multiple proofs, but the details become lengthy and
tedious.

First we describe how a value õC¥ is recorded by W X . Consider an “extractor” PPT
machine r X which simulates the entire (composed IDEAL) system internally, starting
at the point where the session of interest running our Commit-and-Prove protocol starts
(this start state is given to r X as non-uniform advice), for at most Z time-steps. r X runs
the system until the proof phase of started, and the prover makes the commitment step.
At this point rùX clones the system and runs the two copies independent of each other.
If in both the copies the proof is accepted by the verifier, rÎX checks if the ] -bit queries
made by the verifier in ZKP ú�Q�z~ü�sLR�­3T are identical or not. If they are not identical this
lets rùX extract a Hamiltonian cycle for Í (assuming the monitors for the �O	COMs do not
raise any alarm). Then rùX derives a witness Q�õoR|s@È&R|{JT from this Hamiltonian cycle, and
outputs it. Else rùX outputs

�
.

Now we use rùX to describe the monitor W�X . When �¿	CAP sends commit to � ,
for each õ�W�X checks the probability of ruX outputting õ , and records the one with
the highest such probability, say õ9¥ . Later if �¿	CAP sends Q proven R|z¨T for some z such
that for no {�¾�Q�õ�¥@R|z`R|{JT holds, then it raises an alarm. Also, for purposes of analysis,



when the prover executes the commitment protocol (semi-functionality) as part of the
zero-knowledge proof protocols, W�X starts the monitors for �
	COM as sub-monitors. The
monitors will also be run when the extractor ruX runs. If any of these sub-monitors
raises an alarm, then too W X will raise an alarm.

Clearly W X satisfies the requirements of the functionality (up to the time bound Z ).
We go on to prove that the probability that W X raises an alarm (which event we denote
by ALARM) is negligible. In the rest of the proof, we condition on the event that none
of these sub-monitors raise an alarm. Since we have already shown that this is an event
of negligible probability (and only polynomially many such sub-monitors are run), this
will not change our conclusions.

Now, consider the point at which ruX forks the system. Let ¦�� be the probabil-
ity that rùX outputs õ starting at (conditioned on) this point, within Z time-steps.
Let � be the probability that � accepts the proof ZKP ú�Q�z~ü�­mT within Z time-steps, but� Qy{�R|sLÈ£T!¾CÈÄQyõ�¥wR�z~R|sLR�sLÈ&R�­LR�{®T<�«g . Note that »C¼ ° ALARM ´�� ¯�° �f´ , where the expectation
is over the distribution on the state of the system at the point at which rÎX forks.

Since we assume that the sub-monitors do not raise alarm, rÎX outputs some õ if
the two copies it runs both accept the proof, and in the second copy the verifier sends a
query different from the one in the first copy. So, � ���� �
	 ¦ � ª �®Q��
� º à¨á T . Then,

»C¼ ° r¢X outputs õÝ��©õ ¥ ´ ª ¯�° �®Q��
� º®à¨á ´
ª ¯�° �f´ � � º à�á ¯�° �f´
ª gº ¯�° �f´ � if

¯�° �f´ ª º>à¨á�� �
If the assumption in the last line above does not hold, we would be done, because»C¼ ° ALARM ´�� ¯�° �f´ . So we make that assumption and proceed.

Now we shall demonstrate a (non-uniform) PPT machine rYÈX which accepts sÁtdfeJRmg@h i and outputs Qyz`R|{JT such that a}Q�sLR|z`R�e�TD��a}Q�sLR|{�R3glT , with a probability polyno-
mially related to the probability of the monitor raising an alarm. rÜÈX Qys@T starts r¢X and
runs the commit phase by sending s . It forks rÎX after the commitment from � arrives.
Then it runs the two independent copies of ruX (which involves forking the system
again), and checks if they output different values Qyõ � R�slÈ� T and Q�õ � R�slÈ� T , with õ � ���õ � .
If so, r�ÈX derives a collision to the hash function from some bit at which õ � and õ �
differ, and outputs the corresponding portions of swÈ� R�sLÈ� . We say that r«ÈX succeeds if it
gets Q�õ � R�õ � T , such that õ � ��©õ � from two runs of r X . Then,

»C¼ ° r ÈX succeedś ª�� ��� ¦���� ����� ��� ¦��
ª�� ��� ¦���� ����� �
	 ¦�� because for all õ È , ¦�� 	 ª ¦����
�ÜQ � ��� ¦�����T%Q ����� �
	 ¦���T ª Q ����� �
	 ¦�� T

�

ª g� ¯�° �f´���� g� »C¼ ° ALARM ´��



Putting it all together we have that »C¼ ° ALARM ´Dµ¬Q � »C¼ ° rÜÈX finds a collision ´yT 5� ,
which is negligible by assumption on a .

5 Applications of the New Framework

As we have shown above, theoretically interesting cryptographic tools like commitment
and zero-knowledge proofs can be securely realized in the new framework, relatively
efficiently (compared to those in previous Environmental Security models). The reason
for this is that our security requirements are much more relaxed. However this raises
the question if these weakened versions of the above tools are useful to achieve security
for practically interesting tasks. In this section we make some progress towards making
the new framework usable for multi-party computation problems. We restrict ourselves
to 2-party computations of a very specific kind, as described below.

5.1 Client-Server Computation

A 2-party Client-Server Computation functionality �y��	CSC � is given earlier in Figure 1(d).
Note that the client does not keep any secrets from the server

�
. But the server must

commit to its inputs (and the monitor shall record the committed input) before the client
sends its inputs. First, we shall give a protocol for this Monitored functionality, before
discussing some of its limitations.

Secret Commit and Prove In order to give a protocol for �y��	CSC � , we need to modify the
Commit-and-Prove functionality, so that if both the server and the client are honest, the
adversary is not given the statements that the server proves. (This is because the adver-
sary should not learn the client’s input.) Such a functionality � SECRET - 	CAP can be securely
realized in the � ENC-hybrid model, where � ENC is the encryption functionality. For this���ZK and ��	COM are modified to the SECRET versions, which do not send the statement
proven ( � SECRET - �ZK) or the bit revealed ( � SECRET - 	COM) to the adversary. � SECRET - 	COM can
be securely realized by the protocol COM modified to encrypt the reveal step, using
the functionality � ENC . In the static case � ENC is known to be easy to implement, us-
ing CCA2-secure public-key encryption with new keys each time (see for instance [3]),
which in turn can be implemented assuming a family of trapdoor permutations (using
the construction in [21], for instance). But since we are in the Γ-ES-model, we need to
revisit the assumptions used to securely realize � ENC , namely the existence of trapdoor
permutations.

A3 There exists a family of trapdoor permutations secure against non-uniform PPT
adversaries which are given sampling access to

� �
for all s .

This is also an assumption made in [19]. With this assumption in place, we get the
following result.

Lemma 7. There are protocols which Γ-ES-realize � ENC and � SECRET - 	CAP against static
adversaries, under assumptions A1, A2 and A3.



Client-Server Computation Protocol: CSC

The protocol is parametrized by a function F .��� � SECRET- �CAP �=� � COMMIT-PHASE � : M "��� � ENC � � � : I� � � ENC �=� �lK * F � : M � :JI "��� � SECRET- �CAP �=� � PROOF-PHASE �yK *�* F � : M � :JI "�"
Fig. 5. Protocol for the Monitored Functionality for Client-Server Computation

5.2 The Protocol

Theorem 3. The protocol CSC Γ-ES-realizes the monitored functionality ����	CSC � against
static adversaries in the � SECRET - 	CAP R�� ENC-hybrid model.

Proof. 1. For any polynomial (in the security parameter � ) Z , there is a monitor sat-
isfying the requirements specified by �y�¿	CSC � , such that the probability of the monitor
raising an alarm within time Z is negligible.

We can build a monitor W�X for �y�k	CSC � using the monitor for ���¿	CAP � . W�X starts the
monitor for �y�¿	CAP � , and if the protocol proceeds beyond the first step, it would record
a value zÊ¥ internally as the committed value. W�X will copy that value and record it as
the input of

�
. Later if the monitor for ����	CAP � raises an alarm, W�X will raise an alarm.

If �k	CSC sends the value � to � , then �¿	CAP must return Q proven RA�O���
Q�zÊ¥@R�z���T|T . So
if the monitor for ���¿	CAP � does not raise an alarm, it means indeed �P� �
Q�z ¥wR|z!�¿T andW�X need not raise any alarm either. Thus W�X does satisfy the reuirements specified by�y��	CSC � . Further the probability that W�X raises an alarm is the same as that the monitor
for �y�¿	CAP � raises an alarm. By earlier analysis, this is indeed negligible.
2. CSC Γ-ES-realizes �k	CSC against static adversaries in the � SECRET - 	CAP R|� ENC-hybrid
model.

For every PPT adversary U we demonstrate a PPT simulator V such that no PPT
environment ½ can distinguish between interacting with the parties and U in the REAL
world, and interacting with the parties and V in the IDEAL world.

As usual V internally runs U (which expects to work in the � SECRET - 	CAP R|� ENC-hybrid
with the parties running the CSC protocol), and works as an interface between U and
the parties. When U starts the CSC protocol, V initiates a session with the IDEAL func-
tionality ��	CSC .
Corrupt Server. Again, as in the case of all the monitored functionalities introduced
in this work, thanks to the way the semi-functionality is designed, a trivial simulator
in the IDEAL world, which acts transparently between an internal copy of U and the
semi-functionality �k�ZK perfectly simulates the protocol.
Server not Corrupt. The client � may or may not be corrupt. We analyse the two cases
separately:

– Honest � : In this case all that U can see are the lengths of the messages z#"®R�z�� and
�
Qyz�"JR�z���T , given to it by � SECRET - 	CAP and � ENC . These are known to V (because �
is publicly known), and it can send them to U .



– Corrupt � : In this case V gets z�� and �
Qyz�"JR�z���T . In addition U expects to see the
messages commit and proven from � SECRET - 	CAP (in the first and last steps of the
protocol). These are easily provided by the simulator.

It is easy to see that in all the cases, the simulation is perfect.

From this theorem, using Lemma 7 and the composition theorem Theorem 1, we
get the following corollary.

Corollary 4 There is a protocol which Γ-ES-realizes monitored functionality ����	CSC �
against static adversaries, under assumptions A1, A2 and A3.

5.3 Extensions to Adaptive Adversaries

Above we analyzed security in the presence of static adversaries, for the sake of sim-
plicity. Here we mention how the tools developed here can be extended to the case
of adaptive adversaries. Firstly, if we expand the adversary class to allow the adaptive
corruption of only the clients, it is easy to see that the analyses still hold. The only
modification required is that (in the case of the “SECRET” versions of the functionali-
ties), the encryption protocols used will need to be secure against adaptive adversaries
as well.

However extending to full-fledged adaptive corruption (i.e., adaptive corruption of
the server as well) requires more modifications. Note that the Imaginary Angel Γ func-
tions as a null-angel when the server

�
is corrupted, but otherwise gives access to the

distribution
� �

. If
�

is initially uncorrupted and corrupted later on, removing access to� �
is not enough; having had access to

� �
in the past gives the adversary an advantage.

To fix this, we can use the hash function used in [19] for commitment, which takes one
more parameter, namely, the ID of the receiving party. The assumptions used and the
Imaginary Angel will then be the same as in [19]. The difference with [19] is that the
“basic commitment” and “basic ZK proof” protocols there cannot be directly used to
satisfy the security requirements there, where as the final protocols developed are secure
only against static adversaries. In our case these basic protocols can be directly used to
securely realize monitored functionalities. Note however that there is no significant ad-
vantage in using the client-server model anymore if we use the same assumptions as in
[19]. Indeed, the resulting protocols securely realize the monitored functionalities in the
unrestricted environmental setting (without the restrictions of the client-server model),
against adaptive adversaries.

6 Limitations and Challenges

6.1 Problem with $&% 	CSC '
Though we have successfully applied our tools in the new framework to obtain a 2-party
computation protocol, there are some serious limitations to this functionality. Clearly,
the set of functions that are computed are limited (namely, only client-server compu-
tations). But more seriously, the guarantee given by the monitor is not satisfactory.



In particular, there is no guarantee of “independence” of inputs. Though the monitor
records a value for the server’s input prior to the client sending out its input, the value
recorded is allowed to be dependent on the entire system, and in particular on the input
of the client!5

6.2 The Solution: Restricting the Monitors

In ongoing work, we suggest ways to address this problem. There we show that if the
clients keep their private inputs totally unused until the point of commitment (but may
use them immediately afterwards), then the monitor can be required to record a value
independent of their private inputs. As it turns out, the protocols are not altered, but
some restrictions are imposed on the monitor, and some parts of the proof become
significantly more involved.

We allow that some part of the state of the system can be kept “locked.” This part,
which we shall call the locked state, cannot be used in the system (until it is unlocked).
The requirement on the monitor is that it does not have access to the part of the system
state if it is locked at the point the monitor is required to record a value; it will have to
record a value based on the rest of the system, which we shall call the open state.

Technically, the locked state corresponding to a protocol execution is defined at the
beginning of that execution: it is the maximal part of the system state, not including
any of the adversary’s state, such that the distribution of the rest of the system state at
the recording point is independent of it. Note that the independence requirement im-
plies in particular that the probability of unlocking the state before the monitor finishes
recording, is zero (unless the locked state is completely predictable a priori from the
open state).

We do allow the locked state to evolve, as long as the independence is maintained
(in particular, no information should pass between the locked state and the open state).
Further, for full generality, we allow the locked state to be randomized: i.e., its value
is a random variable. However, we shall require that this random variable is efficiently
sampleable (which is implied by the assumption that the non-adverserial part of the
system is PPT). In particular all the “future” randomness, i.e., randomness which is
sampled after the monitor finishes recording, can be considered part of the locked state.6

As indicated earlier, the reason we allow the notion of a locked state in our frame-
work has to do with the meaningfulness of the two-party computation scenario. With the
modification sketched above in place, we can allow the client to keep its input locked,
and then even the monitor does not get to see it, before recording the other party’s input.

5 The monitor’s recorded value is independent of as yet unsampled randomness in the system.
So if the client’s input is only a freshly sampled random value, as is the case in a ZK proof or
coin-tossing protocol, this issue does not arise.

6 Incidentally, in the use of semi-functionalities in [19], the only locked state is future random-
ness. However this is an especially simple special case, taken care of by the original proof
there. [19] does not introduce or require a generalization. As it turns out generalizing to other
locked states complicates our arguments considerably.



However, note that to keep an input locked, it can never be used in the system at
all (until it is unlocked).7 This is because the monitor is computationally unbounded.
Note that this is related to the problem of malleability: if it was used in the system
previously, somehow that can be mauled and used to make a commitment related to
it. (It is an interesting problem to relax this information theoretic locking constraint to
a computational equivalent.) However, interestingly we do avoid the problem of mal-
leability while opening a commitment: the locked state is allowed to be unlocked before
the commitment is opened. Indeed, if the locked states are to be kept locked until after
the protocol terminates completely, restricting the monitor to the rest of the system state
is automatic. But to be useful, we need to allow locked states which can be opened after
the monitor records its value, but before the protocol terminates.

In work under progress we show how to prove that in all the monitored functional-
ities we use, the monitors can be required not to inspect the locked state of the system.
Surprisingly, this complicates the construction of the monitor and the proofs consider-
ably. Below we sketch the changes in the proof in the case of �O	COM .

Lemma 8. For any polynomials (in the security parameter � ) Z and ( , under assump-
tion A1, there is a monitor satisfying the requirements specified by ���O	COM � which does
not inspect the locked state of the system, such that the probability of the monitor raising
an alarm within time Z is less than g*)*( .

Proof (sketch): When �
	COM sends the commitmessage the monitor W�X,+ - must record
a bit Sm¥ internally. First, we sketch how W�X,+ - does this. As before, the basic idea is
for the monitor to look ahead in the system, and record the more likely bit that the
sender will ever reveal; if the sender can reveal to both bits with significant probability,
a reduction can be used to obtain a circuit for finding collisions in the hash function.
But note that here W X,+ - does not know the value of the locked state, and so it cannot
calculate the bit as above. However, we can show that for no two values for the locked
state, can the sender feasibly reveal the commitment in different ways. Intuitively then,
the monitor can use an arbitrary value for the locked state and use it to carry out the
calculation. However, there are a couple of problems with this. Firstly, revealing can
depend not only on the open state of the system at the end of commitment, but also on
the locked state, as it might be unlocked after the commit phase is over. In particular,
for certain values of the locked state (and open state), the sender might never complete
the reveal phase. So using a single value of the locked state will not suffice. The second
problem is that while W�X,+ - is computationally unbounded, the reduction to finding
collision should use a polynomial sized circuit. This circuit will need to be given the
value(s) of the locked state with which it will emulate the system. Further, the circuit
will obtain as input the random challenge in the commitment. Thus, the value(s) of the
locked state that it obtains should be defined prior to seeing the random challenge.

7 In other words, the inputs are for one time use only. After that if it is used as a client input
in a server-client computation protocol, there is no guarantee that the server’s input will be
independent of that input. This is a significant limitation. However note that a client’s input for
a “server-client” computation, with a corrupt server is the last time it can be used secretly, as
the computation gives the client’s input to the server.



Nevertheless, we show how to define polynomially many values for the locked state
of the system, based only on the open state of the system, and obtain a bit SL¥ using just
these values. To show that the probability of W«X,+ - raising an alarm within time Z is
less than g*)*( , we show that otherwise we can give a polynomial sized circuit (with the
above mentioned values of the locked states builtin) which can find a collision in our
hash function for a random challenge with significant possibility.

The construction of the monitor for ��	CAP is also changed in a similar fashion. How-
ever, since the monitor in this case is defined based on an extractor, and the extractor
itself will need to be modified to take polynomially many values of the locked state,
the proof is much more involved. The monitors for the ���ZK and �k	CSC need to be modi-
fied too. However since their description and proof is based on those of �)	COM and �¿	CAP

respectively they do not involve much change.

7 Conclusion

We introduced a framework of Monitored Functionalities, which provides a way to de-
fine and prove relaxed (but ES) security guarantees for (relatively simple) protocols. We
also introduced a restricted model called the Client-Server model, which allows simpler
protocols to be secure, and potentially under simpler computational assumptions. Both
these relaxations, we believe, would help in further exploring Environmental Security
(Network-Aware Security).

However, the applicability of the security guarantees from this work are somewhat
limited. It is an open problem to work around these limitations, while still maintaining
the relaxed nature of the security requirement so that simple protocols are possible. We
suggest restricting the computational powers of the monitors (but still giving them more
power than the players) as a useful direction.

There are many other ways in which this line of research can be furthered. It is a
challenge to try and base these results on more conventional computational assump-
tions, without setups. On the other hand it should be relatively simpler to allow setups
and replace the use of gES model here, by the ES/UC model. A general direction to
pursue is to use Monitored Functionalities or other similar notions to give some secu-
rity guarantee to many simple, efficient and intuitively secure protocols currently used
in practice.
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