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Abstract. In this article, we show that public key schemes based on
multivariate quadratic equations allow many equivalent, and hence su-
perfluous private keys. We achieve this result by investigating several
transformations to identify these keys and show their application to
Hidden Field Equations (HFE), C∗, and Unbalanced Oil and Vinegar
schemes (UOV). In all cases, we are able to reduce the size of the private
— and hence the public — key space by at least one order of magni-
tude. We see applications of our technique both in cryptanalysis of these
schemes and in memory efficient implementations.
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1 Introduction

One way to achieve more variety in asymmetric cryptology are schemes based on
the problem of solving Multivariate Quadratic equations (MQ-problem). This
is very important to have alternatives ready if large scale quantum computing
becomes feasible. In particular, the existence of quantum computers in the range
of 1000 bit would be a threat to systems based on factoring, e.g., RSA, as there
is a polynomial time factoring algorithm available for quantum computers [13].
The same algorithm would also solve the discrete log problem in polynomial time
— and therefore defeat schemes based on elliptic curves.

In the last two decades, several such public key schemes were proposed, e.g.,
[8, 11, 6]. All of them use the fact that the MQ-problem, i.e., finding a solution
x ∈ F

n for a given system of m quadratic polynomial equations in n variables
each



















y1 = p1(x1, . . . , xn)
y2 = p2(x1, . . . , xn)

...
ym = pm(x1, . . . , xn) ,
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for given y1, . . . , ym ∈ F and unknown x1, . . . , xn is difficult, namely NP-
complete (cf [4, p. 251] and [12, App.] for a detailed proof)). In the above system
of equations, the polynomials pi have the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n

∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear, and
quadratic terms). This polynomial-vector P := (p1, . . . , pm) forms the public key
of these systems. Moreover, the private key consists of the triple (S,P ′, T ) where
S ∈ AGLn(F), T ∈ AGLm(F) are affine transformations and P ′ ∈ MQm(Fn) is
a polynomial-vector P ′ := (p′1, . . . , p

′
m) with m components; each component is

a polynomial in n variables x′
1, . . . , x

′
n. Throughout this paper, we will denote

components of this private vector P ′ by a prime ′. In contrast to the public
polynomial vector P ∈ MQm(Fn), the private polynomial vector P ′ does allow
an efficient computation of x′

1, . . . , x
′
n for given y′

1, . . . , y
′
m. At least for secure

MQ-schemes, this is not the case if the public key P alone is given. The main
difference between MQ-schemes lies in their special construction of the central
equations P ′ and consequently the trapdoor they embed into a specific class of
MQ-problems.

Having a large private (and consequently public) key space is a desirable prop-
erty for any public key scheme. In this paper, we will show that many schemes
based on multivariate quadratic polynomial equations have a large number of
“equivalent” private keys. Hence, they have many superfluous private keys and
consequently a smaller private and public key space than initially expected. Our
main tool for this purpose are so-called “sustaining transformations”, which will
be formally introduced in Sect. 2.

1.1 Related Work

In their cryptanalysis of HFE, Kipnis and Shamir report the existence of “isomor-
phic keys” [7]. A similar observation for Unbalanced Oil and Vinegar Schemes
can be found in [6]. In both cases, there has not been a systematic study of the
structure of equivalent key classes. In addition, Patarin observed the existence of
some equivalent keys for C∗ [10] — however, his method is different from the one
presented in this paper, as he concentrated on modifying the central monomial.
Moreover, Toli observed that there exists an additive sustainer (cf Sect. 3.1) in
the case of Hidden Field Equations [14]. In the case of symmetric ciphers, [1]
used a similar idea in the study of S-boxes.

1.2 Outline

The remainder of this paper is organised as follows: first, we introduce the nec-
essary mathematical background and concentrate on useful properties of linear
and affine transformations. Second, we identify several candidates for sustaining
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transformations. Third, we apply these candidates to the Hidden Field Equa-
tions, the C∗ scheme, and Unbalanced Oil and Vinegar schemes. Sect. 5 concludes
this paper.

2 Mathematical Background

After giving some basic definitions in the following section, we will move on to
observations about affine transformations.

2.1 Basic Definitions

We start with a formal definition of the term “equivalent private keys”:

Definition 1. We call two private keys

(T,P ′, S), (T̃ , P̃ ′, S̃) ∈ AGLm(F) ×MQm(Fn) × AGLn(F)

“equivalent” if they lead to the same public key, i.e., if we have

T ◦ P ′ ◦ S = P = T̃ ◦ P̃ ′ ◦ S̃ .

In order to find equivalent keys, we consider the following transformations:

Definition 2. Let (S,P ′, T ) ∈ AGLm(F)×MQm(Fn)×AGLn(F) where σ, σ−1 ∈
AGLn(F) and τ, τ−1 ∈ AGLm(F). Moreover, let

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S (1)

We call the pair (σ, τ) ∈ AGLn(F) × AGLm(F) “sustaining transformations”
for an MQ-system if the “shape” of P ′ is invariant under the transformations
σ and τ . For short, we write (σ, τ) • (S,P ′, T ) for (1) and (σ, τ) sustaining
transformations.

Remark 1. In the above definition, the meaning of “shape” is still open. In fact,
its meaning has to be defined for each MQ-system individually. For example, in
HFE (cf Sect. 4.1), it is the bounding degree d ∈ N of the polynomial P ′(X ′),
while it is the fact that the oil-variables do not mix with other oil-variables,
while vinegar-variables do, in the case of the UOV (cf Sect. 4.3). However, for
σ, τ sustaining transformations, we are now able to produce equivalent keys
for a given private key by (σ, τ) • (S,P ′, T ). A trivial example of sustaining
transformations is the identity transformation, i.e., to set σ = τ = id.

Lemma 1. Let (σ, τ) be sustaining transformation. If G := (σ, ◦) and H :=
(τ, ◦) form a subgroup of the affine transformations, they produce equivalence
relations within the private key space.
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Proof. We prove the statement for G := (σ, ◦). The proof for H := (τ, ◦) is
analogous. First, we have reflexivity as the identity transformation is contained
in G. Second, we have symmetry as a subgroup is closed under inversion. Third,
we also have transitivity as a subgroup is closed under composition. Therefore,
the groups G and H partition the private key space into equivalence classes.

Remark 2. We want to point out that the above proof does not use special
properties of sustaining transformations, but the fact that these are a subgroup
of the group of affine transformations. Hence, the proof does not depend on the
term “shape” and is therefore valid even if the latter is not rigorously defined yet.
In any case, instead of proving that sustaining transformations form a subgroup
of the affine transformations, we can also consider normal forms of private keys.

After these initial observations over equivalent keys, we concentrate on bijec-
tions between ground fields and their extension fields. Let F be a finite field with
q := |F| elements. Using a polynomial i(t) ∈ F[t], irreducible over F, we generate
an extension field E := F[t]/i(t) of dimension n. This means we view elements
of E as polynomials in t of degree less than n. Addition and multiplication are
defined as for polynomials modulo i(t). In addition, we can view elements from
E as vectors over the vector-space F

n. We will therefore view elements a ∈ E

and b ∈ F
n as

a := αntn−1 + . . . + α2t + α1 and b := (β1, . . . , βn) ,

for αi, βi ∈ F with 1 ≤ i ≤ n. Moreover, we define a bijection between E and
F

n by identifying the coefficients αi ↔ βi. We use this bijection throughout this
paper.

2.2 Affine Transformations

In the context of affine transformations, the following lemma proves useful:

Lemma 2. Let F be a finite field with q := |F| elements. Then we have
∏n−1

i=0 qn−
qi invertible (n × n)-matrices over F.

Next, we recall some basic properties of affine transformations over the finite
fields F and E.

Definition 3. Let MS ∈ F
n×n be an invertible (n × n) matrix and vs ∈ F

n a
vector and let S(x) := MSx+vs. We call this the “matrix representation” of the
affine transformation S.

Definition 4. Moreover, let s1, . . . , sn be n polynomials of degree 1 at most
over F, i.e., si(x1, . . . , xn) := βi,1x1 + . . . + βi,nxn + αi with 1 ≤ i, j ≤ n and
αi, βi,j ∈ F. Let S(x) := (s1(x), . . . , sn(x)) for x := (x1, . . . , xn) as a vector over
F

n. We call this the “multivariate representation” of the affine transformation
S.



Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems 283

Remark 3. The multivariate and the matrix representation of an affine transfor-
mation S are interchangeable. We only need to set the corresponding coefficients
to the same values: (MS)i,j ↔ βi,j and (vS)i ↔ αi for 1 ≤ i, j ≤ n.

In addition, we can also use the “univariate representation” over the extension
field E of the transformation S.

Definition 5. Let 0 ≤ i < n and A, Bi ∈ E. Moreover, let the polynomial
S(X) :=

∑n−1
i=0 BiX

qi

+ A be an affine transformation. We call this the “uni-
variate representation” of the affine transformation S(X).

Lemma 3. An affine transformation in univariate representation can be trans-
fered efficiently in multivariate representation and vice versa.

Remark 4. This lemma follows from [7, Lemmata 3.1 and 3.2] by a simple ex-
tension from the linear to the affine case.

3 Sustaining Transformations

In this section, we give several examples for sustaining transformations. In addi-
tion, we will consider their effect on the central transformation P ′. The authors
are not convinced that the transformations stated here are the only ones pos-
sible but encourage the search for other and maybe more powerful sustaining
transformations.

3.1 Additive Sustainer

For n = m, let σ(X) := (X + A) and τ(X) := (X + A′) for some elements
A, A′ ∈ E. Moreover, as long as they keep the shape of the central equations P ′

invariant, they form sustaining transformations.
In particular, we are able to change the constant parts vs, vt ∈ F

n or VS , VT ∈
E of the two affine transformations S, T ∈ AGLn(F) to zero, i.e., to obtain a
new key (Ŝ, P̂ ′, T̂ ) with Ŝ, T̂ ∈ GLn(F).

Remark 5. This is a very useful result for cryptanalysis as it allows us to “collect”
the constant terms in the central equations P ′. For cryptanalytic purposes, we
therefore need only to consider the case of linear transformations S, T ∈ GLn(F).

The additive sustainer also works if we interpret it over the vector space F
n

rather than the extension field E. In particular, we can also handle the case
n 6= m now. However, in this case it may happen that we have a′ ∈ F

m and
consequently τ : F

m → F
m. Nevertheless, we can still collect all constant terms

in the central equations P ′.
If we look at the central equations as multivariate polynomials, the additive

sustainer will affect the constants αi and βi,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
A similar observation is true for central equations over the extension field E:
in this case, the additive sustainer affects the additive constant A ∈ E and the
linear factors Bi ∈ E for 0 ≤ i < n.
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3.2 Big Sustainer

We now consider multiplication in the (big) extension field E, i.e., we have
σ(X) := (BX) and τ(X) := (B′X) for B, B′ ∈ E

∗. Again, we obtain a sustain-
ing transformation if this operation does not modify the shape of the central
equations as (BX), (B′X) ∈ AGLn(F).

The big sustainer is useful if we consider schemes defined over extension fields
as it does not affect the overall degree of the central equations over this extension
field.

3.3 Small Sustainer

We now consider multiplications over the (small) ground field F, i.e., we have
σ(x) := Diag(b1, . . . , bn)x and τ(x) := Diag(b′1, . . . , b

′
m)x for the coefficients

b1, . . . , bn, b′1, . . . , b
′
m ∈ F

∗ and Diag(b) the diagonal matrix on a vector b ∈ F
n

and b′ ∈ F
m, respectively.

In contrast to the big sustainer, the small sustainer is useful if we consider
schemes which define the central equations over the ground field F as it only
introduces a scalar factor in the polynomials (p′

1, . . . , p
′
m).

3.4 Permutation Sustainer

For the transformation σ, this sustainer permutes input-variables of the central
equations while for the transformation τ , it permutes the polynomials of the cen-
tral equations themselves. As each permutation has a corresponding, invertible
permutation-matrix, both σ ∈ Sn and τ ∈ Sm are also affine transformations.
The effect of the central equations is limited to a permutation of these equations
and their input variables, respectively.

3.5 Gauss Sustainer

Here, we consider Gauss operations on matrices, i.e., row and column permu-
tations, multiplication of rows and columns by scalars from the ground field F,
and the addition of two rows/columns. As all these operations can be performed
by invertible matrices; they form a subgroup of the affine transformations and
are hence a candidate for a sustaining transformation.

The effect of the Gauss Sustainer is similar to the permutation sustainer and
the small sustainer. In addition, it allows the addition of multivariate quadratic
polynomials. This will not affect the shape of some MQ-schemes.

Remark 6. We want to point out that all five sustainers in this section form
groups and hence partition the private key space into equivalence classes (cf
Lemma 1).
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4 Application to Multivariate Quadratic Schemes

In this section, we show how to apply the sustainers from the previous section
to several MQ-schemes. Due to space limitations in this paper, we will only
outline some central properties of each scheme. In particular, we will not explain
how they can be used to derive signatures but refer the reader to the original
papers for this purpose. We want to stress that the reductions in size we achieve
are only lower, no upper limits: as soon as new sustaining transformations are
identified, they will reduce the key space of the schemes in questions. At present,
we prefer not to attempt to give an upper limit for the reductions possible, as
the subject is far too new.

4.1 Hidden Field Equations

The Hidden Field Equations (HFE) have been proposed by Patarin [11].

Definition 6. Let E be a finite field and P(X) a polynomial over E. For

P (X) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
qi+qj

+
∑

0≤k≤d

qk≤d

BkXqk

+ A

where







Ci,jX
qi+qj

for Ci,j ∈ E are the quadratic terms,

BkXqk

for Bk ∈ E are the linear terms, and
A for A ∈ E is the constant term

and a degree d ∈ N, we say the central equations P ′ are in HFE-shape.

Using a generalisation of the Kipnis-Shamir Theorem (cf Lemma 3), we see that
we can express the univariate polynomial over E as multivariate polynomials
over F. Moreover, as the degree of the polynomial P is bounded by d, this allows
efficient inversion of the equation P (X) = Y for given Y ∈ E. So the “shape”
of HFE is in particular this degree d of the private polynomial P . Moreover,
we observe that there are no restrictions on its coefficients Ci,j , Bk, A ∈ E for
i, j, k ∈ N and qi, qi + qj ≤ d. Hence, we can apply both the additive and the
big sustainer (cf sect. 3.1 and 3.2) without changing the shape of this central
equation.

Theorem 1. For K := (S, P, T ) ∈ AGLn(F) × E[X ] × AGLn(F) a private key
in HFE, we have

q2n.(qn − 1)2

equivalent keys. Hence, the key-space of HFE can be reduced by this number.

Proof. To prove this theorem, we consider normal forms of private keys: we
first apply the additive sustainer to reduce the constant parts of the two affine
transformations S and T to zero. Second, we apply the big sustainer on the
univariate representation of S and T to reduce one of its coefficients to the neutral
element of multiplication. W.l.o.g., let B0 be the non-zero coefficient of the lowest
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power in the univariate representation of S. Applying σ−1(X) := B−1
0 X will

reduce this coefficient to one. Similar, we can reduce one coefficient of the affine
transformation T . Hence, we have now computed a unique normal form for any
given private key. Moreover, we can “reverse” these computations and derive an
equivalence class of size q2n.(qn − 1)2 this way as we have

(BX + A, B′X + A) • (S,P ′, T ) for B, B′ ∈ E
∗ and A, A′ ∈ E .

Remark 7. The idea presented in this section also works against the variations
HFEv (adding vinegar variables) and HFE- (removing public equations). How-
ever, for HFE- we have to take into account that some rows of the private matrix
T do not influence the public key. Hence, the number of equivalent keys is even
larger. Due to space limitations in this paper, we just point out this fact.

For the case q = 2 and n = 107, the number of redundant keys is 2428. In
comparison, the number of choices for S and T is 222,894. This special choice of
parameters has been used in a repaired version of Quartz [2, 15].

4.2 Class of C∗ Schemes

As HFE, the scheme C∗, due to Matsumoto and Imai [8], uses a finite field F

and an extension field E. However, the choice of the central equations is far more
restricted than in HFE as we only have one monomial here.

Definition 7. Let E be an extension field of dimension n over the finite field F

and λ ∈ N an integer with gcd(qn−1, qλ +1) = 1. We then say that the following
central equation is of C∗-shape:

P (X) := Xqλ+1 .

The restriction gcd(qn − 1, qλ +1) = 1 is necessary first to obtain a permutation
polynomial and second to allow efficient inversion of P (X). In this setting, we
cannot apply the additive sustainer, as this monomial does not allow any linear
or constant terms. Moreover, the monomial requires a factor of one. Hence, we
have to preserve this property. At present, the only sustainer suitable seems to
be the big sustainer (cf Sect. 3.2). We use it in the following theorem.

Theorem 2. For K := (S, P, T ) ∈ AGLn(F) × E[X ] × AGLn(F) a private key
in C∗, we have

(qn − 1)

equivalent keys. Hence, the key-space of C∗ can be reduced by this number.

Proof. To prove this statement, we consider normal forms of keys in C∗. In
particular, we concentrate on a normal form of the affine transformation S where
S is in univariate representation. As for HFE and w.l.o.g., let B0 be the non-zero
coefficient of the lowest power in the univariate representation of S. Applying
σ−1(X) := B−1

0 X will reduce this coefficient to one. In order to “repair” the
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monomial P (X), we have to apply an inverse transformation to T . So let τ(X) :=

(Bqλ+1
0 )−1X . This way we obtain

P = T ◦ τ−1 ◦ τ ◦ P ◦ σ ◦ σ−1 ◦ S

= T̃ ◦ (B
(qλ+1).(−1)
0 .Bqλ+1

0 .Xqλ+1) ◦ S̃

= T̃ ◦ P ◦ S̃ ,

where S̃ has its coefficient B0 reduced to one. In contrast to HFE (cf Thm. 1),
we cannot chose the transformations σ and τ independently: each choice of σ
implies a particular τ and vice versa. So we have

(BX, B−qλ−1X) • (S, P, T ) where B ∈ E
∗

and can hence compute a total of (qn − 1) equivalent keys for any given key.
Since all these keys form equivalence classes, we reduced the private key space
of C∗ by this factor.

Remark 8. Patarin observed that it is possible to derive equivalent keys by
changing the monomial P [10]. As the aim of this paper is the study of equivalent
keys by chaining the affine transformations S, T alone, we did not make use of
this property.

Moreover, we observed in this section that it is not possible for C∗ to change
the transformations S, T from affine to linear. In this context, we want to point
out that Geiselmann showed how to reveal the constant parts of these transfor-
mations [5]. Hence, having S, T affine instead of linear does not seem to enhance
the overall security of C∗.

Finally, we want to note that C∗ itself is insecure, due to a very efficient
attack by Patarin [9]. However, due to space limitations in this paper, we will
not investigate equivalent keys of the more secure version C∗−−.

For q = 128 and n = 67, we obtain 2469 equivalent private keys per class.
The number of choices for S, T is 262,848 in this case. This particular choice of
parameters has been used in Sflashv3 [3].

4.3 Unbalanced Oil and Vinegar Schemes

In contrast to the two schemes before, we now consider a class of MQ-schemes
which does not mix operations over two different fields E and F but only performs
computations over the ground field F. Moreover, Unbalanced Oil and Vinegar
schemes (UOV) omit the affine transformation T but use S ∈ AGLn(F). To
fit in our framework, we set it to be the identity transformation, i.e., we have
T = τ = id. UOV were proposed in [6].

Definition 8. Let F be a finite field and n, m ∈ N with n ≥ 2m. Moreover, let
α′

i, β
′
i,j , γ

′
i,j,k ∈ F. We say that the polynomials below are central equations in

UOV-shape:

pi(x
′
1, . . . , x

′
n) :=

m
∑

j=1

n
∑

k=1

γ′
i,j,kx′

jx
′
k +

n
∑

j=1

β′
i,jx

′
j + α′

i .
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In this context, the variables x′
i for 1 ≤ i ≤ n − m are called the “vinegar”

variables and x′
i for n − m < i ≤ n the “oil” variables. Note that the vinegar

variables are combined quadratically while the oil variables are only combined
with vinegar variables in a quadratic way. Therefore, assigning random values to
the vinegar variables, results in a system of linear equations in the oil variables
which can than be solved, e.g., using Gaussian elimination. So the “shape” of
UOV is the fact that a system in the oil variables alone is linear. Hence, we may
not mix oil variables and vinegar variables in our analysis but may perform affine
transformations within one set of these variables. So for UOV, we can apply the
additive sustainer and also the Gauss sustainer (cf sect. 3.1 and 3.5). However,
in order to ensure that the shape of the central equations does not change, we
have to ensure that the Gauss sustainer influences the vinegar and oil variables
separately.

Theorem 3. Let K := (S, P, id) ∈ AGLn(F) × MQm(Fn) × AGLn(F) be a
private key in UOV. Then we have

qn

n−m−1
∏

i=0

(qn−m − qi)
m−1
∏

i=0

(qm − qi)

equivalent keys. Hence, the key-space of UOV can be reduced by this number.

Proof. As in the case of the schemes before, we compute a normal form for
a given private key. First, applying the additive sustainer reduces the affine
transformation S to a linear transformation. This gives us a factor of qn in
terms of equivalent keys. Second, applying the Gauss sustainer separately within
vinegar and oil variables, we can enforce the following structure, denoted R ∈
F

n×n, on the matrix MS ∈ F
n×n of the (now only) linear transformation S:

R :=





Im 0 Am

0 In−2m Bn−2m
m

Im Cm
n−2m Dm



 .

In this context, the matrices Im, In−2m are the identity elements of F
m×m and

F
(n−2m)×(n−2m), respectively. Moreover, we have the matrices Am, Dm ∈ F

m×m,
the matrix Bn−2m

m ∈ F
(n−2m)×m and Cm

n−2m ∈ F
m×(n−2m). For a given central

equation P ′, each possible matrix R leads to the same number of equivalent keys.
Let

E :=

(

Gn−m 0
0 Hm

)

be an (n×n)-matrix. Here, we require that the matrices Gn−m ∈ F
(n−m)×(n−m)

and Hm ∈ F
m×m are invertible (cf Lemma 2). This way, we define the trans-

formation σ(x) := Ex where x ∈ F
n. Note that these transformations σ form a

subgroup within the affine transformations. So we have

(Ex + a, id) • (S,P ′, id) for a ∈ F
n and E as defined above.
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As this choice of σ partitions the private key space into equivalence classes of
equal size, and due to the restrictions on E, we reduced the size of the private
key space by an additional factor of

∏n−m−1
i=0 (qn−m − qi)

∏m−1
i=0 (qm − qi) .

5 Conclusions

In this paper, we showed through the examples of Hidden Field Equations (HFE),
C∗ and Unbalanced Oil and Vinegar (UOV) that it is possible to reduce the
number of keys in these multivariate quadratic public key schemes by at least
one order of magnitude. For UOV, the reduction was the most drastic one as it
allowed to reduce the number of possible keys by more than half of the number of
possible affine transformations S, cf Table 1 and Table 2 for numerical examples.

Table 1. Summary of the Reduction Results of this Paper

Scheme Reduction

Hidden Field Equations q2n(qn − 1)2

C∗ qn − 1

Unbalanced Oil and Vinegar qn
Q

n−m−1

i=0
(qn−m − qi)

Q

m−1

i=0
(qm − qi)

The results in this paper can be used in various contexts. First, it is possible to
employ them for implementing these schemes in a memory-efficient way: instead
of storing the original private key, one can reduce the key to its normal form
and omit storing the superfluous parts. Due to the fact that the sustaining
transformations in this paper form sub-groups of the affine transformation, this
reduction can be done without any loss of security. In addition, we can use the
results of this paper in cryptanalysis by enforcing a special structure to either
the affine transformations S, T (as done here), or on the central equations P ′.
This way, it is possible to concentrate on the parts of the scheme which actually
contribute to the security of multivariate quadratic schemes and neglect others,
e.g., constant parts of the affine transformations in HFE or UOV. However,
we want to point out that the key space for any of these schemes is still far
larger than, e.g., in the case of RSA, cf Table 2 for the number of choices on
S, T alone. So even with the results in this paper, we are not able to break any
of these schemes by exhaustive key search. On the other hand, it is not clear
at present if the sustainers presented in this paper are the only ones possible.
Therefore, the existence of other sustaining transformations is stated as an open
problem.

Finally, we want to remark that the techniques in this paper are quite general,
see the list of possible sustaining transformations in Sect. 3. Hence, it is not only
possible to apply them on HFE, C∗, and UOV, but also on other multivariate
quadratic schemes, such as enTTS [16]. However, due to space limitations in this
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Table 2. Numerical Examples for the Reduction Results of this Paper

Scheme Parameters Choices for S, T Reduction
(in log2) (in log2)

HFE q = 2, n = 107 22,894 428

C∗ q = 128, n = 67 62,846 469

UOV q = 2, m = 64, n = 192 36,862 20,668
q = 2, m = 64, n = 256 65,534 41,212

paper, we needed to make a choice and decided to concentrate on HFE, C∗, and
UOV.
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