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Abstract. Identity-based cryptography is form of public-key cryptog-
raphy that does not require users to pre-compute key pairs and obtain
certificates for their public keys. Instead, public keys can be arbitrary
identifiers such as email addresses. This means that the corresponding
private keys are derived, at any time, by a trusted private key generator.

The idea of signcryption is to provide a method to encrypt and sign
data together in a way that is more efficient than using an encryption
scheme combined with a signature scheme.

We present an identity-based signcryption solution that we believe is
the most efficient, provably-secure scheme of its type proposed to date.
Our scheme admits proofs of security in the random oracle model under
the bilinear Diffie-Hellman assumption using the definitions proposed by
Boyen.

1 Introduction

Two of the most important services offered by cryptography are those of pro-
viding private and authenticated communications. Much research has been done
into creating encryption schemes to meet highly developed notions of privacy [3,
16]. Similarly, designing unforgeable signature schemes to give authenticity and
non-repudiation is also a well studied problem [10]. It is possible to combine en-
cryption schemes and signature schemes, using methods such as those described
in [1], to obtain private and authenticated communications.

In 1997, Zheng proposed a primitive that he called signcryption [20]. The idea
of a signcryption scheme is to combine the functionality of an encryption scheme
with that of a signature scheme. It must provide privacy; signcryptions must be
unforgeable; and there must be a method to settle repudiation disputes. This
must be done in a more efficient manner than a composition of an encryption
scheme with a signature scheme. Along with the concept, Zheng also proposed
an efficient, discrete logarithm based scheme.

The first formal security treatment for signcryption appeared in [1]. This work
formalised notions of privacy and unforgeability. Subsequently, several provably
secure signcryption schemes have been designed, for example [12].
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The concept identity-based cryptography was proposed by Shamir in 1984 [18].
The idea of an identity-based system is that public keys can be derived from arbi-
trary strings. This means that if a user has a string corresponding to its identity,
this string can be used to derive the user’s public key. For this to work there is a
trusted authority (TA henceforth) that generates private keys using some master
key related to the global parameters for the system. In [18] Shamir proposed
an identity-based signature scheme, but for many years identity-based encryp-
tion remained an open problem. The problem was solved nearly two decades
after it was originally proposed [5, 9]. In [9] Cocks proposed a solution based on
quadratic residuosity and in [5] Boneh and Franklin gave a scheme using bilinear
pairings on elliptic curves. It is pairings on elliptic curves that have become the
most popular building block for identity-based cryptography and many schemes
have been designed using this primitive.

The idea of identity-based signcryption was first proposed by Malone-Lee
in [13] along with a security model. This model dealt with notions of privacy
and unforgeability. A weakness in the scheme from [13] was subsequently pointed
out by Libert and Quisquater in [11] where a new scheme was proposed. The
new scheme came with proofs of security in the model of [13]. This model was
developed by Boyen in [6]. Three new security notions were added: ciphertext

unlinkability, ciphertext authentication and ciphertext anonymity. We discuss
these notions in Section 3. Boyen also proposed a scheme in [6] and analysed it
in the enhanced model.

We take the model from [6] as the starting point for this work. We describe a
scheme that admits security proofs in this model. We show that our scheme
compares favourably with other provably-secure signcryption schemes in the
literature.

The paper proceeds as follows. In Section 2 we formally define what we mean
by identity-based signcryption. Section 3 recalls the security model from [6]. We
present our scheme in Section 4 and provide security results for it in Section 5.
A comparison is made with existing schemes in Section 6. The paper ends with
some concluding remarks.

2 Identity-Based Signcryption

Before formally defining what we mean by identity-based signcryption we de-
scribe the notation that we will use throughout the paper.

Notation Let S be a set. We write v ← S to denote the action of sampling
from the uniform distribution on S and assigning the result to the variable v.
If S contains one element s we use v ← s as shorthand for v ← {s}. If A is
an algorithm we denote the action of running A on input I and assigning the
resulting output to the variable v by v ← A(I).

If E is an event defined in some probability space, we denote the probability
that E occurs by Pr[E] (assuming the probability space is understood from the
context). Let Zq denote the non-negative integers modulo q and let Z∗

q denote
the corresponding multiplicative group.
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An identity-based signcryption scheme consists of the following six algorithms:
Setup, Extract, Sign, Encrypt, Decrypt and Verify. We describe the func-
tions of each below.

– Setup: On input of a security parameter 1k the TA uses this algorithm to
produce a pair (params, s), where params are the global public parameters
for the system and s is the master secret key. The public parameters include
a global public key QTA. We will assume that params are publicly known so
that we do not need to explicitly provide them as input to other algorithms.

– Extract: On input of an identity IDU and the master secret key s, the TA
uses this algorithm to compute a secret key SU corresponding to IDU .

– Sign: User A with identity IDA and secret key SA uses this algorithm with
input (m, SA) to produce a signature σ on m valid under the public key
derived from IDA. It also produces some ephemeral data r.

– Encrypt: On input of (SA, IDB , m, σ, r), IDA uses this algorithm to pro-
duce a ciphertext c. This is the encryption of m, and IDA’s signature on m,
which can be decrypted using the secret key of the user with identity IDB .

– Decrypt: User B with identity IDB and secret key SB uses this algorithm
with input (c, SB) to produces (m, IDA, σ) where m is a message and σ is a
purported signature by IDA on m.

– Verify: On input of (m, IDA, σ), this algorithm outputs > if σ is IDA’s
signature on m and it outputs ⊥ otherwise.

The above algorithms have the following consistency requirement. If

(m, σ, r) ← Sign(m, SA), c← Encrypt(SA, IDB , m, σ, r) and

(m̂, ˆIDA, σ̂)← Decrypt(c, SB),

then we must have

ˆIDA = IDA, m = m̂ and >← Verify(m̂, ˆIDA, σ̂).

Note that in some models for signcryption [20] and identity-based signcryp-
tion [13, 11], the Sign and Encrypt algorithms are treated as one “signcryption”
algorithm, as are the Decrypt and Verify algorithms. Our scheme supports a
separation and so we stick with the above definition as in [6]. One advantage of
this approach, where it is possible, is that it makes non-repudiation of messages
a straightforward consequence of unforgeability. This follows from the fact that
after decryption there is a publicly verifiable signature that can be forwarded to
a third party.

3 Security Notions

In this section we review the security model for identity-based signcryption pro-
posed in [6]. This model uses the notions of insider security and outsider security

from [1]. Informally insider security is security against a legitimate user of the
scheme while outsider security is security against an outside third party. Where
appropriate, this makes insider security a stronger notion. We will comment on
the significance of the distinction at relevant points in this section.
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3.1 Ciphertext Authentication

A scheme offering ciphertext authentication provides the guarantee to the re-
cipient of a signed and encrypted message that the message was encrypted by
the same person who signed it. This means that the ciphertext must have been
encrypted throughout the transmission and so it cannot have been the victim of
a successful man-in-the-middle attack. It also implies that the signer chose the
recipient for its signature.

We define this notion via a game played by a challenger and an adversary.

Game

– Initial: The challenger runs Setup(1k) and gives the resulting params to
the adversary. It keeps s secret.

– Probing: The challenger is probed by the adversary who makes the following
queries.
• Sign/Encrypt: The adversary submits a sender identity, a receiver iden-

tity and a message to the challenger. The challenger responds with the
signature of the sender on the message, encrypted under the public key
of the receiver.

• Decrypt/Verify: The adversary submits a ciphertext and a receiver
identity to the challenger. The challenger decrypts the ciphertext under
the secret key of the receiver. It then verifies that the resulting decryption
is a valid message/signature pair under the public key of the decrypted
identity. If so the challenger returns the message, its signature and the
identity of the signer, otherwise it returns ⊥.

• Extract: The adversary submits an identity to the challenger. The chal-
lenger responds with the secret key of that identity.

– Forge: The adversary returns a recipient identity IDB and a ciphertext c.
Let (m, IDA, σ) be the result of decrypting c under the secret key correspond-
ing to IDB . The adversary wins if IDA 6= IDB ; Verify(m, IDA, σ) = >;
no extraction query was made on IDA, or IDB ; and c did not result from a
sign/encrypt query with sender IDA and recipient IDB.

Definition 1. Let A denote an adversary that plays the game above. If the

quantity Adv[A] = Pr[A wins] is negligible we say that the scheme in question

is existentially ciphertext-unforgeable against outsider chosen-message attacks,

or AUTH-IBSC-CMA secure.

Here we have an example of outsider security since the adversary is not able to
extract the secret key corresponding to IDB . This models the true adversarial
scenario where an attack would be re-encrypting a signed message using a public
key with unknown secret key.

3.2 Message Confidentiality

The accepted notion of security with respect to confidentiality for public key
encryption is indistinguishability of encryptions under adaptive chosen ciphertext

attack, as formalised in [16]. The notion of security defined in the game below is
a natural adaptation of this notion to the identity-based signcryption setting.
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Game

– Initial: The challenger runs Setup(1k) and gives the resulting params to
the adversary. It keeps s secret.

– Phase 1: The challenger is probed by the adversary who makes queries as
in the game of Section 3.1. At the end of Phase 1 the adversary outputs two
identities {IDA, IDB} and two messages {m0, m1}. The adversary must not
have made an extract query on IDB .

– Challenge: The challenger chooses a bit b uniformly at random. It signs mb

under the secret key corresponding to IDA and encrypts the result under the
public key of IDB to produce c. The challenger returns c to the adversary.

– Phase 2: The adversary continues to probe the challenger with the same
type of queries that it made in Phase 1. It is not allowed to extract the private
key corresponding to IDB and it is not allowed to make a decrypt/verify
query for c under IDB .

– Response: The adversary returns a bit b′. We say that the adversary wins

if b′ = b.

Definition 2. Let A denote an adversary that plays the game above. If the quan-

tity Adv[A] = |Pr[b′ = b] − 1

2
| is negligible we say that the scheme in question

is semantically secure against adaptive chosen-ciphertext attack, or IND-IBSC-

CCA2 secure.

Note that Definition 2 deals with insider security since the adversary is assumed
to have access to the private key of the sender of a signcrypted message. This
means that confidentiality is preserved even if a sender’s key is compromised.

3.3 Signature Non-Repudiation

A signcryption scheme offering non-repudiation prevents the sender of a sign-
crypted message from disavowing its signature. Note that non-repudiation is not
as straightforward for signcryption as it is for digital signature schemes since we
are dealing with encrypted data. As a consequence, by default, only the intended
recipient of a signcryption can verify.

We define the notion of non-repudiation via the following game played by a
challenger and an adversary.

Game

– Initial: The challenger runs Setup(1k) and gives the resulting params to
the adversary. It keeps s secret.

– Probing: The challenger is probed by the adversary who makes queries as
in the game of Section 3.1.

– Forge: The adversary returns a recipient identity IDB and a ciphertext c.
Let (m, IDA, σ) be the result of decrypting c under the secret key correspond-
ing to IDB . The adversary wins if IDA 6= IDB ; Verify(m, IDA, σ) = >; no
extraction query was made on IDA; no sign/encrypt query (m, IDA, IDB′)
was responded to with a ciphertext whose decryption under the private key
of IDB′ is (m, IDA, σ).
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This model is a natural adaptation of existential unforgeability (EUF) under
adaptive chosen message attack, the accepted notion of security for digital sig-
nature schemes [10].

Definition 3. Let A denote an adversary that plays the game above. If the

quantity Adv[A] = Pr[A wins] is negligible we say that the scheme in question is

existentially unforgeable against insider chosen-message attacks, or EUF-IBSC-

CMA secure.

In Definition 3 we allow the adversary access to the secret key of the recipient
of the forgery. It is this that gives us insider security. Also note that the adver-
sary’s advantage is with respect to its success in forging the signature within
the ciphertext. This is indeed the correct definition for non-repudiation in this
context because it is the signature and not the ciphertext that contains it that
is forwarded to a third party in the case of a dispute.

3.4 Ciphertext Anonymity

Ciphertext anonymity is the property that ciphertexts contain no third-party
extractable information that helps to identify the sender of the ciphertext or the
intended recipient. It is defined via the following game.

Game

– Initial: The challenger runs Setup(1k) and gives the resulting params to
the adversary. It keeps s secret.

– Phase 1: The challenger is probed by the adversary who makes queries as
in the game of Section 3.1. At the end of Phase 1 the adversary outputs a
message m; two sender identities {IDA0

, IDA1
}; and two recipient identities

{IDB0
, IDB1

}. The adversary must not have made an extract query on either
of {IDB0

, IDB1
}.

– Challenge: The challenger chooses two bits (b, b̂) uniformly at random. It
signs m under the secret key SAb

corresponding to IDAb
. It then encrypts

the result under the public key of IDB
b̂

to produce a ciphertext c. The
challenger returns c to the adversary.

– Phase 2: The adversary continues to probe the challenger with the same
type of queries that it made in Phase 1. It is not allowed to extract the
private key corresponding to IDB0

or IDB1
and it is not allowed to make a

decrypt/verify query for c under IDB0
or under IDB1

.

– Response: The adversary returns two bits (b′, b̂′). We say that the adversary

wins if b = b̂ or b′ = b̂′.

Definition 4. Let A denote an adversary that plays the game above. If the

quantity Adv[A] = |Pr[b′ = b ∨ b̂′ = b̂]− 3

4
| is negligible we say that the scheme

in question is ciphertext-anonymous against insider adaptive chosen-ciphertext

attack, or ANON-IBSC-CCA2 secure.



372 Liqun Chen and John Malone-Lee

Note that in the equivalent definition from [6] the adversary only wins if b = b̂

and b′ = b̂′. It is stated there that the scheme is ANON-IBSC-CCA2 secure if
the quantity Adv[A] = |Pr[b′ = b∧ b̂′ = b̂]− 1

4
| is negligible. The two definitions

are clearly equivalent. We prefer our formulation because it explicitly states that
the adversary should not be able to guess either of the bits. The intuition is that
it gains no information about the sender of a message or the intended recipient.
Definition 4 follows from the fact that the adversary is always able to guess at
least one of the bits correctly with probability 3/4.

An additional security definition dubbed ciphertext unlinkability is described
in [6]. Informally this notion means that Alice is able to deny having sent a
given ciphertext to Bob, even if the ciphertext decrypts under Bob’s secret key
to a message bearing Alice’s signature. This property is demonstrated for the
scheme in [6] by showing that given a message signed by Alice, Bob is able
to create a valid ciphertext addressed to himself for that message. It is easily
verified that our scheme also has this property.

4 The Scheme

In this section we describe how our identity-based signcryption scheme works.
We will refer to the scheme as IBSC henceforth.

Before explaining our scheme we must briefly summarise the mathematical
primitives necessary for pairing based cryptography. We require two groups G1

and G2 of large prime order q. These groups must be such that there exists a
non-degenerate, efficiently computable map ê : G1 × G1 → G2. This map must
be bilinear i.e. for all P1, P2 ∈ G1 and all a, b ∈ Z∗

q we have ê(aP1, bP2) =

ê(P1, P2)
ab. A popular construction for such groups uses supersingular elliptic

curves over finite fields. The bilinear map is realised using a modification of the
Tate pairing or the Weil pairing. For details of such instantiations see [2, 5].

We also require three hash functions H0 : {0, 1}k1 → G1, H1 : {0, 1}k0+n →
Z∗

q and H2 : G2 → {0, 1}k0+k1+n. Here k0 is the number of bits required to
represent an element of G1; k1 is the number of bits required to represent an
identity; and n is the number of bits of a message to be signed and encrypted.

Setup
Establish parameters G1, G2, q, ê, H0 : {0, 1}k1 → G1, H1 : {0, 1}k0+n → Z∗

q

and H2 : G2 → {0, 1}k0+k1+n as described above; choose P such that 〈P 〉 = G1;
choose s← Z∗

q and compute the global public key QTA ← sP .

Extract
To extract the private key for user U with IDU ∈ {0, 1}k1 : Compute the public
key QU ← H0(IDU ) and the secret key SU ← sQU .

Sign
For user A with identity IDA to sign m ∈ {0, 1}n with private key SA corre-
sponding to public key QA ← H0(IDA): Choose r ← Z∗

q ; compute X ← rQA,
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h1 ← H1(X ||m) and Z ← (r + h1)SA; return the signature (X, Z) and forward
(m, r, X, Z) to Encrypt.

Encrypt
For user A with identity IDA to encrypt m using r, X, Z output by Sign for
receiver IDB : Compute QB ← H0(IDB), w ← ê(rSA, QB) and y ← H2(w) ⊕
(Z||IDA||m); return ciphertext (X, y).

Decrypt
For user B with identity IDB to decrypt (X, y) using SB = sH0(IDB): Com-
pute w ← ê(X, SB) and Z||IDA||m← y⊕H2(w); forward message m, signature
(X, Z) and purported sender IDA to Verify.

Verify
To verify user A’s signature (X, Z) on message m where A has identity IDA:
Compute QA ← H0(IDA) and h1 ← H1(X ||m); if ê(Z, P ) = ê(QTA, X +h1QA),
return >; else, return ⊥.

Note that, as was the case in [6], the key setup used by our scheme is that
proposed in [17], and the signing algorithm is that proposed in [7]. Also, the
encryption is done in a manner similar to the BasicIdent scheme from [5]. The
integrity checking necessary for security against adaptive adversaries comes from
the signature in our case.

5 Security Results

In this section we state our security results. Owing to space constraints, we only
provide a proof of the ciphertext authentication property here. The proofs of the
other properties may be found in the full version of the paper [8].

All our results are relative to the bilinear Diffie-Hellman (BDH) problem.
Informally, using the notation of Section 4, this is the problem of computing
ê(P, P )abc from (P, aP, bP, cP ) where a, b, c are chosen at random from Z∗

q and
P generates G1. For further details see [5].

To prove our results we model H0, H1 and H2 as random oracles [3]. We
assume that the adversary makes qi queries to Hi for i = 0, 1, 2. The number of
sign/encrypt and decrypt/verify queries made by the adversary are denoted qs

and qd respectively.

Ciphertext Authentication

Theorem 1. If there is an AUTH-IBSC-CMA adversary A of IBSC that suc-

ceeds with probability ε, then there is a simulator B running in polynomial time

that solves the BDH problem with probability at least

ε ·

(

1−
qs(q1 + q2 + 2qs)

q

)

·
1

q0(q0 − 1)(qs + qd)(q2 + qs)
.



374 Liqun Chen and John Malone-Lee

Proof. We will show how an AUTH-IBSC-CMA adversary A of IBSC may be
used to construct a simulator B that solves the BDH problem for (P, aP, bP, cP ).

We now describe the construction of the simulator B. The simulator runs A
with trusted third party public key QTA ← cP . It also creates algorithms to re-
spond to queries made by A during its attack. To maintain consistency between
queries made by A, the simulator keeps the following lists: Li for i = 0, 1, 2 of
data for query/response pairs to random oracle Hi; Ls of signcryptions generated
by the simulator; and Ld of some of the queries made by A to the decrypt/verify
oracle. We will see in the construction of the sign/encrypt simulator that the list
Ls stores other information that will be useful to B. Its use will become apparent
in the subsequent analysis, as will the use of Ld.

Simulator: H0(IDU )
At the beginning of the simulation choose ia, ib uniformly at random from
{1, . . . , q0} (ia 6= ib). We respond to the i-th query made by A as follows (as-
suming A does not make repeat queries).

– If i = ia then respond with H0(IDU )← aP and set IDA ← IDU .
– If i = ib then respond with H0(IDU )← bP and set IDB ← IDU .
– Else choose x ← Z∗

q ; compute QU ← xP ; compute SU ← xQTA; store
(IDU , QU , SU , x) in L0 and respond with QU .

Simulator: H1(X ||m)

– If (X ||m, h1) ∈ L1 for some h1, return h1.
– Else choose h1 ← Z∗

q ; add (X ||m, h1) to L1; return h1.

Simulator: H2(w)

– If (w, h2) ∈ L2 for some h2, return h2.
– Else choose h2 ← {0, 1}k0+k1+n; add (w, h2) to L2; return h2.

Simulator: Extract(IDU )
We assume that A queries H0(IDU ) before it makes the extraction query IDU .

– If IDU = IDA or IDU = IDB , abort the simulation.
– Else search L0 for the entry (IDU , QU , SU , x) corresponding to IDU and

return SU .

Simulator: Sign/Encrypt(m, ID1, ID2)
We will assume that A makes the queries H0(ID1) and H0(ID2) before it makes
a sign/encrypt query using these identities. We have five cases to consider.

Case 1: ID1 6= IDA and ID1 6= IDB

– Find the entry (ID1, Q1, S1, x) in L0; choose r ← Z∗

q ; compute X ← rQ1;
compute h1 ← H1(X ||m) (where H1 is the simulator above); compute Z ←
(r + h1)S1; compute Q2 ← H0(ID2) (where H0 is the simulator above);
compute w ← ê(rS1, Q2); compute y ← H2(w) ⊕ (Z||ID1||m) (where H2 is
the simulator above); return (X, y).



Improved Identity-Based Signcryption 375

Case 2: ID1 = IDA, ID2 6= IDA and ID2 6= IDB

– Choose r, h1 ← Z∗

q ; compute X ← rP − h1QA; compute Z ← rQTA;
add (X ||m, h1) to L1; find the entry (ID2, Q2, S2, x) in L0; compute w ←
ê(X, S2); compute y ← H2(w) ⊕ (Z||IDA||m) (where H2 is the simulator
above); return (X, y).

Case 3: ID1 = IDB , ID2 6= IDA and ID2 6= IDB

Use the simulation of Case 2 replacing (IDA, QA) with (IDB , QB).

Case 4: ID1 = IDA and ID2 = IDB

– Follow the first four steps of Case 2; choose h2 ← {0, 1}k0+k1+n; compute
y ← h2 ⊕ Z||IDA||m; add (IDA, IDB, X, y, Z, m, r, h1, h2) to Ls; return
(X, y).

Case 5: ID1 = IDB and ID2 = IDA

Use the simulation of Case 4 swapping (IDA, QA, IDB) with (IDB , QB , IDA).

Decrypt/Verify:(X, y), ID2

We assume that A makes the query H0(ID2) before making a decryption query
for ID2. We have the following three cases to consider.

Case 1: ID2 6= IDA and ID2 6= IDB

– Find the entry (ID2, Q2, S2, x) in L0; compute w = ê(X, S2); initialise b← 1.
– If w ∈ L2, compute Z||ID1||m← y ⊕H2(w), else b← 0 .
– If b = 1 and ID1 ∈ L0, let Q1 ← H0(ID1), else b← 0.
– If b = 1 and X ||m ∈ L1, let h1 ← H1(X ||m), else b← 0.
– If b = 1 and ê(Z, P ) = ê(QTA, X + h1Q1), return m, (X, Z) and ID1, else

step through the list Ls as follows.
• If the current entry has the form (IDA, IDB , X ′, y, Z, m′, r, h′

1, h2) then
test if ê(X ′, QB) = ê(X, xP ). If so continue, else move on to the next
element of Ls and begin again.

• Else if the current entry has the form (IDB , IDA, X ′, y, Z, m′, r, h′

1, h2)
then test ê(X ′, QA) = ê(X, xP ). If so continue, else move on to the next
element of Ls and begin again.

• Compute Z||ID1||m← y ⊕ h2.
• If ID1 = ID2 move to the next element in Ls and begin again.
• If ID1 ∈ L0 let Q1 ← H0(ID1), else move to the next element in Ls.
• If X ||m ∈ L1 let h1 ← H1(X ||m), else move to the next element in Ls.
• Check that ê(Z, P ) = ê(QTA, X+h1Q1), if so return m, (X, Z) and ID1,

if not move on to the next element in Ls and begin again.
– If no message has been returned, return ⊥.

Case 2: ID2 = IDB

– If (IDA, IDB , X, y, Z, m, r, h1, h2) ∈ Ls for some m, return m, (X, Z), IDA.
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– Else, add (X, y), IDB to Ld and step through the list L2 with entries (w, h2)
as follows.

• Compute Z||ID1||m← y ⊕ h2.
• If ID1 = IDA or ID1 = IDB , move to the next element in L2 and begin

again.
• If ID1 ∈ L0 let Q1 ← H0(ID1) and find S1 in L0 , else move to the next

element in L2 and begin again.
• If X ||m ∈ L1 let h1 ← H1(X ||m), else move on to the next element in

L2 and begin again.
• Check that w = ê(Z−h1S1, QB) and if not move on to the next element

in L2 and begin again.
• Check that ê(Z, P ) = ê(QTA, X+h1Q1), if so return m, (X, Z) and ID1,

else move on to the next element in L2 and begin again.

– If no message has been returned after stepping through the list L2, step
through the list Ls as follows.

• If the current entry has the form (IDA, IDB , X ′, y, Z, m′, r, h′

1, h2) then
check that X ′ = X . If so continue, else move on to the next element of
Ls and begin again.

• Else if the current entry has the form (IDB , IDA, X ′, y, Z, m′, r, h′

1, h2)
then check that ê(X ′, QA) = ê(X, QB). If so continue, if not move on to
the next element of Ls and begin again.

• Compute Z||ID1||m← y ⊕ h2.
• If ID1 = IDB , move to the next element in Ls and begin again.
• If ID1 ∈ L0 let Q1 ← H0(ID1), else move to the next element in Ls.
• If X ||m ∈ L1 let h1 ← H1(X ||m), else move to the next element in Ls.
• Check that ê(Z, P ) = ê(QTA, X+h1Q1), if so return m, (X, Z) and ID1,

else move on to the next element in Ls and begin again.

– If no message has been returned, return ⊥.

Case 3: ID2 = IDA

Use the simulation of Case 2 replacing (IDB , QB, IDA) with (IDA, QA, IDB).

Once A has been run, B does one of two things.

1. With probability qs/(qs+qd) choose a random element from Ls and a random
element (w, h2) from L2. We call this event Ch1 in the analysis below (Ch

for choice). The significance of the probability will become apparent in the
subsequent analysis we only mention here that we are assuming |Ls| = qs at
the end of our simulation. This is the worst case scenario.

– If the chosen element has form (IDA, IDB , X, y, Z, m, r, h1, h2), compute

B =
(

w/ê(rbP, cP )
)

−1/h1

.

– If the chosen element has form (IDB , IDA, X, y, Z, m, r, h1, h2), compute

B =
(

w/ê(raP, cP )
)

−1/h1

.
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2. With probability qd/(qs + qd) choose a random element from Ld and a ran-
dom element (w, h2) from L2. We call this event Ch2 in the analysis below.
Again, the significance this probability will become apparent in the sub-
sequent analysis. As above, we are assuming |Ld| = qd at the end of our
simulation. This is the worst case scenario.
– If the chosen element from Ld has the form (X, y), IDB compute y⊕h2.

If y ⊕ h2 has the form Z||IDA||m for some Z, m, compute

B =
(

w/ê(Z, bP )
)

−1/h1

.

If y ⊕ h2 does not have this form B has failed.
– If the chosen element from Ld has the form (X, y), IDA compute y⊕h2.

If y ⊕ h2 has the form Z||IDB||m for some Z, m, compute

B =
(

w/ê(Z, aP )
)

−1/h1

.

If y ⊕ h2 does not have this form B has failed.

The rational for these probabilities and computations will become apparent in
the discussion of equations (1), (2), (4) and (5) below.

Let us now analyse our simulation. The simulations for the random oracles
and the extraction queries are trivial. The simulation of the sign/encrypt queries
uses standard techniques. We make some remarks about the decrypt/verify sim-
ulation since this is less obvious. We will treat each case separately.

Case 1: In this case the simulator B knows the secret key of the receiver and so
it is able to compute the correct ephemeral encryption key. The first six steps in
this case are therefore those that would be followed in genuine decryption and
verification. The reason that it does not stop at this point is that the sign/encrypt
simulator implicitly defines H2(w) for values of w that are unknown to the sim-
ulator. It must check that the ephemeral encryption key w that it has computed
is not one of these values. For example, suppose that there is an entry of the
form (IDA, IDB , X ′, y, Z, m, r, h′

1, h2) in Ls. Referring back to the construction
of the sign/encrypt simulator, it needs to know if

ê(X ′, SB) = ê(X, S2).

The simulator knows that S2 = xQTA = xcP and it know SB = bQTA = bcP =
cQB so this test becomes

ê(X ′, QB) = ê(X, xP ).

Case 2: In this case the simulator B does not know the secret key of the receiver
and so it is unable to compute the ephemeral encryption key ê(X, SB). The first
loop, through the list L2, determines whether the H2 value of the ephemeral
encryption key is in L2 itself i.e. for each w in L2 it wants to know if w =
ê(X, SB). Since by construction QTA = cP this test becomes w = ê(cX, QB)
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and, under the assumption that the ciphertext is correctly formed, it becomes
ê(Z−h1S1, QB). Note that if the ciphertext is not correctly formed the simulator
does not care whether the value of H2(w) is defined since it is correct to reject.
The final test in this loop is just the standard test for verification.

The second loop, through Ls, determines whether the value of H2(w) that B
is looking for has been determined by the sign/encrypt simulator. If it is search-
ing Ls for an entry of form (IDA, IDB , X ′, y, Z, m, r, h′

1, h2) then the receiver
identities are the same in this entry and in the decrypt/verify query that we are
trying to respond to. The check is then simply on the values of X and X ′.

If B is looking at an entry of Ls of the form (IDB , IDA, X ′, y, Z, m, r, h′

1, h2)
then the receivers identities are not the same in this entry and in the de-
crypt/verify query that it is trying to respond to. The check that it wishes
to perform is ê(X ′, SA) = ê(X, SB). This is clearly equivalent to the check
ê(X ′, QA) = ê(X, QB).

Case 3: The analysis is identical to that of Case 2 with A and B reversed.

Let us now consider how our simulation could fail i.e. describe events that
could cause A’s view to differ when run by B from its view in a real attack. We
call such an event an error and denote it ER.

It is clear that the simulations for H0 and H1 are indistinguishable from real
random oracles. Let us now consider the H2 simulator. The important point here
is that H2 is not only defined at points where the H2 simulator is called by A
or by the simulator itself. It is also defined at certain points implicitly by the
sign/encrypt simulator. For example, suppose that the sign/encrypt simulator re-
sponds to a query m, IDA, IDB . In this case it adds an entry (IDA, IDB , X, y, Z,
m, r, h1, h2) to Ls. This implicitly defines H2(ê(X, SB)) = h2 although it is not
actually able to compute ê(X, SB). If the H2 simulator is subsequently called
with w = ê(X, SB) it will not recognise it and so it will not return h2. We denote
such events H-ER. However, if such an event occurs we have

w = ê(X, SB) = ê(rP − h1QA, SB)

from which it is possible to compute

ê(P, P )abc = ê(QA, SB) =
(

w/ê(rQB , QTA)
)

−1/h1

=
(

w/ê(rbP, cP )
)

−1/h1

. (1)

Similarly if the H2 simulator is called with w that is implicitly defined by an
entry (IDB , IDA, X, y, Z, m, r, h1, h2) ∈ Ls we can compute.

ê(P, P )abc = ê(QB , SA) =
(

w/ê(rQA, QTA)
)

−1/h1

=
(

w/ê(raP, cP )
)

−1/h1

. (2)

Let us now consider how the simulation for sign/encrypt could fail. We denote
such an event S-ER. The most likely failure will be caused by the sign/encrypt
simulator responding to a query of the form Case 4 or Case 5 (see simulator).
Since we do not know how often each case will occur we will be conservative
and assume that each query will be one of these, 4 say. The only possibilities for
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introducing an error here are defining H1(X ||m) when it is already defined or
defining H2(ê(X, SB))/H2(ê(X, SA)) when it is already defined. Since X takes
its value uniformly at random in 〈P 〉, the chance of one of these events occurring
is at most (q1 + q2 + 2qs)/q for each query. The 2qs comes from the fact that
the signing simulator adds elements to L1 and L2. Therefore, over the whole
simulation, the chance of an error introduced in this way is at most

qs(q1 + q2 + 2qs)/q. (3)

We now turn our attention to the decrypt/verify simulator. An error in this
simulator is denoted D-ER. It is clear that this simulator never accepts an invalid
encryption. What we have to worry about is the possibility that it rejects a valid
one. This can only occur with non-negligible probability in Case 2 or Case 3.
Suppose that we are trying to decrypt (X, y), IDB (i.e. Case 2). An error will
only occur if while stepping through L2 there is an entry (w, h2) such that
Z||IDA||m ← y ⊕ h2 and (X, y) is a valid encryption of m from IDA to IDB .
In this case we must have

w = ê(Z − h1SA, QB) = ê(Z, QB) · ê(−h1SA, QB) = ê(Z, bP ) · ê(−h1acP, bP ),

where h1 = H1(X ||m). From the above we can compute

ê(P, P )abc =
(

w/ê(Z, bP )
)

−1/h1

. (4)

Suppose now that we are trying to decrypt (X, y), IDA (i.e. Case 3). An error
will only occur if while stepping through L2 there is an entry (w, h2) such that
Z||IDB ||m ← y ⊕ h2 and (X, y) is a valid encryption of m from IDB to IDA.
In this case we must have

w = ê(Z − h1SB , QA) = ê(Z, QA) · ê(−h1SB , QA) = ê(Z, aP ) · ê(−h1bcP, aP ),

from which we can compute

ê(P, P )abc =
(

w/ê(Z, aP )
)

−1/h1

. (5)

The final simulator is the extract simulator. Note that the adversary will
only succeed in its task with non-negligible probability if it queries H0 with
the two identities under which the encrypted and signed message it produces is
supposed to be valid. Looking at the H0 simulator we see that it chooses two H0

queries made by the adversary and responds to these with group elements from
the BDH instance that it is trying to solve. The simulator hopes that these will
be the identities for the adversary’s encrypted and signed message. This will be
the case with probability at least

1/q0(q0 − 1). (6)

If this is not the case we say that an error has occurred in the extract simulator
because, if the adversary tried to extract the private key for these identities, the
simulator would abort. An error in the extract simulator is denoted E-ER.

Once A has been run by the simulator B, there are two courses of action:
Ch1 and Ch2 (as described above). If Ch1 has been chosen, we denote the event
that B selects the correct elements to solve the BDH problem from Ls and H2
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by CG1 (under the assumption that there are such correct elements in the lists
at the end of the simulation). Likewise if Ch2 has been chosen, we denote the
event that B selects the correct elements from Ld and H2 by CG2.

With the events described above we have

Adv[B] ≥ Pr[¬E-ER ∧ H-ER ∧ ¬S-ER ∧ Ch1 ∧ CG1]

+ Pr[D-ER ∧ ¬E-ER ∧ ¬H-ER ∧ ¬S-ER ∧ Ch2 ∧ CG2]. (7)

Also,

Pr[¬E-ER ∧ H-ER ∧ ¬S-ER ∧ Ch1 ∧ CG1]

= Pr[¬E-ER ∧ ¬S-ER] ·Pr[Ch1 ∧ CG1] ·Pr[H-ER], (8)

and,

Pr[D-ER ∧ ¬E-ER ∧ ¬H-ER ∧ ¬S-ER ∧ Ch2 ∧ CG2]

= Pr[D-ER] ·Pr[¬E-ER ∧ ¬H-ER ∧ ¬S-ER] ·Pr[Ch2 ∧ CG2]. (9)

Note that, in the event ¬E-ER∧¬H-ER∧¬S-ER, the adversary A is run by B in
exactly the same way that it would be run in a real attack until the event D-ER

occurs. Moreover, in the event ¬E-ER ∧ ¬H-ER ∧ ¬S-ER, A winning and D-ER

are equivalent. This means that (9) becomes

Pr[D-ER ∧ ¬E-ER ∧ ¬H-ER ∧ ¬S-ER ∧ Ch2 ∧ CG2]

= ε ·Pr[¬E-ER ∧ ¬S-ER] ·Pr[Ch2 ∧ CG2] ·Pr[¬H-ER]. (10)

From the definitions of Ch1, CG1, Ch2 and CG2 above it is clear that

Pr[Ch1 ∧ CG1] =
qs

qs + qd
·

1

qs(q2 + qs)
=

1

(qs + qd)(q2 + qs)
and (11)

Pr[Ch2 ∧ CG2] =
qd

qs + qd
·

1

qd(q2 + qs)
=

1

(qs + qd)(q2 + qs)
. (12)

Note that we are assuming a worst case scenario here i.e. |Ls| = qs and |Ld| = qd.
We will make this assumption throughout the remaining analysis without further
comment. ¿From the fact that Pr[H-ER] + Pr[¬H-ER] = 1, (7), (8), (10), (11)
and (12) we have

Adv[B] ≥ (Pr[H-ER] + ε ·Pr[¬H-ER]) ·Pr[¬E-ER ∧ ¬S-ER] ·
1

(qs + qd)(q2 + qs)

≥ ε · (Pr[H-ER] + Pr[¬H-ER]) ·Pr[¬E-ER ∧ ¬S-ER] ·
1

(qs + qd)(q2 + qs)

= ε ·Pr[¬E-ER ∧ ¬S-ER] ·
1

(qs + qd)(q2 + qs)
. (13)

Finally, by the independence of E-ER and S-ER, using (3), (6) and (13) we have

Adv[B] ≥ ε ·

(

1−
qs(q1 + q2 + 2qs)

q

)

·
1

q0(q0 − 1)(qs + qd)(q2 + qs)
. (14)

ut
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Message Confidentiality

Theorem 2 describes the security of our scheme under Definition 2. We provide
a proof in the full version of the paper[8].

Theorem 2. If there is an IND-IBSC-CCA2 adversary A of IBSC that succeeds

with probability ε, then there is a simulator B running in polynomial time that

solves the BDH problem with probability at least

ε ·

(

1−
qs(q1 + qs)

q

)

·
1

q0q2

.

Signature Non-Repudiation

In Theorem 3 we state the security result for our scheme under Definition 3. The
proof will be found in the full version of the paper[8].

Theorem 3. If there is an EUF-IBSC-CMA adversary A of IBSC that succeeds

with probability ε, then there is a simulator B running in polynomial time that

solves the BDH problem with probability at least

ε ·

(

1−
qs(q1 + qs)

q

)2

·
1

4q2
0(q1 + qs)2

.

Ciphertext Anonymity

Our final security result is Theorem 4. This deals with security under Defini-
tion 4. The proof appears in the full version of the paper[8].

Theorem 4. If there is an ANON-IBSC-CCA2 adversary A of IBSC that suc-

ceeds with probability ε, then there is a simulator B running in polynomial time

that solves the BDH problem with probability at least

ε ·

(

1−
qs(q1 + q2 + 2qs)

q

)

·
1

q0(q0 − 1)(2 + qs)(q2 + qs)
.

6 Performance and Security Comparison

We compare our scheme with other schemes appearing in the literature in Ta-
ble 1. We assume that all schemes are implemented with the same G1, G2, ê and
q as defined in Section 4.

The 1, 2, 3 and 4 in the “security” column refer to security under Definition 1,
2, 3 and 4 respectively. A y means that the scheme provably meets the definition,
a n means that the scheme is not secure under the definition, and a ? means
that the status is unknown.

In the “ciphertext size” column we let n1 be the number of bits required to
represent an element of G1, nq be the number of bits required to represent an
element of Fq, nid be the number of bits required to represent an identity, and
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scheme security ciphertext size sign/encrypt ops. decrypt/verify ops.
1 2 3 4 G1 G2 ê G1 G2 ê

[6] y y y y 2n1 + nid + m 3 1 1 2 0 4

[11] ? y y n n1 + nq + m 2 2 2 0 2 4

[13] y n y n 2n1 + m 3 0 1 0 1 4

[14] ? ? ? n 3n1 + m 3 1 0 1 0 2

[15] ? ? ? n 2n1 + m 2 1 1 0 1 3

[19] ? y y ? 2n1 + nid + m 4 0 1 1 0 3

ours y y y y 2n1 + nid + m 3 0 1 1 0 3

Table 1. A comparison between various schemes in the literature

m be the number of bits in the message being signcrypted. The ciphertext size
is therefore measured in bits.

In the “sign/encrypt ops.” and “decrypt/verify ops.” columns, the sub-columns
G1, G2 and ê hold the number of multiplications in G1, exponentiations in G2

and computations of ê respectively.

Note that the scheme in [14] has a slight computational overhead for comput-
ing public keys when compared to the other schemes we have mentioned. This
is not reflected in the table above.

7 Conclusions

We have proposed an identity-based signcryption scheme that is the most ef-
ficient among the provably secure schemes of its type proposed to date. Our
scheme admits a full security analysis in the model of Boyen [6].

Our security analysis, like the security analysis for all provably secure identity-
based signcryption schemes, requires the random oracle model [3]. Techniques
have recently been developed for designing identity-based encryption schemes
with provable security in the standard model [4]. It would be interesting to know
if these, or other, techniques can be applied to identity based signcryption.
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