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Abstract. In this paper, we first introduce a new kind of adversarial
goal called forge-and-impersonate in undeniable signature schemes. Note
that forgeability does not necessarily imply impersonation ability. We
then classify the security of the FDH variant of Chaum’s undeniable
signature scheme according to three dimensions, the goal of adversaries,
the attacks and the ZK level of confirmation and disavowal protocols. We
finally relate each security to some well-known computational problem.
In particular, we prove that the security of the FDH variant of Chaum’s
scheme with NIZK confirmation and disavowal protocols is equivalent
to the CDH problem, as opposed to the GDH problem as claimed by
Okamoto and Pointcheval.
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1 Introduction

1.1 Background

The notion of undeniable signature schemes was introduced by Chaum and van
Antwerpen in 1989 [11]. Since then, there have been a wide range of research
covering a variety of different schemes for undeniable signatures. The validity or
invalidity of an undeniable signature can only be verified with the signer’s consent
by engaging interactively or non-interactively in a confirmation or disavowal
protocol respectively, as opposed to a digital signature in which its validity is
universally verifiable. Extended schemes possess variable degrees of security and
additional features such as convertibility [6, 15, 23], designated-verifier technique
[21], designated-confirmer technique [9], and so on. Among others, we also include
[8, 12, 19, 18, 17].



The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 333

Undeniable signatures have various applications in cryptography such as in
licensing softwares, electronic voting and auctions. The most popular application
is in licensing softwares. For example, software vendors might want to sign on
their products to provide authenticity to their paying customers. Nevertheless,
they strictly disallow dishonest users who have illegally duplicated their softwares
to verify the validity of these signatures. Undeniable signature scheme plays an
important role here as it allows only legitimate users to verify the validity of the
signatures on the softwares.

The first proposal of undeniable signature which is based on the intractability
of the computational Diffie-Hellman (CDH) problem was due to Chaum and van
Antwerpen [11] and it was further improved by Chaum [8]. It is a simple and
nice scheme.

On the other hand, in general, each undeniable signature scheme may have
three variants of confirmation and disavowal protocols, namely, the perfect zero-
knowledge protocol (ZKIP), the 3-move honest-verifier zero-knowledge protocol
(HVZK) and the non-interactive zero-knowledge protocol (NIZK) with designated-
verifier technique.

However, the unforgeability of Chaum’s undeniable signature scheme (under
any types of confirmation and disavowal protocols) has been an open problem
for a long time. Recently, Okamoto and Pointcheval [25] proved the security
of the full-domain hash (FDH) [5, 13] variant of Chaum’s scheme with NIZK
confirmation and disavowal protocols. They proved that its security is equivalent
to the gap Diffie-Hellman (GDH) problem in the random oracle model, where
one is allowed to use the decisional Diffie-Hellman (DDH) oracle to solve the
CDH problem.

1.2 Our Contributions

In this paper, we first introduce a new kind of adversarial goal called forge-and-
impersonate in undeniable signature schemes. In the past, the main adversarial
goal is forging and thus the most desirable security notion is the security against
existentially forgery under adaptive chosen message attack [20]. In the new ad-
versary model, the adversary not only attempts to forge but it also attempts
to impersonate a legitimate signer. More precisely, an adversary first forges a
message-signature pair and next executes a confirmation protocol with a veri-
fier, trying to convince the verifier that the signature is indeed valid. Note that
forgeability does not necessarily imply impersonation ability.

We then classify the security of the FDH variant of Chaum’s undeniable sig-
nature scheme according to three dimensions, the adversarial goals, the attacks
and the ZK level of confirmation and disavowal protocols. Finally, we prove the
equivalence between each security and some well-known computational problem
under various types of confirmation and disavowal protocols as shown in Table
1. However, we cannot solve the three cells marked “?” and it will be a further
work to make them clear.

In our result, we also point out that the claim of Okamoto and Pointcheval as
mentioned at the end of Section 1.1 is wrong. Following our result from Theorem
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Table 1. The Equivalence

forge (F) forge-and-impersonate (FI)
passive active passive active

ZKIP CDH ? ?
(Theorem 2)

HVZK CDH ? DLOG ≥ one-more DLOG
(Theorem 3) (Theorem 4) (Theorem 6)

NIZK CDH − DLOG or break PKS −
(Theorem 1) (Theorem 5)

*PKS denotes the verifier’s public key system

1 which is indicated in Table 1, we show that the unforgeability of the FDH
variant of Chaum’s scheme with NIZK confirmation and disavowal protocols is
equivalent to the CDH problem, as opposed to the GDH problem as claimed by
them (cf. Claim 1). Further comments on their flaw will be given in Section 3.1.

Following is some explanation on Table 1. In the passive attack, the adversary
does not interact with the prover. What the adversary does is eavesdropping and
she is in possession of transcripts of conversations between the prover and the
verifier. In the active attack, the adversary gets to play the role of a cheating
verifier, interacting with the prover several times, in an effort to extract some
useful information before the forgery or forge-and-impersonate attempt. We re-
mark that if the scheme employs the NIZK confirmation and disavowal protocols
then it is not necessary to consider the active attack.

Meanwhile, there exists another security notion for undeniable signatures
called invisibility which was first introduced by Chaum et al. [12]. This notion
is essentially the inability to determine whether a given message-signature pair
is valid for a given user. We can prove the invisibility of the FDH variant of
Chaum’s scheme and show the similar result as in Table 1.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we recall the
definitions for some computational problems and the definition for undeniable
signatures. We also describe the FDH variant of Chaum’s scheme and all the con-
firmation and disavowal protocols associated with it. In Section 3, we explore the
unforgeability of the FDH variant of Chaum’s scheme with NIZK protocols. In
particular, we point out the flaw in Okamoto and Pointcheval’s claim in Section
3.1 and provide a correct formal proof in Section 3.2. In Section 4, we present
a new adversary model for undeniable signatures. In Section 5, we analyze and
discuss the security of the FDH variant of Chaum’s scheme under various confir-
mation and disavowal protocols comprehensively. Finally, we conclude this paper
in Section 6.
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2 Preliminaries

2.1 Some Computational Problems

Let G be an Abelian group of prime order q, and let g be a generator of G. We
say that (g, gx, gr, gz) is a DH-tuple if z = xr mod q.

The DDH problem is to decide if (g, gx, gr, gz) is a DH-tuple. The CDH
problem is to compute gxr from (g, gx, gr). The GDH problem is to solve the
CDH problem with the help of a DDH oracle. (Informally, it means that the
CDH problem is hard but the DDH problem is easy.) The DLOG problem is to
compute x from gx.

We also briefly define the one-more DLOG problem as follows [3, 4]:
A one-more DLOG adversary is a randomized, polynomial time algorithm M
that gets input g and has access to two oracles, namely, a DLOG oracle that
given y ∈ G returns x ∈ Zq such that gx = y, and a challenge oracle that each
time it is invoked (it takes no inputs), returns a random challenge point y ∈ G.
We say that the adversary M wins if for arbitrary (polynomially bounded) t
challenge oracle access, it can find the DLOGs of all the challenges with at most
t − 1 (strictly less than t) DLOG oracle access.

2.2 Undeniable Signatures

We briefly review the concept of undeniable signatures introduced by Chaum
and van Antwerpen [11].

Definition 1. An undeniable signature scheme consists of the following two
polynomial time algorithms and two possibly interactive polynomial time pro-
tocols (note that in some schemes confirmation and disavowal protocols can be
combined as a single protocol and they are usually zero-knowledge protocols).

– Key Generation. On input the security parameter 1k, the algorithm pro-
duces a pair of matching public and secret keys (pk, sk).

– Signing. On input a secret key sk and a message m, the algorithm returns
a signature σ.

– Confirmation Protocol. A protocol between a signer and a verifier such
that when given a message m, a signature σ and a public key pk, allows the
signer to convince the verifier that σ is indeed a valid signature on m for a
public key pk, with the knowledge of the secret key sk. If (m, σ) is invalid,
then no signer can prove it with non-negligible probability.

– Disavowal Protocol. A protocol between a signer and a verifier such that
when given a message m, a signature σ and a public key pk, allows the signer
to convince the verifier that σ is an invalid signature on m for a public key
pk, with the knowledge of the secret key sk. If (m, σ) is valid, then no signer
can prove it with non-negligible probability.

In the existing literature, the unforgeability for undeniable signatures is sim-
ilar to the one for ordinary digital signatures, which is the notion of existential
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unforgeability against adaptive chosen message attack [20]. The only difference
is that besides the signing oracle access, the forger of an undeniable signature
is also allowed to access to the confirmation/disavowal oracle. The confirma-
tion/disavowal oracle is simulated based on the types of attacks mounted, i.e.
passive attack and active attack.

Informally speaking, the forger is given the public key, and after some adap-
tive signing queries and confirmation/disavowal queries, the forger attempts
to produce a valid message-signature pair (m, σ) such that m has never been
queried to the signing oracle and (m, σ) has never been queried to the confirma-
tion/disavowal oracle earlier. We say that the forger is successful if it can output
such a valid forgery.

2.3 The FDH Variant of Chaum’s Undeniable Signature Scheme

The FDH variant of Chaum’s scheme is described as follows. Let G be an Abelian
group of prime order q, and let g be a generator of G.

– Key Generation. On input the security parameter 1k, choose x ∈ Zq

randomly and compute y = gx. Choose a cryptographic hash function H :
{0, 1}∗ → G. Set the public key as (g, y, H) and the secret key as x.

– Signing. On input the public key (g, y, H), the secret key x and a message
m ∈ {0, 1}∗, the algorithm returns the signature as σ = H(m)x.

– Confirmation Protocol. Given a message-signature pair (m, σ), the signer
proves that (g, y, H(m), σ) is a DH-tuple.

– Disavowal Protocol. Given a message-signature pair (m, σ), the signer
proves that
(g, y, H(m), σ) is not a DH-tuple.

Confirmation and Disavowal Protocols. There are various confirmation
and disavowal protocols associated with Chaum’s scheme, each with variable
degrees of zero-knowledgeness and efficiency. We make an effort to summarize
the various confirmation and disavowal protocols as follows.

Zero-Knowledge Interactive Proof (ZKIP). The first proposal by Chaum and
van Antwerpen was not zero-knowledge [11]. In [8], an improved version with
zero-knowledgeness was proposed. The confirmation protocol is a 4-move ZKIP
for language of DH-tuples. For brevity, we describe the complete protocol in
Fig. 1-(a).

A somewhat inefficient ZKIP disavowal protocol which requires more than
4-move was also proposed in [8]. A single execution of the protocol is as depicted
in Fig. 1-(b). In this figure, com(s) denotes the commitment of s and decom(s)
denotes the revealing of s.

3-Move Honest-Verifier Zero-Knowledge Proof (HVZK). A 3-move honest-verifier
zero-knowledge (HVZK) confirmation protocol is depicted in Fig. 2-(a). The
corresponding 3-move HVZK disavowal protocol was shown by Camenisch and
Shoup recently [7]. We describe the protocol in Fig. 2-(b).
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Non-Interactive Zero-Knowledge Proof (NIZK). In general, a 3-move honest-
verifier zero-knowledge protocol can be transformed to a more efficient non-
interactive zero-knowledge (NIZK) protocol by using the Fiat-Shamir transfor-
mation [16, 1], where we need to employ another random oracle H ′. However, we
cannot use the above solution as a confirmation protocol or a disavowal protocol
because such NIZK proof is just an ordinary digital signature.

To overcome this problem, designated-verifier technique was introduced in
[21] by Jakobsson et al. In a designated-verifier confirmation proof, the signer
proves that “(g, y, H(m), σ) is a DH-tuple” or “he knows the verifier’s secret key”
(the signer knows the former, but not the latter). In other words, the verifier
is able to produce such a valid proof himself using his secret key. By using the
designated-verifier technique, one can thereby prevent illegal copies of the proof.

Using the technique shown in [14], a designated-verifier proof can be con-
structed for a public-secret key pair of any well-known public key system. The
obtained NIZK proof is zero-knowledge in the random oracle model.

We do not give the concrete NIZK designated-verifier confirmation and dis-
avowal protocols since different protocols are associated with different public key
systems used by the verifier.

3 Unforgeability of NIZK Scheme

Chaum’s original scheme (which does not employ a cryptographic hash function)
is not secure as it is existentially forgeable. Most precisely, it succumbed to the
basic multiplicative attack: suppose that an adversary has two message-signature
pairs (m1, σ1) and (m2, σ2), where σ1 = mx

1 and σ2 = mx
2 . Then it is obvious

that σ1σ2 is a signature of m1m2.

Okamoto and Pointcheval [25] made the first attempt to analyze the security
of Chaum’s scheme by incorporating the full-domain hash (FDH) technique [5,
13]. In other words, they studied the security of the FDH variant of Chaum’s
scheme in the random oracle model by modeling the hash function H as a random
oracle. 4 Okamoto and Pointcheval further claimed that they have solved the
more than 10 years open problem, i.e. the security of the FDH variant of Chaum’s
scheme with NIZK protocols is equivalent to the GDH problem.

However, we are going to disprove their claim in this section. In the sequel,
we first restate their claim and point out the major flaw in their proof. We
then prove that the security of the FDH variant of Chaum’s scheme with NIZK
protocols is in fact equivalent to the CDH problem, a more difficult problem
than GDH.

In the NIZK scheme, the public key is (g, y, H, H ′), where H ′ is a hash
function which is used for Fiat-Shamir transformation (which transforms a 3-
move HVZK protocol to an NIZK proof).

4 Another merit in the FDH variant is that messages may be arbitrary bit strings and
do not need to be encoded as group elements as in the original scheme.
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3.1 The Flaw in Okamoto and Pointcheval’s Claim

Their claim is as follows.

Claim 1. [25, Theorem 9] An existential forgery under adaptively chosen mes-
sage attack for the FDH variant of Chaum’s undeniable signature scheme is
equivalent to the GDH problem in the random oracle model, where the confirma-
tion and disavowal protocols are NIZK.

The correctness of the above claim was shown by proving the following [25]:

(1) If there exists an algorithm M that solves the GDH problem, then one can
construct a forger F that manage to forge a message-signature pair by run-
ning M as its subroutine.

(2) If there exists a forger F that forges a message-signature pair, then one can
construct an algorithm M that can solve the GDH problem by running F
as its subroutine.

The proof of (1) is wrong. In the proof, the forger F runs the algorithm M
as follows. At first, the forger F is given the public key (g, y, H, H ′) (H ′ is used
to transform HVZK to a non-interactive one). F then chooses m randomly and
runs M on input (g, y, H(m)). If M submits (g, y, H(m′), σ′) to the DDH oracle,
then F queries to its confirmation/disavowal oracle and returns the answer to
M . M finally outputs H(m)x with non-negligible probability from our assump-
tion. Therefore, F can forge the signature on m as H(m)x with non-negligible
probability.

However, suppose that M submits (g, y, H(m′), σ′) to the DDH oracle. Then
what F can query to its confirmation/disavowal oracle is (m′, σ′), but not (H(m′), σ′).
Since F cannot compute m′ from H(m′), so it cannot query (m′, σ′). More pre-
cisely, since a prover in the confirmation/disavowal protocol takes only the mes-
sage m′ and its signature σ′ as input, simulating a DDH oracle would require to
inverse the hash function H , which is obviously impossible! Therefore, F fails to
simulate the DDH oracle correctly. This is indeed a critical flaw.

The proof of (2) is redundant. In the proof, the confirmation/disavowal oracle
is simulated by the DDH oracle. More precisely, to decide whether the given
(m, σ) is a valid pair or not, M asks (g, y, H(m), σ) to the DDH oracle, and then
simulates the confirmation/disavowal oracle by itself. However, notice that M
can decide the validity of (m, σ), since it can simulate the signing oracle by itself
and furthermore the signing algorithm is deterministic. Thus the DDH oracle is
totally redundant here as it plays no function at all.

3.2 Correct Equivalence

Based on the above argument, we have indirectly proven Theorem 1, i.e. the
existence of F is equivalent to the existence of M that solves the CDH problem
(without the DDH oracle access). For clarity and completeness, we provide a
formal proof for the theorem.
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Theorem 1. The security of the FDH variant of Chaum’s undeniable signature
scheme with NIZK confirmation and disavowal protocols is equivalent to the CDH
problem in the random oracle model.

Proof. Firstly, we show that if there exists an algorithm M that solves the CDH
problem with advantage εM , then one can construct a forger F that can forge
in the universal way with advantage εF , by running M as a subroutine. The
forger F is given the public key (g, y, H, H ′) where y = gx. For any message
m, F computes h = H(m) and gives the triple (g, y, h) as input to M . When
M outputs hx, F simply outputs the forgery as (m, σ = hx). It is clear that
εF = εM . This completes the first half of our proof.

Secondly, we show that if there exists a forger F that manage to forge with
advantage εF , then one can construct an algorithm M that can solve the CDH
problem with advantage εM , by running F as a subroutine. Suppose the input
to M is (g, gx, gr). M then starts running F by feeding F with the public key
(g, y = gx, H, H ′) where H and H ′ are random oracles that will be simulated by
M . M also simulates the signing oracle and the confirmation/disavowal oracle
itself. Let qS and qH be the number of signing queries and H-queries that F issues
respectively. We assume that when F makes a confirmation/disavowal query for
a message-signature pair (mi, σ

′

i), it has already made the corresponding signing
query on mi. We also assume that when F requests a signature on a message
mi, it has already made the corresponding H-query on mi.

When F makes a H-query for a message mi, M responds with hi = H(mi) =
gαi with probability δ and hi = H(mi) = (gr)αi with probability 1−δ, where αi

is chosen randomly from Zq and δ is a fixed probability which will be determined
later.

When F makes a H ′-query for a new str, where str is the string that F
would like to know its H ′ value. M always responds with a random number.
In fact, M assigns some values to H ′(str) for some str in order to simulate
the confirmation/disavowal oracle. When F makes a H ′-query for such str, M
returns H ′(str) to F .

When F makes a signing query for a message mi, if hi = gαi then M returns
σi = yαi as the valid signature (since yαi = (gx)αi = hx

i = H(mi)
x). Otherwise,

M aborts and it fails to solve the CDH problem.
Next, we consider the case that F makes a confirmation/disavowal query for

a message-signature pair (mi, σ
′

i). In this case, M has to do in two steps. In
the first step, it checks the validity of (mi, σ

′

i) using the signing oracle. From
our assumption, F has already made a signing query for mi, and M answered
with a valid signature σi with probability δ (with probability (1− δ) M aborts).
Therefore, if σi = σ′

i then it is valid, otherwise it is invalid. Remember that the
signing algorithm is deterministic. In the second step, M does the following. If
(mi, σ

′

i) is a valid pair then M returns the transcript of the confirmation protocol.
Otherwise, it returns the transcript of the disavowal protocol. As mentioned
before, M can manipulate H ′-oracle and thus it can generate a transcript of the
confirmation or disavowal protocol. (In fact, it is possible that collision occurs for
str, meaning that str is being asked to H ′-oracle by F earlier before M assigns
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a value to H ′(str). However, this probability is negligible and thus it will not
affect the overall success probability for M .)

Eventually, F halts and outputs a forgery (m, σ). We assume that F has
queried the H-oracle on m and so m = mi for some i. If hi = (gr)αi , then we
have σ = hx

i = (grαi)x. Consequently, M outputs gxr = σ1/αi and thus it solves
the CDH problem. Otherwise, M aborts and it fails to solve the CDH problem.

To complete the proof, it remains to calculate the probability that M does
not abort. The probability that M answers to all the signing queries is δqS and
M outputs gxr with probability 1 − δ. Therefore, the probability that M does
not abort during the simulation is δqS (1− δ). This value is maximized at δopt =
1−1/(qS+1). This shows that M ’s advantage εM is at least (1/e(1+qS))εF , where
e is the base of the natural logarithm. This is because the value (1−1/(qS +1))qS

approaches 1/e for large qS . This completes our proof. ut

4 New Adversary Model

In this section, we present a new adversary model for undeniable signatures that
incorporates a new adversarial goal called forge-and-impersonate. In the past,
the main adversarial goal is forging, i.e. one considers an undeniable signature
scheme to be secure if it is existentially unforgeable against adaptive chosen
message attack. In our new proposal, the adversary not only attempts to forge
but it also attempts to impersonate a legitimate signer.

It is clear that forgeability does not necessarily imply impersonation ability.
Hence the new adversarial goal is stronger. (On the other hand, the latter implies
the former because if (m, σ) is invalid, then any signer can convince the verifier
with only negligible probability in the confirmation protocol. See Section 2.2.)

Now, we present our proposal and explain what motivates us to consider this
new adversarial goal.

4.1 Adversarial Goals

As usual, we classify adversaries by their ultimate adversarial goals. Normally, an
adversary with the motive to forge a new message-signature pair (m, σ) is given
the name forger. As mentioned earlier, this is the traditional security notion.

Now, we introduce a new type of adversary. The new adversarial goal is to
forge a message-signature pair (m, σ) and further convincing a (honest) verifier
that σ is indeed a valid signature on m, by executing the confirmation protocol
with the verifier. To avoid confusion, we stick to the following notation. We
denote the former type of adversary as forge (F) and the latter as forge-and-
impersonate (FI).

It is pretty hard for this new adversary to gain a success, but let us look at
the motivation for the adversary. As noted earlier in the introduction part, the
most common application of undeniable signatures is in licensing softwares. If
an adversary succeeds in forging a signature (but not in convincing the verifier
by executing a confirmation protocol), no doubt it would cause some damage
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to the legitimate signer (e.g. Microsoft). On the other hand, if an adversary
succeeds in forging as well as in impersonating, then it can sell its own softwares
by impersonating an agent of Microsoft. In this case, it can actively earn some
fast money through its wicked deed. This is the motivation behind the attack.

Intuitively, the security against a FI adversary is equivalent to a problem
which is no easier than the problem which is equivalent to the security against
a F adversary. We shall exemplify this with some security analyses in the next
section.

On the other hand, we also remark that the security against FI does not
imply unforgeability from the definitions. From the definition of FI adversary,
the adversary forges (m, σ) and succeeds in the confirmation protocol. However,
notice that there is a possibility that even if (m, σ) is invalid, the adversary
succeeds in the confirmation protocol. Hence, the security against FI adversary
does not imply unforgeability. We also note that if we use a ZKIP confirmation
protocol, then the security against FI adversary does imply unforgeability, due
to the soundness of the ZKIP protocol.

4.2 Types of Attacks

We can also classify adversaries by their capabilities or types of attacks. More
precisely, there exist two types of attacks, namely, passive attack and active
attack. Obviously, passive attack is a weaker attack.

Both the passive and active adversaries have access to the signing oracle
as well as the confirmation/disavowal oracle. The signing oracle plays the role
similar to those in the ordinary signature scheme. We highlight the difference
between a passive attack and an active attack below.

Whenever an adversary submits a confirmation/disavowal query (m, σ), the
oracle responds based on whether a passive attack or an active attack is mounted.
In a passive attack, the confirmation/disavowal oracle first checks the validity
of (m, σ) using the signing oracle. If it is a valid pair, then the oracle returns
“yes” and a transcript of confirmation protocol. Otherwise, the oracle returns
“no” and a transcript of disavowal protocol. In an active attack, the confirma-
tion/disavowal oracle first checks the validity of (m, σ) using the signing oracle.
If it is a valid pair, then the oracle returns “yes” and proceeds with the execution
of the confirmation protocol with the adversary (acting as a cheating verifier).
Otherwise, the oracle returns “no” and executes the disavowal protocol with the
adversary accordingly.

4.3 Formal Security Definitions

In this section, we provide the formal security definitions by considering the two
adversarial goals, namely forge (F) and forge-and-impersonate (FI) and the two
types of attacks mounted by the adversary.

Definition 2 (Unforgeability). An undeniable signature scheme is said to be
existential unforgeable under adaptive chosen message attack if no probabilistic



The Security of the FDH Variant of Chaum’s Undeniable Signature Scheme 343

polynomial time (PPT) forger F has a non-negligible advantage in the following
game:

1. Let pk be the input to F .
2. The forger F is permitted to issue a series of queries:

– Signing queries: F submits a message m and receives a signature σ on m.
(We consider adaptive queries here – subsequent queries is made based
on previously obtained signatures.)

– Confirmation/disavowal queries: F submits a message-signature pair (m, σ),
and the oracle responds based on whether a passive attack or an active
attack is mounted.
In a passive attack, the confirmation/disavowal oracle first checks the
validity of (m, σ) using the signing oracle. If it is a valid pair, then the
oracle returns “yes” and a transcript of confirmation protocol. Otherwise,
the oracle returns “no” and a transcript of disavowal protocol.
In an active attack, the confirmation/disavowal oracle first checks the
validity of (m, σ) using the signing oracle. If it is a valid pair, then the
oracle returns “yes” and proceeds with the execution of the confirmation
protocol with the forger F (acting as a cheating verifier). Otherwise, the
oracle returns “no” and executes the disavowal protocol with F accord-
ingly.

3. At the end of this attack game, F outputs a message-signature pair (m, σ)
such that m has never been queried to the signing oracle and that (m, σ) has
never been queried to the confirmation/disavowal oracle earlier.

The forger F wins the game if σ is a valid signature on m. F ’s advantage in
this game is defined to be Adv(F ) = Pr[Fwins].

Definition 3 (Unforgeability-and-Unimpersonation). An undeniable sig-
nature scheme is said to be secure against forgery and impersonation under adap-
tive chosen message attack if no PPT adversary A has a non-negligible advantage
in the following game:

1. Let pk be the input to A.
2. The adversary A enters the learning phase where it performs a series of

queries: signing queries and confirmation/disavowal queries as in the pre-
vious definitions (based on whether a passive attack or an active attack is
mounted). At the end of this forgery phase, A outputs a forged message-
signature pair (m, σ) such that m has never been queried to the signing oracle
and that (m, σ) has never been queried to the confirmation/disavowal oracle
earlier.

3. In the impersonation phase, A proceeds to execute the confirmation protocol
with a verifier on input (m, σ), trying to convince the verifier that (m, σ) is
a valid pair.

The adversary A wins the game if it can convince the verifier that (m, σ) is a valid
message-signature pair. A’s advantage in this game is defined to be Adv(A) =
Pr[Awins].
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4.4 FI-Security in NIZK

For undeniable signature schemes with designated-verifier NIZK proofs, we have
to carefully define the security against FI attack. This is because in such scheme,
besides breaking the undeniable signature scheme, an adversary can also imper-
sonate by breaking the public key system of a verifier.

Therefore, we first specify the key generation algorithm of the public key
system PKS of the target verifier. We denote the FI attack in this situation with
FIPKS attack. We then adopt the following adversary model.

1. As usual, after making some oracle queries, the adversary A outputs a forged
message-signature pair (m, σ).

2. Now, A is given a public key of a verifier randomly.
3. Next, it outputs a non-interactive non-transferable confirmation transcript

corresponding to the given public key.

We say that A succeeds in FIPKS attack if the proof is accepted with non-
negligible probability, where the probability is taken over the key generation
algorithm of PKS as well.

5 The Equivalence

5.1 Our Objective

Following from the previous section, it is thus clear that we need to consider
four types of adversaries, namely, the passive F, the active F, the passive FI and
the active FI.

There are various confirmation and disavowal protocols associate with the
FDH variant of Chaum’s scheme, namely, ZKIP, 3-move HVZK and 1-move
NIZK.

We intend to explore further on the equivalence between the security of the
scheme (with various confirmation and disavowal protocols) and some compu-
tational problems, under the various types of adversaries. In other words, our
objective is to fill up Table 1.

We remark that if the scheme employs the non-interactive confirmation and
disavowal protocols (NIZK), then it is not necessary to consider active attack.

In what follows, a xxx scheme denotes the scheme with xxx confirmation
and disavowal protocols, where xxx is ZKIP, HVZK or NIZK.

5.2 On F Attacks

First of all, recall that in Theorem 1 of Section 3.1, we have shown that the
passive F attack to the scheme with NIZK protocols is equivalent to the CDH
problem.

Theorem 2. The ZKIP scheme is secure against each of passive/active F attack
in the random oracle model if and only if the CDH problem is hard.
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Proof. The only if part is trivial. The if part can be shown almost similarly to
Theorem 1. However, notice that M does not need to simulate the H ′-oracle here.
The signing oracle, H-oracle and the first step of the confirmation/disavowal or-
acle are simulated similarly (see the proof of Theorem 1). The only difference is
in the second step of the confirmation/disavowal oracle simulation. Please refer
to the full version of this paper [24] for the concrete simulation of confirma-
tion/disavowal oracle in an active attack. Intuitively, the zero-knowledge prop-
erty of the protocols assures that M can simulate the confirmation/disavowal
oracle. Therefore, it is also clear that M can simulate the confirmation/disavowal
oracle in a passive attack, since passive attack is weaker than active attack. ut

Theorem 3. The HVZK scheme is secure against passive F attack in the ran-
dom oracle model if and only if the CDH problem is hard.

Proof. The only if part is trivial. The if part can be shown almost similarly
to Theorem 2 except in the confirmation/disavowal oracle simulation. Please
refer to [24] for the concrete perfect simulation of the transcripts of confirma-
tion/disavowal protocol. ut

5.3 On Passive FI Attacks

Theorem 4. The passive FI attack on the HVZK scheme is equivalent to the
DLOG problem in the random oracle model.

Proof. Firstly, we show that if there exists an algorithm M that solves the DLOG
problem, then an adversary A can succeed in FI attack by running M as a
subroutine. The adversary A is given the public key (g, y, H) where y = gx.
Since A can obtain the secret key x by feeding y to algorithm M , it can succeed
in the FI attack. This completes the first half of the proof.

Secondly, let A be a passive FI adversary. We show that one can construct an
algorithm M that can solve the DLOG problem by running A as a subroutine.
Suppose that the input to M is (g, gx), M then starts running A by feeding A
with the public key (g, y = gx, H), where H is a random oracle that will be simu-
lated by M . M also simulates the signing oracle and the confirmation/disavowal
oracle itself. We assume that when A makes a confirmation/disavowal query for
a message-signature pair (mi, σ

′

i), it has already made the corresponding signing
query on mi. We also assume that when A requests a signature on a message
mi, it has already made the corresponding H-query on mi.

When A makes a H-query for a message mi, M responds with hi = gαi , where
αi is chosen randomly from Zq . When A makes a signing query for a message mi,
M returns σi = yαi as the valid signature (since yαi = (gx)αi = hx

i = H(mi)
x).

When A makes a confirmation/disavowal query for a message-signature pair
(mi, σ

′

i), A can distinguish between a valid pair and an invalid pair by checking
the signing queries record. Further, M can simulate the confirmation/disavowal
oracle perfectly since the views of the honest-verifier zero-knowledge protocols
are simulatable (see [24]).
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Eventually, A outputs a forgery (m, σ). It then proceeds to prove that σ is
indeed a valid signature by executing the confirmation protocol with the honest-
verifier. Since the confirmation protocol is a proof of knowledge of x, thus M can
extract x by using the reset technique [2]. Please refer to [24] for the details. ut

The following theorem states the security of the scheme against passive FI

attack when non-interactive zero-knowledge proofs are used.

Theorem 5. The passive FIPKS attack on the NIZK scheme is equivalent to
“solving the DLOG problem” or “breaking PKS” in the random oracle model.
Here, “breaking PKS” means that the adversary obtains the secret key corre-
sponding to the given public key which is chosen randomly in PKS.

Proof. Consider an algorithm M whose input is ((g, y), Pk) where y is a random
element of G and Pk is a randomly chosen public key in PKS. If M outputs x
such that y = gx or Sk such that (Pk, Sk) is a public-secret key pair in PKS,
then we can say that M succeeds in “solving the DLOG problem or breaking
PKS”. Clearly, if there exists such algorithm M , then an adversary A can succeed
in FIPKS attack by running M as a subroutine. Thus the first half of the proof
was shown.

Secondly, let A be a passive FIPKS adversary. We show that one can construct
an algorithm M that can solve the DLOG problem or can break PKS by running
A as a subroutine. Suppose that the input to M is ((g, y), Pk). At first, M starts
running A by feeding A with the public key (g, y, H, H ′). We assume that when
A makes a confirmation/disavowal query for a message-signature pair (mi, σ

′

i),
it has already made the corresponding signing query on mi. We also assume
that when A requests a signature on a message mi, it has already made the
corresponding H-query on mi.

The simulation of the H-oracle and the signing oracle are the same as in
the previous proof. The simulation of the H ′-oracle is the same as the proof of
Theorem 1. The simulation of the confirmation/disavowal oracle is also almost
the same as those in the proof of Theorem 1, except that now when A makes a
signing query for mi, M answered with a valid signature σ with probability 1.

Eventually, A outputs a forgery (m, σ) and requests a verifier’s public key.
M then hands Pk to A. A next generates a non-interactive non-transferable
confirmation transcript corresponding to Pk and returns the transcript to M .
After that, M resets A. Unlike in the previous proof, M has to rewind A to the
point that it has made the H ′-query for str where H ′(str) is used as a random
challenge in the confirmation transcript. Using the same argument of forking
lemma [26], if A outputs a NIZK confirmation transcript with non-negligible
probability, then rewinding A with a different H ′ value will result M in getting
two confirmation transcripts for a common input (m, σ), with non-negligible
probability. From these two transcripts, M can obtain a witness W . At last M
outputs W . Remember that the designated-verifier confirmation transcript is a
proof of knowledge of x (the signer’s secret key) or the verifier’s secret key Sk.
Therefore, we have W = x or W = Sk, that is, M succeeds in solving the DLOG
problem or breaking PKS. ut
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From the above theorem, if the target verifier uses ElGamal cryptosystem,
then the passive FI attack on NIZK scheme is equivalent to the DLOG problem.
If the target verifier uses RSA cryptosystem, then the passive FI attack on NIZK
scheme is equivalent to “solving the DLOG problem” or “factoring the RSA
modulus N” [22].

5.4 On Active FI Attacks

Finally, we consider the last case, the active FI attack. In the active FI attack, the
adversary has additional power, i.e. to execute confirmation and disavowal proto-
cols interactively with the signer. M plays the role of the signer in this scenario,
interacting with the adversary whenever it receives a confirmation/disavowal
query.

The proof of the following theorem is given in [24].

Theorem 6. The HVZK scheme is secure against active FI attack in the random
oracle model if the one-more DLOG problem is hard.

5.5 Discussion

We have analyzed the security of the FDH variant of Chaum’s scheme under
various types of confirmation/disavowal protocols using the newly proposed ad-
versary model. Their equivalence with some known computational problems are
proven. In conclusion, the results we obtained are as summarized in Table 1,
which follows from Theorem 1 to Theorem 6.

The three cells marked “?” are still unsolved at the moment due to the
following reasons. In the proofs of Theorem 4 and Theorem 5, M can extract
x from y = gx because the confirmation protocol is a proof of knowledge of x,
thus there exists a knowledge extractor for x. On the other hand, the perfect
zero-knowledge confirmation protocol shown in Fig. 1-(a) is a proof of language
and not a proof of knowledge. Therefore, it is impossible for us to construct
such a knowledge extractor. This is the reason why we are unable to prove the
equivalence between FI attack and and some well-known computational problem
by using the same approach. May be there exist some other approaches to prove
the equivalence, however we are yet to discover it at the moment.

However, we conjecture that the problem which should be equivalent to the
security against passive FI and active FI attacks when ZKIP protocols are em-
ployed and the problem which should be equivalent to the security against active
F attack when HVZK protocols are employed, should be no easier than the CDH
problem. We anticipate the solution in the near future and we encourage more
attempts on them.

There exists another security notion for undeniable signatures called invisi-
bility which was first introduced by Chaum et al. [12]. This notion is essentially
the inability to determine whether a given message-signature pair is valid for
a given signer. We can prove the invisibility of the FDH variant of Chaum’s
scheme and show the similar results as in Table 1. Due to the space limitation,
the details will be given in the final paper.
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6 Conclusion

In this paper, we introduced another new adversarial goal called forge-and-
impersonate in undeniable signature schemes, and this leads to a new adversary
model which is slightly stronger than the existing one. We also classified the
security of the FDH variant of Chaum’s undeniable signature scheme accord-
ing to three dimensions, the attacks, the adversarial goals and the ZK level of
confirmation and disavowal protocols, and then related each security to some
well-known computational problem. In addition, we also pointed out the flaw in
Okamoto and Pointcheval’s claim, i.e. we proved that the unforgeability of the
FDH variant of Chaum’s scheme with NIZK confirmation and disavowal pro-
tocols is equivalent to the CDH problem, as opposed to the GDH problem as
claimed by them.
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