
Optimizing Robustness while Generating Shared

Secret Safe Primes

Emil Ong and John Kubiatowicz

University of California, Berkeley

Abstract. We develop a method for generating shared, secret, safe
primes applicable to use in threshold RSA signature schemes such as
the one developed by Shoup. We would like a scheme usable in practical
settings, so our protocol is robust and efficient in asynchronous, hostile
environments. We show that the techniques used for robustness need spe-
cial care when they must be efficient. Specifically, we show optimizations
that minimize the number and size of the proofs of knowledge used. We
also develop optimizations based on computer arithmetic algorithms, in
particular, precomputation and Montgomery modular multiplication.

Keywords: Distributed key generation, safe primes, threshold RSA signatures.

1 Introduction

Shoup’s scheme [1] for threshold RSA signatures was a great leap forward in
making threshold signature schemes practical. Its ability to avoid interaction
while signing makes the scheme efficient and easy to implement. Unfortunately,
Shoup’s scheme required the use of a safe prime product modulus for its proof
of correctness. Moreover, the scheme assumes a trusted dealer to create and
distribute this modulus and the private key shares. Since the development of
Shoup’s scheme, several works ([2–4]) have been published to try to eliminate the
single dealer, but none have shown the costs associated with a robust solution.

In this paper, we show the cost required for a robust implementation of a
distributed safe prime generation scheme. We follow the basic form of the al-
gorithm in [2], but we also show that the changes necessary for robustness are
non-trivial if we want efficiency. We develop several techniques for reducing the
number of proofs of knowledge while maintaining security. Our methods are
based on computer arithmetic, number theory, and simple protocol analysis to
reduce redundancy.

1.1 Algorithm Overview

Before diving into the details of our safe prime generation algorithm, we will give
a high-level overview. Our approach to prime finding is very familiar: effectively
we generate candidate numbers and test them until we find a safe prime. First
we use the usual techniques for improving our search – we make sure that our

122 Emil Ong and John Kubiatowicz

1. Find a candidate number φ which has no small prime factors and has the property
φ ≡ 3 mod 4.

2. If the number 2 is a Miller-Rabin witness to the compositeness of φ or φ−1
2

, return
to step 1.

3. Run the Miller-Rabin test repeatedly on φ with random inputs a sufficient number
of times to ensure primality with a small error probability.

Fig. 1: Algorithm Overview

candidate prime is not composed of small prime factors. However instead of doing
trial division, we produce our candidate in a constructive way following the lead
of Malkin, Wu, and Boneh [5]. We modify their algorithm however by making
it robust through contributing several zero-knowledge proofs. This method is
detailed in Section 3.

After finding such a candidate, we then proceed to do more rigorous tests.
Specifically, we follow the techniques outlined by Cramer and Shoup in [6]. The
procedure recommended in that work involves two specialized Miller-Rabin tests
followed by a generic Miller-Rabin test of compositeness. To do Miller-Rabin
compositeness tests, we have to perform modular exponentiation. In our case the
modulus is secret, a fact which is the main source of difficulty in our algorithm.
Sections 4.1 and 4.2 are dedicated to optimizing the performance of this type
of modular exponentiation. Specifically, we generalized the modular exponenti-
ation method given in [2] and provided a new modular multiplication algorithm
based on Montgomery multiplication. The high-level algorithm is summarized
in Figure 1.

1.2 Application: RSA Signatures

After successfully generating two shared, safe primes with this algorithm, the
players can simply multiply their shares of these primes together and reveal
the result. The factorization of the composite number is not revealed because
the VSS and multiplication schemes conceal. At this point, the players have
all generated a public RSA modulus for which no player knows the factors.
Moreover, the players can compute secret shares of the Euler totient function of
the modulus. This fact allows them to use the algorithm of Catalano et al. [7]
to compute secret shares of an RSA private key. These key shares are then
immediately usable for Shoup’s RSA signature scheme [1].

1.3 Related Work

Shoup’s proof of correctness required the use of safe primes in the RSA modulus
(i.e. n = pq where p, q are primes of the form p = 2p′ + 1, q = 2q′ + 1 with p′, q′

also being primes). [3, 4] noted that this requirement is a bit strong and replaced
it with assumptions relating to the computational difficulty of certain operations

Optimizing Robustness while Generating Shared Secret Safe Primes 123

in RSA groups. Safe primes meet and exceed the requirements set by [3, 4] and
these works both showed RSA moduli with lesser constraints are suitable for
Shoup’s scheme. The assumptions made are non-standard, but reasonable.

Works by Boneh et al. [8, 5] developed ways to generate and verify RSA moduli
and inverses, but do not necessarily produce primes suitable to Shoup’s thresh-
old scheme. Moreover, these schemes are secure only in the honest-but-curious
setting. An optimization in [5], called distributed sieving, however is very useful
and we will develop a robust version in section 3.

Frankel, MacKenzie, and Yung [9] developed a robust method for RSA key
generation, but also do not produce safe prime product moduli. Many of their
techniques will be very useful in our protocol, however.

Algesheimer, Camenish, and Shoup [2] were the first to suggest an algorithm
for distributively generating safe primes and we follow their exposition closely.
Our work expands on their algorithm by making it robust and optimizing within
this robust framework.

1.4 Contributions

Our contributions to this field are three-fold:

– We provide a robust version of the Malkin, Wu, and Boneh [5] distributed
sieving algorithm,

– We improve the Miller-Rabin algorithm of Algesheimer, Camenish, and Shoup
[2] by (1) generalizing the modular exponentiation method and (2) introducing
Montgomery multiplication into a distributed computational framework for
faster modular arithmetic.

2 Preliminaries: Model and Commitments

We deal with two preliminaries before proceeding to our algorithm, the compu-
tational and network models and the commitment and verified secret sharing
schemes we use.

2.1 Model

We assume an asynchronous network only offering point-to-point messages. We
view the network as an adversary that can choose to drop or delay the messages
sent between two parties. The protocols we use require authenticated messages
however, so we will assume that there exists some way of ensuring the integrity
of messages which are delivered. We rely on the work of Goldwasser and Lindell
[10] which provides a broadcast protocol which is simpler than full, authenticated
Byzantine agreement, but is sufficient for both serial and parallel composition
of secure computation.

For the secrecy and binding of our commitment and secret sharing protocols,
we rely on the assumption that computing discrete logarithms is difficult. We
will build our protocols to be secure in the random oracle model since we intend

124 Emil Ong and John Kubiatowicz

them to be used for Shoup’s RSA signature scheme [1], which uses a random
oracle for non-interactivity. This assumption can be removed by reintroducing
additional interactivity, though at significant cost, as usual.

In describing these multiparty protocols, we will borrow the notation of [2]
for secret sharing. We assume familiarity with both additive and polynomial
secret sharing (also known as Shamir secret sharing [11]). Our algorithms will
only involve polynomial secret sharing and we shall denote player j’s polynomial
share of a as [a]pj ∈ Zp. In general, we will use these notations to show the format
of the input and output values of our multiparty protocols, but refer to the shared
value directly in the body of the protocol for clarity.

2.2 Commitments

We will need a commitment scheme where the properties of the integers hold
because we may need to deal with negative numbers to prove relative primality.
We will also need a verifiable secret sharing scheme that works using integer
commitments. This property will give us the ability to prove statements about
the numbers we share. These two primitives are the basis for robustness in our
algorithm.

We will use a scheme discussed in [7] which uses a prime finite field of very
large order and relies on the discrete logarithm problem. In truth, these are not
commitments over the integers, but the finite field on which they are defined is
large enough that relations we are trying to prove also hold in these fields. We
prefer this technique over that of [12] in our case. A more complete explanation
of the differences is available in the extended version of this paper.1

Setup The prime number that we use needs to be larger than any term we will
use in our commitments and computations. Since our goal is to create an RSA
modulus by multiplying shared primes, the players can agree to a specific RSA
key size a priori and this size will determine the maximum size of our committed
numbers. For example, if we are trying to generate a key of size 1024, we can set
the bound for candidate safe prime numbers at B = 2512.

There are two computations for which we need to be careful: those involved
in verifiable secret sharing (VSS) and the proofs of k-roughness. For VSS, if
we create a t-out-of-n sharing using a method similar to Pedersen’s VSS [13],
then we are creating a random polynomial of degree t which will be evaluated
at the integers {1, 2, ..., n}. In order to make Lagrange interpolation calculations
remain in the integers, we will need to multiply our secret by n! and choose the
coefficients of this polynomial to be bound by ±Bn!. As a consequence, no shared
point on the polynomial should exceed 2Btntn!. We choose prime p > 2Btntn!
and work over the field GF (p). [7] contains a VSS protocol in which obeying this
bound is a requirement for secret share verification. This protocol is the one we
will use to share secrets.

1 Visit http://oceanstore.cs.berkeley.edu for the extended version.

Optimizing Robustness while Generating Shared Secret Safe Primes 125

Setup

Input: A bound B on the size of prime candidates, a number b such that Mb =
Q

i≤b
pi < B, and a bound β for the prime p (usually either β = 2Btntn! or β = 2BMb).

1. Perform three β-bit joint coin-flipping protocols in parallel. Call the results x, y,
and z.

2. Let p be the smallest prime greater than x.
3. Let g = y mod p and h = z mod p.

Making commitments

To make a commitment to x ∈ Zp, a party chooses rx ∈R Zp and the commitment is
gxhrx mod p.

Fig. 2: The integer commitment scheme

We will give a brief discussion here of k-roughness proofs in order to de-
velop our commitment scheme with full details to follow in Section 3.1. We say
that a number a is k-rough if it has no small prime factors less than k. Let
Mb =

∑

i≤b pi, where pi is the ith prime. The proof that a number is pb+1-rough
involves showing that a is relatively prime to Mb. Specifically, we will compute
and commit to x and y such that ax + Mby = 1. We need to make sure that
our commitment scheme is sufficient to contain ax and Mby, both of which are
bounded by BMb. Since we will never use ax or Mby in conjunction with VSS
however, we can set the bounds for the prime field in our commitment scheme
to be p > 2B max(Mb, tn

tn!).
Usually, the Mb term will dominate the tntn! term, unless there are a large

number of players. Because of the way that we create the prime candidates, we
must choose b such that Mb < B to ensure that the candidates are not too
large. Choosing a large b means that we will be more likely to find a safe prime
quickly, but increases our commitment size. However, if the number of players
in our generation scheme is large, we can use a large b without this difficulty
because of the tntn! term. As an example, suppose we are trying to generate a
1024-bit RSA key with factors of size 512-bits. Thus B = 2512. We can choose
b = 71, which makes the bit size of Mb be |Mb|2 = 475. Suppose t = 5 and
n = 11. Then |tntn!)|2 = 45. In this case p must be greater than 2988 since
475 > 45.

As an optimization, after we prove the k-roughness of a number a, we can use
the secret share conversion methods of [2] to reshare a over a prime field of size
p with 2Btntn! < p < 2BMb. This step will reduce the size of messages for the
more communication intensive modular multiplication protocol.

A summary of the commitment scheme is given in Figure 2.

3 Distributed Sieving

In this section, we show how to generate safe prime candidates in a robust way.
We begin with a technique by Malkin, Wu, and Boneh [5] called distributed siev-

126 Emil Ong and John Kubiatowicz

Input: A bound, B, for generated prime candidates. Let Mb =
Q

i≤b
pi < B be a

product of the first b primes.
Output: A number a + rMb relatively prime to Mb.

1. Each server sieves to find a random integer ai relatively prime to Mb. In other words,
each server finds a random integer with no prime factors smaller than pb. The ai

are multiplicative shares of a (i.e. a =
Q

i=1..n
ai). Note that a also has no prime

factors less than pb.
2. The servers produce an additive sharing of a such that each server has a share bi

with a =
P

i=1..n
bi.

3. The servers choose a random number ri ∈R [0.. B
Mb

], then locally compute bi +riMb.

At this point, each server has an additive share of a + rMb (where r =
P

i=1..n
ri)

which is also relatively prime to Mb.

Fig. 3: Malkin, Wu, and Boneh Distributed Sieving in the Honest-but-Curious Model

ing which aims to improve the efficiency of distributed random prime generation.
Specifically, the technique constructively produces numbers without small prime
factors, rough numbers. Using such numbers is a common approach in classical
prime number generation. The technique described in [2] to find rough numbers
is distributed trial division on random candidates. Unfortunately this approach
is probabilistic and may take many iterations. Distributed sieving requires only
a small constant number of multiparty computations. The algorithm of Malkin,
Wu, and Boneh is listed in Figure 3.

The empirical experiments of [5] showed a factor of 10 improvement in the
speed of prime generation using this method. However this protocol is secure
only in the honest-but-curious model. Specifically, there is no check that the
multiplicative shares ai are being produced correctly. In other words, if even one
of the servers chooses a number with a prime factor less than or equal to pb,
the protocol will never find a prime number as the sum a + rMb will always be
divisible by that prime. Moreover, unverified additive sharing is central in this
protocol and thus requires that a fixed threshold set of the servers be available
and honest throughout the protocol.

Thus we need a way to prove and verify that each ai is relatively prime to Mb

using a non-interactive zero-knowledge argument (assuming the random oracle
model2). After these proofs, we will create a verifiable polynomial sharing of a

(resistant to failing or malicious servers) that allows easy computation of a+rMb

and with comparable efficiency to the scheme used in [5].

3.1 Proving a number is k-rough

In order for distributed sieving to work correctly, each player needs to produce
a number which is relatively prime to Mb (equivalently, we say that the number

2 Shoup’s RSA signature scheme already invokes the random oracle model, so we lose
no security in making this assumption.

Optimizing Robustness while Generating Shared Secret Safe Primes 127

Step Bits

Find integers xi, yi such that aixi + Mbyi = 1 holds using the extended
Euclidean algorithm.

–

Prove that xi 6= 0, yi 6= 0, and ai 6= 0. 33|p|2

Produce gaihrai , gxihrxi , gyihryi , and gaixihraixi , integer commitments
to ai, xi, yi, and aixi, respectively.

4|p|2

Show the multiplicative relationship between the commitments of ai, xi

and aixi.
8|p|2

Prove aixi+Mbyi to be 1 by showing knowledge of the discrete logarithm
loghg−1(gaixihraixi)(gyihryi)Mb .

2|p|2

Total 47|p|2

Fig. 4: Proof that ai is pb+1-rough. Sizes given are for the random oracle, non-
interactive proof versions. See the extended version of this paper for more information.

is pb+1-rough or has no prime factors less than pb+1, where pi is the ith prime
number). The protocol of [5] assumes honesty on the part of the players, but
this assumption may not always be acceptable.

Using the properties of integer commitment and the multiplication proof pro-
tocol of [12], we can prove that a number is relatively prime to Mb. Note that
showing relatively primality of a and Mb is equivalent to showing that there
exist integers x, y such that ax + Mby = 1. Since we are actually working in a
finite field however, we also need to make sure that none of a, x, or y is 0 since a
dishonest prover could make y = M−1

b mod p and x = 0 to prove ax+Mby = 1
while making a of any form the prover desires. A protocol for this proof is given
in the extended version of the paper. Thus each player distributing an ai proves
its pb-roughness by the protocol in Figure 4. If we invoke the random oracle
model, we can do all of these proofs without interaction.

Although the integer commitments that we are using are homomorphic and
are the basis of our VSS scheme, we will not use the commitment of ai directly in
the sharing. Recall that because we want to make Lagrange interpolation easier,
we multiply the secret in our VSS scheme by n!. Thus, we commit to ai and prove
the properties we need, then share n!ai and prove the multiplicative relationship
between the two commitments. As mentioned in Section 2.2, the commitment
scheme we use for this proof may be larger than the one we need for the rest of
the computations. We may choose to reshare a + rMb over a smaller finite field
after its computation.

At this point, each player should also prove that 2ai + 1 is relatively prime to
Mb as well. This fact will assure us that 2(a + rMb) + 1 is also pb+1-rough – a
helpful optimization when we later test for safe primality. Each proof of relative

128 Emil Ong and John Kubiatowicz

primality requires a message of size 47|p|2 in addition to the commitment of
ai, so each player will need to send messages of size 95|p|2 for each ai. If we
consider the example from Section 2.2 where |p|2 = 988, the message size is
95|p|2 ≈ 11732 bytes ≈ 11kB.

3.2 Computing the primality candidate

The previous section showed how to produce a polynomial secret sharing of
pb+1-rough number ai. Now we need to multiply the ai together to produce
a. Note of course that we do not need all the ai of the previous section to
create a pb+1-rough number for primality testing – any subset of {ai} will do.
This fact is convenient if one of the players was malicious or unavailable in the
previous sharing round. The classic technique for multiplying a number shared
polynomially was shown in [14]. This method simply multiplies two polynomial
shares together, rerandomizes the new (double degree) polynomial, then reduces
the degree of the polynomial through a linear transformation. We will need to do
this step once for each remaining good player. This multiplication requires the
same amount of communication as the multiplication scheme in [5], but produces
a polynomial (instead of additive) sharing of a at the conclusion.

Finally, each player chooses a random number ri ∈R [0.. B
Mb

]. The players all
share and commit to these numbers, then each player multiplies their share by
Mb and adds the result to their share of a. This arithmetic is all done non-
interactively. Now each player has a polynomial share of a + rMb. Note that
each player should prove that their ri is within the range [0.. B

Mb
] so that the

final prime is of the appropriate size. To this end, will use Mao’s proof of bit
length [15]. This proof requires B

Mb
(6|p|2 + 1) bits in the non-interactive form.

3.3 Ensuring a + rMb ≡ 3 mod 4

We would like to use an algorithm from [2] for safe primality testing, however this
algorithm makes one additional requirement on a + rMb: it must be congruent
to 3 mod 4. Going back to the distribution of the ai, each player needs to
produce a claim and a proof of each ai mod 4 in addition to the proofs of
relative primality of ai and Mb. The proofs for ai mod 4 ensure that no player
can force a + rMb 6≡ 3 mod 4, thus avoiding progress in the safe primality
generation. A full description of this technique is given in the extended paper.

A similar procedure must be performed for the ri. Then all the players can
compute a+rMb mod 4 and if a+rMb ≡ 3 mod 4, they do nothing, otherwise
they add 2 to their share of a + rMb.

Notice that the proof of congruence mod 4 serves another purpose: it proves
that the length of ai is correct. Thus although the proof seems expensive, it is
actually necessary and dual use.

3.4 Communication Efficiency

We now summarize the efficiency of the robust distributed sieving protocol.
Specifically we address the size of all the messages sent by a single player. The

Optimizing Robustness while Generating Shared Secret Safe Primes 129

proofs necessary for each players ai are the roughness proofs (95|p|2 bits), the
bit length proof of ri (B

Mb
(6|p|2 + 1) bits), the claims of congruence mod 4

((|B|2(|p|2 + 1) − 9|p|2) + (4|p|2 + B
Mb

(6|p|2 + 1) + 2) bits), and the proofs of

equivalence of the commitment of ai to the VSS commitment of ain! (2|p|2).
Using the example numbers from Section 2.2 (B = 2512 and p > 2988), we see
that the proof size is approximately 418267 bytes or about 408kB. These proofs
must be broadcast.

We also have to share ai and ri using VSS. Sharing two values requires us to
broadcast 2t|p|2 bits to all players. We can reasonably assume3 that there is a
small constant c such that n(2t|p|2 + c) is cost of this broadcast to n players.
The remaining messages4 are point-to-point and total 2 · 2n|p|2 bits. Assuming
the player and threshold numbers from Section 2.2 (t = 5 and n = 11) along
with c = 1kB, we see that each player will broadcast about 24.3kB and send
about 5.3kB in point-to-point messages. Broadcasting the proofs above costs
approximately 4.3MB and dominates the communication costs. This number is
large, but as we will see in Section 4.3, we can amortize the cost with a reuse
trick.

We also have to multiply the ai together. Recall from [14] that the communi-
cation required for multiplication is simply a secret sharing with a polynomial
of order 2t. We need n such random polynomials. The broadcast cost for these
larger polynomials is again 24.3kB, but we only need 2.7kB in point-to-point
messages.

In terms of round efficiency, we have only two concerns: the secret sharing of
ai and ri and the multiplication of the ai. Thus the number of communication
rounds that we use is 2 + n. Section 4.3 also shows how to parallelized this
procedure to use only 1 round of multi-secret VSS.

3.5 Application in Safe Prime Finding

We performed a simulation of this algorithm to get an empirical estimate on the
number of iterations required to find a safe prime. When we constructed 4858
1024-bit prime candidates of the form a + rM128, we found that the median
number of iterations between finding safe primes is approximately 45,000 and
the mean is approximately 63,000. When using purely random numbers, we
found that the mean number of iterations was about 436,000 and the median
was 275,000. Safe primes are unfortunately less dense than unrestricted primes,
but distributed sieving seems to be a great help in finding them. Based on our
experiment, sieving requires only about 15% of the time required by random
searching.

3 Practical Byzantine broadcast schemes can use secure hashes of the message to verify
correct transmission.

4 We ignore the size of complaint messages, which are relatively small.

130 Emil Ong and John Kubiatowicz

Input: Shares of the prime candidate φ.

1. Locally compute e = φ−1
2

(recall that since φ ≡ 3 mod 4, we can do the division
correctly in the finite field).

2. Compute shares of the base-η representation of e, [eη0]pj , [eη1]pj , · · · , [eηω−1]pj .
3. Precompute the values needed for modular exponentiation and multiplication.
4. Repeat the following step m times (in parallel):

(a) Choose [r]pj ∈R {0, 1}2B and set [g]pj = MOD([r]pj , [φ]pj , [φ̃]pj)
(b) Compute ge mod q
(c) If ge mod q /∈ {−1, 1} (using the SETMEM algorithm of [2]), output failure.

5. Output success.

Fig. 5: Distributed Miller-Rabin Algorithm

4 Optimizing the Distributed Miller-Rabin Test

In this section, we describe the distributed Miller-Rabin test we will use to
check for safe primes. We also give two improvements which improve on the
performance of the test, namely optimization of modular exponentiation and
multiplication.

The algorithm for our distributed Miller-Rabin test is given in Figure 5. On
the whole, the test is not significantly different than the version given in [2],
so we will not discuss it thoroughly. The main differences between our version
and the original is our preparation for the modular exponentiation step. Instead
of converting from additive shares of the candidate to polynomial shares of the
bits, we convert from polynomial shares of the candidate to polynomial shares
of the base-η representation. We also do precomputations of the values needed
for the modular exponentiation and multiplication procedures. In the next few
sections, we describe our optimizations to algorithms used by the Miller-Rabin
test.

4.1 Optimizing Modular Exponentiation

The modular exponentiation method of [2], shown in Figure 6, uses the familiar
square-and-multiply technique with a clever trick to decide when to square and
when to multiply. Suppose that β1, ..., βn are the bits of the exponent e and
are shared polynomially among the players (the details of how to perform this
sharing are given in Section 5.4). The algorithm uses the observation that gβi =
(g − 1) ∗ βi − 1 to decide when to square and when to multiply.

We generalize this algorithm to improve the running time by a constant factor.
Suppose we think of step 3a as a lookup instead of a algebraic manipulation –
when βi is 0, we assign d the value 1 and when βi is 1, we assign d the value g.
Thus the modular exponentiation procedure is based on (albeit very immediate)
precomputations of the values 1 and g which are referenced based on the value of
βi. We can extend this idea of a precomputed lookup table. Suppose that instead

Optimizing Robustness while Generating Shared Secret Safe Primes 131

Input: [g]pj , [e]pj , [φ]pj .
Output: [ge mod φ]pj .

1. Reshare the bits of e as β1, ..., βn where βn is the most significant bit.
2. c = (g − 1) ∗ βn + 1
3. For i = n − 1 downto 1, Do

(a) d = (g − 1) ∗ βi + 1
(b) c = ((c2 mod φ) ∗ d) mod φ

4. Output c.

Fig. 6: Algesheimer et al. Modular Exponentiation

Input: [κ]pj and [g0 mod φ]pj ,

[g1 mod φ]pj , · · · , [gη−1 mod φ]pj .
Output: [gκ mod φ]pj .

1. In parallel:
For i = 0 to η − 1, Do

σi = 1 − ||κ − i||
2. In parallel:

For i = 0 to η − 1, Do
ρi = σi ∗ (gi mod φ)

3. Locally compute
P

i=0..η−1 ρi.

Fig. 7: Lookup

Input: [g]pj , [e]pj , [φ]pj .
Output: [ge mod φ]pj .

1. Reshare e in base-η: e(η0), ..., e(ηω−1)

where e(ηω−1) is the most significant
digit.

2. c = LOOKUP(e(ηω−1))
3. For i = ω − 2 downto 0, Do

(a) d = LOOKUP(e(ηi))
(b) c = ((cη mod φ) ∗ d) mod φ

4. Output c.

Fig. 8: Revised Modular Exponentia-
tion

of a shared binary representation of e, we have a shared base-η representation
and we precompute the values g0 mod q, g1 mod q, · · · , gη−1 mod q. Then we
can use the algorithm in Figure 7 to perform a lookup of these values.

Note that in this algorithm, we use a “normalization” procedure defined simply
as:

||x|| =

{

0 if x = 0,

1 otherwise

The implementation of this procedure is given later in Section 5.1.
With this lookup procedure, we can now rewrite the modular exponentiation

algorithm of Algesheimer et al. to use generic lookups. The revised algorithm
is shown in Figure 8. (The technique for resharing a secret in a different base
is given in Section 5.4.) Clearly, this approach uses a smaller number of outer
loops, but there is still one concern in step 3b. Specifically, this step requires
exponentiating by η in Zq and would appear at first glance to remove the ad-
vantage of the reduced outer loop. There are however two reasons that this step
saves time. First, we are exponentiating by a known, public constant. Thus no
extra lookups are necessary in this step. Second, we still only have to perform

132 Emil Ong and John Kubiatowicz

Let p be the prime associated with our VSS scheme. Let p′ be the smallest prime
greater than p.
Input: [A]pj , [B]pj , and [φ]pj .

Output: [ABp−1 mod φ]pj .

Precomputation

1. Reshare A, B, and φ over Zp′ .
2. Compute shares of φ−1 mod p and φ−1 mod p′.

Multiplication

1. Compute −A ∗ B mod p and A ∗ B mod p′ simultaneously.
2. Compute q = (−A ∗ B mod p) ∗ (φ−1 mod p).
3. Convert q to a sharing over p′.
4. Compute q ∗ φ mod p′.
5. Locally compute r = (A ∗ B mod p′) + (q ∗ φ mod p′) ∗ (p−1 mod p′).
6. Convert r to shares over p.

Fig. 9: Modular Multiplication

ω lookups and multiplications by d. Overall we have reduced the number of
modular multiplications from 2|e|2 to |e|2 + ω.

Our generic lookup procedure is clearly more expensive than the special case
used in [2]. Specifically, it requires η normalizations. However, we use it only
ω times during the loop. Moreover, the normalization protocol of Section 5.1 is
simpler than modular multiplication, though it requires larger message sizes.

4.2 Optimizing Modular Multiplication

We present an alternative algorithm for modular multiplication which is based
on the Montgomery method [16]. In [17], Bajard et al. modified Montgomery
multiplication to work by manipulating representations in two different residue
number systems (RNS’s). We use a highly specialized case of this technique
in which the two RNS’s are simply prime finite fields. Although this approach
requires us to do some pre- and post-computations, we are able to parallelize
slightly more than with the algorithm of [2] and we also avoid some additional
zero-knowledge proofs in the robust case. The algorithm is listed in Figure 9

Most of the operations performed during the multiplication are familiar: they
are modular multiplication and addition in the same field as our shared secrets.
These steps are performed relatively quickly. The conversion steps 3 and 6 are
new. To convert a sharing over Zp to a sharing over Zp′ , we use the method of [2]
which entails converting the polynomial sharing over Zp to an additive sharing
over Zp, converting that sharing to an additive sharing over the integers, con-
verting that sharing to an additive sharing over Zp′ , and finally converting that

Optimizing Robustness while Generating Shared Secret Safe Primes 133

additive sharing to a polynomial sharing over Zp. This approach is complicated
and expensive, but the best way known.

In comparing the algorithm here to the one in [2], we notice that the lat-
ter has a much simpler form. Specifically, the algorithm of Algesheimer et al.
simply multiplies in the finite field, then takes the remainder of the product
mod φ. The complexity of the algorithm is in the remainder functionality. Tak-
ing a remainder requires two multiplications, a subtraction, and two truncation
operations. The truncations involve converting a polynomial sharing mod p to
an additive sharing over the integers, shifting the additive shares right by some
number of bits, then resharing the shifted shares as polynomial shares mod p.
Our algorithm has the same number of multiplication and addition rounds, but
we avoid this additional bit shifting. In the honest-but-curious model, the bit
shifting is a local operation, so at first it may seem cheap. However since we are
in the robust setting, each player must produce a proof of correctness of their
truncated share, so we do end up saving some processing time. 5

Moreover, more of the multiplications in this algorithm are grouped together,
rather than being split by conversions as in the [2] algorithm. As mentioned
in [14], we can multiply polynomial shares together several times before reran-
domizing so long as the degree of the polynomial does not exceed the number
of players. The closeness of the multiplications makes this optimization feasible
here, but not in [2].

Note that we are doing Montgomery multiplication in this algorithm; the
output is actually (ABp−1 mod φ), the Montgomery product. When we do ex-
ponentiation, we will work with Montgomery products and then at the end, we
will convert this product by removing the p−1 factor [18]. This step requires
one additional Montgomery multiplication at the beginning and the end of the
exponentiation.

4.3 Parallel Optimizations

There are (at least) two parallelization tricks that we can employ to improve the
speed of our algorithm. The most obvious trick is to generate and test several
k-rough candidates simultaneously. Unfortunately, the message sizes required for
robustness in the distribute sieving algorithm can grow to be quite large when
trying to generate safe primes suitable for RSA.

Thus we suggest that each player can generate and share some small number
of k-rough components (i.e. the ai). The proofs will be large initially, but once
the players have shared these numbers, they can recombine them in different
ways to produce new candidates. Specifically, let the number of players be l and
have each player share m different k-rough numbers. Then if we require that
each player gets to contribute one component rough number to each primality

5 We are not able to avoid truncation proofs entirely – truncation is necessary for the
algorithm to convert from additive shares over a finite field to additive shares over
the integers [2]. We provide an interactive proof for truncation correctness in the
extended paper.

134 Emil Ong and John Kubiatowicz

Input: [x]pj .
Output: [||x||]pj .

1. Generate p2 shared secret pairs (ri, si) ∈ Zp × Zp

2. Compute in parallel for each pair ui = ri ∗ (1 − ri ∗ si) and vi = si ∗ (1 − si ∗ ri)
3. Reveal all the ui and vi

4. For every i such that ui = vi = 0, compute and reveal x − ri

5. Let s = si where i is the smallest index such that x− ri = 0 or return to step 1 and
try again if no such i exists

6. Output ||x|| = x ∗ s

Fig. 10: Normalization based on Bar-Ilan and Beaver’s algorithm

candidate, then there are lm different combinations possible. Recombinations
can proceed in the usual lexigraphical order, for example. A more thorough
exploration of these and other parallel techniques is available in the full paper.

5 Multiparty Arithmetic Circuits

This section develops the multiparty circuits that we will need to convert a
polynomial secret sharing into a sharing of the same number in base-η. Proofs
of secrecy and correctness for the protocols in this section are straightforward
since they are the composition of secure protocols.

5.1 Normalization

Recall the normalization procedure we used previously in Section 4.1. Note that
the output from this procedure is a shared secret containing ||x||; ||x|| is neither
public nor revealed. We derive our algorithm for normalization from Bar-Ilan
and Beaver’s algorithm for “extended inverses” [19]. Their method computes
either the inverse x−1 ∈ Zp of an element x ∈ Zp if x 6= 0 and 0 otherwise.
We compute this value as well, then multiply x by x−1 or 0, respectively, to
obtain ||x||. The full procedure is given in Figure 10. Note that we optimistically
generate only p2 shared secret pairs in step 1, a reduction from the suggested p4

of [19].
We usually expect we will need only one iteration of this algorithm to calculate

||x||. During one iteration, we must generate and share 2p2 random numbers,
do 4p2 multiplications, and reveal between 2p2 and 4p2 numbers. While this
complexity may seem high at first, we are saved by the fact that p will quite
small in practice.

Notice that these multiplications and random number generations can be
batched in advance (as described in Section 4.3) and the addition and scalar
multiplications are local operations. All the revelations can be done in parallel.

We will consider the bandwidth required by one normalization. Suppose we
choose p = 37 (for reasons we will see in the next few sections). We will need

Optimizing Robustness while Generating Shared Secret Safe Primes 135

Input: [x]pj and a publicly known set S ⊂ Zp.
Output: [0]pj if x 6∈ S and [1]pj otherwise.

1. δ =
Q

s∈S(x − s)
2. Output 1 − ||δ||.

Fig. 11: Secret set membership protocol

to share p2 = 1369 random pairs and do 4p2 + 1 = 5477 multiplications with
upto 4p2 = 5476 revelations. The random pairs and multiplications are simply
VSS operations, which we can batch. Each random number we share requires
broadcasting t|p|2 bits and sending 2n|p|2 bits point-to-point. Batching makes
the broadcast costs much smaller (since in practice, confirmation messages are
secure hashes of the broadcast message), so we will generously assume there is
a 1kB per player overhead for this operation. Random secret sharing for multi-
plication requires a polynomial of degree 2t, so broadcast costs are higher, but
point-to-point bits remain the same. For p = 37, |p|2 = 6, so we arrive at a total
of 5477 · n · |p|2(2t + 2) + 1369 · n · |p|2(t + 2) + 1024n bits. If we again use the
example t = 5 and n = 11 from Section 2.2, we need to send about 608kB.

We also need to account for the revelations. Each revelation requires broad-
casting 2 numbers to all parties. We can batch these revelations, but we need
two steps instead of one because of a dependency in the normalization algo-
rithm. Each batch of revelations requires broadcasting (at most) 2 ∗ 2p2 = 5476
numbers. The total, with broadcast costs, is n(5476 ∗ |p|2 + 1024) ≈ 55kB for
the revelations. To summarize our example, each normalization requires sending
about 718kB over 3 rounds. This primitive is our most expensive.

5.2 Secret Set Membership

In this section, we describe an algorithm for “secret set membership.” Given
x ∈ Zp and S ⊂ Zp, this algorithm outputs a shared secret containing 1 if x ∈ S

and a shared secret containing 0 otherwise. We denote this method as computing
x ∈? S. Readers familiar with the SETMEM algorithm in [2] should notice that our
algorithm is much simpler than SETMEM. This reduction is possible because we do
not test whether a shared secret is congruent to a member of S modulo another
shared secret modulus p′ – we need only test congruence modulo p, which is
public. See Figure 11.

Computation of the product in step 1 requires |S| multiplications which we
must do in serial. Note of course that we can share all the rerandomizing polyno-
mials for this step in advance, so we only incur one round of secret sharing. The
secret set membership algorithm is dominated by the cost of the normalization
in step 2. See Section 5.1 for the complexity of that step.

136 Emil Ong and John Kubiatowicz

Input:

– A radix η = 2ν which is a power of 2
– Numbers x and y shared in base-η representation over Zp. Let x =

Pω−1
i=0 x(ηi)ηi

and y =
Pω−1

i=0 y(ηi)ηi.

Assume without loss of generality that |x|2 = |y|2, ν
˛

˛|x|2, and ω = |x|2
ν

.

Output: Shares of z(ηi) for i = 0, · · · , ω − 1, where z = x + y.

1. Generate shared zero c0 = 0
2. For i = 0 to ω − 1 Do

(a) z(ηi) = x(ηi) + y(ηi) + ci

(b) ci+1 = z(ηi) ∈? {η, η + 1, ..., 2η − 1}
(c) z(ηi) = z(ηi) + (p − η) ∗ ci+1

Fig. 12: Addition in base-η representation

5.3 Base-η Addition Circuit

Assume we have shared base-η representations of two numbers x and y. We will
show how to add these numbers together via the normal “elementary school
algorithm.” While there are more advanced circuits to perform this addition,
we describe this simple addition to show the underlying mechanisms at play.
Smaller depth circuits may be possible using these mechanisms.

We draw inspiration from the classic binary-coded-decimal addition algorithm.
Since we can easily do arithmetic on shared secrets over fields a prime p > 2η,
this model makes sense. See Figure 12 for the full details.

We now give an example to illustrate the costs associated with the protocol.
Suppose we have 512-bit numbers x and y with η = 16. Then we may choose
p = 37 since two base-16 digits with carry can add to at most 31. All the additions
and subtractions are local operations, so we ignore them. Choosing the initial
carry bit in step 1 requires one degree t secret sharing and the multiplication in
step 2c requires us to do ω = 128 degree 2t secret sharings.

Clearly the cost of the set membership to compute the carry bit in step 2b
dominates this algorithm. Our set has size η − 1 = 15, so we must perform this
many multiplications in each round. We must also perform 128 total normaliza-
tions. Thus we end up doing 1 degree t secret sharing, 15 ∗ 128 + 128 = 2048
degree 2t secret sharings, and 128 normalizations. The normalizations dwarf the
other costs. With t = 5 and n = 11 as before, the messages sent for the whole
protocol will total between 70MB and 80MB, depending on the random factors
in the normalization algorithm.

5.4 Converting a Number to Base-η Representation

We now have all the tools that we need to convert a polynomial secret sharing of
a number x to its base-η representation. The method we use is inspired by the

Optimizing Robustness while Generating Shared Secret Safe Primes 137

Input:

– A radix η = 2ν which is a power of 2
– Polynomial shares of secret x.

Assume without loss of generality that ν
˛

˛|x|2 and and ω = |x|2
ν

.

Output: Polynomial shares of the base-η representation of x, [x(η0)]pj , · · · , [x(ηω−1)]pj .

1. Convert the polynomial shares of x to additive shares such that x =
P

j=1..n
xj .

(Recall that we also have verifiers for the additive shares when we use the poly-to-
sum protocol of [20].)

2. Reshare each ν-bit block of xj in polynomial form as x
(η0)
j , x

(η1)
j , · · · , x

(ηω−1)

j .

(a) Prove that these numbers are the base-η form of xj by showing that the com-

mitment, gxihrxi , to xi contains the same value as
Q

i=0..ω−1(g
x
(ηi)
j h

r
x
(ηi)
j)ηi

.

(b) Prove that |x
(ηi)
j |2 = ν for each i = 0, · · · , ω − 1.

3. Convert all the shares x
(ηi)
j over p to shares over a smaller prime (e.g. the smallest

prime p′ > 2η).
4. Add all the base-eta shares of the xj together.

Fig. 13: Conversion to base-η representation

one from [2] which produces the binary representation of a number. The basic
idea is that the secret is reshared as an additive secret, each η digit is reshared as
a polynomial, then we use the addition circuit to add all the numbers together
in base-η. The conversion algorithm is detailed in Figure 13.

Most of the cost of this algorithm is in the addition step which we addressed
in the previous section. The proofs in step 2 are non-trivial, however. Step 2a is
relatively simple because of the homomorphic commitment scheme – it requires
only 2|p|2 additional bits to be broadcast. Step 2b requires a proof of size pro-
portional to the size of x. Specifically, each base-η digit requires a proof of size
η(6|p|2 + 1) (See the extended paper for more details). Since we have ω of these
digits, the proof expands to ωη(6|p|2 + 1) = |x|2(6|p|2 + 1).

6 Summary

We presented a robust algorithm to generate shared secret, safe prime numbers.
Our algorithm owes much to the work of [2] and [5] in the general form. Us-
ing this framework, we developed efficient zero-knowledge proofs of knowledge
making the algorithm robust. We also borrowed ideas ([17]) from the computer
arithmetic world that reduced the number of such proofs we have to transmit
during the algorithm. We generalized the modular exponentiation algorithm of
[2] to general precomputed lookup tables. We believe our techniques make shared
generation of a safe prime much more feasible in the robust setting. Using this
primitive and the works of Catalano et al. [7], Shoup’s RSA scheme is much
closer to practical use without a trusted dealer.

138 Emil Ong and John Kubiatowicz

References

[1] Shoup, V.: Practical Threshold Signatures. Lecture Notes in Computer Science
1807 (2000)

[2] Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Pro-
ceedings of CRYPTO 2002, Springer Verlag (2002) 417–432

[3] Fouque, P.A., Stern, J.: Fully distributed threshold RSA under standard assump-
tions. In: Proceedings of Asiacrypt. (2001) 310–330

[4] Damg̊ard, I.B., Koprowski, M.: Practical Threshold RSA Signatures Without a
Trusted Dealer. Technical Report RS-00-30, Basic Research in Computer Science,
University of Aarhus (2000)

[5] Malkin, M., Wu, T., Boneh, D.: Experimenting with Shared Generation of RSA
keys. In: Symposium on Network and Distributed System Security. (1999) 43–56

[6] Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
ACM Transactions on Information and System Security 3 (2000) 161–185

[7] Catalano, D., Gennaro, R., Halevi, S.: Computing inverses over a secret shared
modulus. In: EUROCRYPT 2000. Volume 1807 of LNCS., Springer-Verlag (2000)
190–207

[8] Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. Journal of the
ACM (JACM) 48 (2001) 702–722

[9] Frankel, Y., MacKenzie, P.D., Yung, M.: Robust Efficient Distributed RSA-Key
Generation. In: Annual ACM Symposium on Theory of Computing. (1998)

[10] Goldwasser, S., Lindell, Y.: Secure Multi-Party Computation Without Agreement.
In: 16th International Symposium on DIStributed Computing. Volume 2508 of
LNCS. (2002) 17–32

[11] Shamir, A.: How to share a secret. Communications of the ACM 22 (1979)

[12] Damg̊ard, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme
Based on Groups with Hidden Order. In: ASIACRYPT. (2002) 125–142

[13] Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO 1991. Volume 576 of LNCS. (1991) 129–140

[14] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Annual ACM Sympo-
sium on Theory of Computing. (1988) 1–10

[15] Mao, W.: Guaranteed Correct Sharing of Integer Factorization with Off-line
Shareholders. In: Public Key Cryptography. Volume 1431 of LNCS. (1998) 60–71

[16] Montgomery, P.L.: Modular Multiplication Without Trial Division. Mathematics
of Computation 44 (1985) 519–521

[17] Bajard, J.C., Didier, L.S., Kornerup, P.: Modular Multiplication and Base Exten-
sions in Residue Number Systems. In: Proceedings of the 15th IEEE Symposium
on Computer Arithmetic. (2001) 59–65

[18] Ç.K. Koç, Acar, T.: Fast Software Exponentiation in GF(2k). In: Symposium on
Computer Arithmetic. (1997) 225–231

[19] Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in a Con-
stant Number of Rounds of Interaction. In: 8th ACM Symposium on Principles
of Distributed Computation. (1989) 201–209

[20] Frankel, Y., MacKenzie, P., Yung, M.: Adaptively secure distributed public-key
systems. Theoretical Computer Science 287 (2002) 535–561

