
From Fixed-Length to Arbitrary-Length RSA

Encoding Schemes Revisited

Julien Cathalo1, Jean-Sébastien Coron2, and David Naccache2,3

1 UCL Crypto Group
Place du Levant 3, Louvain-la-Neuve, B-1348, Belgium

cathalo@dice.ucl.ac.be
2 Gemplus Card International

34 rue Guynemer, 92447 Issy-les-Moulineaux, France
{jean-sebastien.coron, david.naccache}@gemplus.com

3 Royal Holloway, University of London
Information Security Group

Egham, Surrey TW20 0EX, UK
david.naccache@rhul.ac.uk

Abstract. To sign with RSA, one usually encodes the message m as
µ(m) and then raises the result to the private exponent modulo N . In
Asiacrypt 2000, Coron et al. showed how to build a secure RSA encoding
scheme µ′(m) for signing arbitrarily long messages from a secure encod-
ing scheme µ(m) capable of handling only fixed-size messages, without
making any additional assumptions. However, their construction required
that the input size of µ be larger than the modulus size. In this paper
we present a construction for which the input size of µ does not have to
be larger than N . Our construction shows that the difficulty in building
a secure encoding for RSA signatures is not in handling messages of ar-
bitrary length, but rather in finding a secure encoding function for short
messages, which remains an open problem in the standard model.

1 Introduction

A common practice for signing with RSA is to first apply some encoding function
µ to the message m, and then raise the result to the signature exponent modulo
N . This is the basis of numerous standards such as iso/iec-9796-1 [7], iso
9796-2 [8] and pkcs#1 v2.0 [11].

For digital signature schemes, the strongest security notion was defined by
Goldwasser, Micali and Rivest in [6], as existential unforgeability under an adap-

tive chosen message attack. This notion captures the property that an attacker
cannot produce a valid signature, even after obtaining the signature of (polyno-
mially many) messages of his choice.

Many RSA encoding schemes have been designed and many have been broken
(see [9] for a survey). The Full Domain Hash (FDH) scheme and the Probabilistic
Signature Scheme (PSS) [3] were among the first practical and provably secure
RSA signature schemes. Those schemes are provably secure in the random oracle

Fixed to Arbitrary-Length RSA Revisited 237

model [2], wherein the hash function is assumed to behave as a truly random
function. However, security proofs in the random oracle model are not “real”
proofs, and can be only considered as heuristic, since in the real world random
oracles are necessarily replaced by functions which can be computed by all par-
ties. A famous result by Canneti, Goldreich and Halevi [4] shows that a security
proof in the random oracle model does not necessarily imply security in the “real
world”.

In this paper, we focus on the problem of finding a secure encoding scheme for
arbitrarily long messages, given a secure encoding scheme for fixed-size messages.
It is well known that this can be done using a collision-resistant hash function
H : {0, 1}∗ → {0, 1}` for both signing and verifying, where ` is the input size
of µ(m). A standard argument shows that if the original signature scheme is
secure against existential forgery under a chosen-message attack, then so is the
signature scheme with the hash.

In Asiacrypt 2000, Coron, Koeune and Naccache [5] showed that for RSA
signatures, the same result can be obtained without assuming the existence of
collision-resistant hash-functions. Namely, they construct an encoding scheme
µ′(m) for messages in {0, 1}∗, given an encoding scheme µ(m) for messages of
fixed-size. They show that if RSA signature with µ(m) is secure against existen-
tial forgery under a chosen-message attack (in the standard model), then so is
RSA with µ′(m) for messages of arbitrary size, without any additional assump-
tions.

However, their construction requires that the input size ` of µ(m) be larger
than the size of N (hereafter denoted k). Several standards (for example the
ISO/IEC 9796-1 standard [7]) fail to comply with this property. The authors
left as an open problem the case ` ≤ k.

In this paper, we solve this open problem and provide a construction for any
input size `. A variant of this problem was already solved by Arboit and Robert
in [1], who proposed a construction similar to [5] that works for any `, but at
the cost of a new security assumption, namely the division intractability of the
encoding function µ(m). The advantage of our construction is that we do not
make any additional assumptions, namely if RSA signature with µ(m) is secure
against existential forgery under a chosen-message attack, then so is RSA with
µ′(m) for messages of arbitrary size. As is the case for the constructions in [5]
and [1], a practical advantage of our construction is that it allows to perform
some pre-computations on partially received messages, e.g. on IP packets which
are typically received in random order.

We believe that our result focuses more sharply the question of finding a
secure encoding for RSA signatures, by showing that the difficulty is not in
handling messages of arbitrary length, but rather in finding a securing encoding
for short messages, which remains an open problem in the standard model.

238 Julien Cathalo, Jean-Sébastien Coron, and David Naccache

2 Definitions

2.1 Signature Schemes

The digital signature of a message m is a string that depends on m and on some
secret known only to the signer, in such a way that anyone can check the validity
of the signature. The following definitions are based on [6].

Definition 1 (Signature scheme). A signature scheme is defined by the fol-

lowing:

– The key generation algorithm Generate is a probabilistic algorithm which

given 1k, outputs a pair of matching public and secret keys, (pk, sk).

– The signing algorithm Sign takes the message M to be signed and the secret

key sk and returns a signature x = Signsk(M). The signing algorithm may

be probabilistic.

– The verification algorithm Verify takes a message M , a candidate signature

x′ and the public key pk. It returns a bit Verifypk(M, x′), equal to one if the

signature is accepted, and zero otherwise. We require that if x← Signsk(M),
then Verifypk(M, x) = 1.

2.2 Security of Signature Schemes

The security of signature schemes was formalized in an asymptotic setting by
Goldwasser, Micali and Rivest [6]. Here we use the definitions of [3] which pro-
vide a framework for the concrete security analysis of digital signatures. Re-
sistance against adaptive chosen-message attacks is considered: a forger F can
dynamically obtain signatures of messages of its choice and attempt to output
a valid forgery. A valid forgery is a message/signature pair (M, x) such that
Verifypk(M, x) = 1 whilst the signature of M was never requested by F .

Definition 2. A forger F is said to (t, qsig , ε)-break the signature scheme (Gene-
rate, Sign, Verify) if after at most qsig(k) signature queries and t(k) processing

time, it outputs a valid forgery with probability at least ε(k) for any k > 0.

Definition 3. A signature scheme (Generate, Sign, Verify) is (t, qsig , ε)-secure

if there is no forger who (t, qsig , ε)-breaks the scheme.

2.3 The RSA Primitive

RSA [10] is the most widely used public-key cryptosystem. It can be used to
provide both encryption schemes and digital signatures.

Definition 4 (The RSA cryptosystem). RSA is a family of trapdoor per-

mutations. It is specified by:

Fixed to Arbitrary-Length RSA Revisited 239

– The RSA generator RSA, which on input 1k, randomly selects two distinct

k/2-bit primes p and q and computes the modulus N = p · q. It randomly

picks an encryption exponent e ∈ Z
∗
φ(N) and computes the corresponding

decryption exponent d such that e · d = 1 mod φ(N). The generator returns

{N, e, d}.

– The encryption function f : Z
∗
N → Z

∗
N defined by f(x) = xe mod N .

– The decryption function f−1 : Z
∗
N → Z

∗
N defined by f−1(y) = yd mod N .

2.4 RSA Encoding and Signature

Let µ be a encoding function taking as input a message of size ` bits and returning
a k-bit integer. We consider in figure 1 the classical RSA signature scheme which
signs fixed-length `-bits messages.

System parameters
- two integers k > 0 and ` > 0
- a function µ : {0, 1}` → {0, 1}k

Key generation: Generate

- (N, e, d)← RSA(1k)
- public key : (N, e)
- private key : (N, d)

Signature generation: Sign

- let y ← µ(m)
- return yd mod N

Signature verification: Verify

- let y ← xe mod N
- let y′ ← µ(m)
- if y = y′ then return one else return zero.

Fig. 1. The Classical RSA Paradigm: Using µ for Signing Fixed-Length Messages.

3 The Coron-Koeune-Naccache Construction

We recall in figure 2 the construction proposed in [5]. It assumes that the encod-
ing function µ can handle inputs of size k + 1 where k is the size of the modulus
and allows to sign 2a ·(k−a) bit messages where 0 ≤ a ≤ k−1. The construction
can be recursively iterated to sign messages of arbitrary length. Throughout this
paper, m1||m2 will denote the concatenation of m1 and m2.

It is shown in [5] that the scheme described in figure 2 is secure against
existential forgery under a chosen message attack :

240 Julien Cathalo, Jean-Sébastien Coron, and David Naccache

System parameters

- two integers k > 0 and a ∈ [0, k − 1]
- a function µ : {0, 1}k+1 → {0, 1}k

Key generation: Generate∗

- (N, e, d)← RSA(1k)
- public key : (N, e)
- private key : (N, d)

Signature generation: Sign∗

- Split the message m into (k − a)-bit blocks
such that m = m[1]|| . . . ||m[r].

- let α =
r
∏

i=1

µ(0||i||m[i]) mod N

where i in 0||i||m[i] is an a-bit string representing i.
- let y ← µ(1||α)
- return yd mod N

Verification: Verify∗

- let y ← xe mod N

- let α =
r
∏

i=1

µ(0||i||m[i]) mod N

- let y′ ← µ(1||α)
- if y = y′ then return one else return zero.

Fig. 2. Coron-Koeune-Naccache Encoding of Arbitrary Length Messages.

Theorem 1. If the signature scheme (Generate, Sign, Verify) is (t, qsig , ε) secure,

then the signature scheme (Generate*, Sign*, Verify*) which signs 2a · (k− a) bit

messages is (t∗, q∗sig , ε
∗) secure, where:

t∗(k) = t(k)− 2a · qsig(k) · O(k2) , (1)

q∗sig(k) = qsig(k)− 2a+1 , (2)

ε∗(k) = ε(k) . (3)

4 Bimodular Encoding

The drawback of the previous construction is that the the input size ` of µ(m)
needs to be larger than the size of the modulus N . In this section, we describe a
construction wherein the input size ` of the encoding function µ does not need
larger than k. We denote by `(k) the input size of the encoding function µ as a
function of the security parameter k. In the following, we assume that `(k) is an
increasing function of k. For example, for the ISO/IEC 9796-1 standard [7], we
have `(k) ' k/2.

The new signature scheme (Generate’, Sign’, Verify’) is described in figure 3.
The new signature scheme is parameterized by two security parameters k1, k2

Fixed to Arbitrary-Length RSA Revisited 241

System parameters

- two positive integers k1, k2 such that k2 > k1

- an integer a ∈ [0, k1 − 1]
- two functions µi : {0, 1}`i → {0, 1}ki for i = 1, 2
such that `2 ≥ k1.

Key generation: Generate′

- (N1, e1, d1)← RSA(1k1)
- (N2, e2, d2)← RSA(1k2)
- public key : (N1, N2, e2)
- private key : (N1, N2, d2)

Signature generation: Sign′

- Split the message m into (`1 − a)-bit blocks
such that m = m[1]|| . . . ||m[r].

- let α =
r
∏

i=1

µ1(i||m[i]) mod N1

where i in i||m[i] is an a-bit string representing i.
- let y ← µ2(α)
- return yd2 mod N2

Verification: Verify′

- y ← xe2 mod N2

- let α =
r
∏

i=1

µ1(i||m[i]) mod N1

- let y′ ← µ2(α)
- if y = y′ then return one else return zero.

Fig. 3. Bimodular Encoding of Arbitrary Length Messages.

such that k1 < k2. As the previous construction, it is a deterministic signature
scheme. The construction uses the same encoding function µ with two distinct
moduli N1 and N2 of sizes k1 and k2 bits, respectively. For the sake of clarity
and since encoding functions take the modulus as a parameter, we will write
µi when µ is used with modulus Ni. We denote by `1 = `(k1), `2 = `(k2) the
input sizes of µ1, µ2 respectively. Our construction requires that `2 ≥ k1. Since
by assumption `(k) is an increasing function of k, this means that a sufficiently
large security parameter k2 must be selected in order to have `2 = `(k2) ≥ k1

Our construction enables to sign 2a·(`1−a) bit messages where 0 ≤ a ≤ `1−1.
The maximum length that can be handled by the new construction is therefore
2`1−1 bits for a = `1 − 1 or a = `1 − 2 and, as in [5], the construction can be
recursively iterated so as to sign arbitrarily long messages.

A possible realization example is the following: assume that we are given
an encoding function µ that takes as input k/2-bit messages and outputs k-bit
strings, for signing with a k-bit RSA modulus. If we take for example k1 = 1024,
k2 = 2048 and a = 24, then messages of size up to 224 · 488 ' 8.2 · 109 bits can

242 Julien Cathalo, Jean-Sébastien Coron, and David Naccache

be signed. First, one applies the encoding function µ1 : {0, 1}512 → {0, 1}1024

to the 224 blocks of 488 bits; then one multiplies together the resulting 1024-bit
integers modulo N1 and obtains a 1024-bit integer which is finally signed using
the encoding function µ2 : {0, 1}1024 → {0, 1}2048 modulo N2. Notice that d1 is
not used for signing and e1 is not needed for the verification either; thus (e1, d1)
is to be deleted after the generation of N1.

The following theorem states that this construction preserves the resistance
against chosen message attacks of the original signature scheme:

Theorem 2. If the signature scheme (Generate, Sign, Verify) is (t, qsig , ε) secure,

then the signature scheme (Generate’, Sign’, Verify’) which signs 2a · (`1 − a) bit

messages is (t′, q′sig , ε′) secure, where:

t′(k1, k2) = t(k1)− q′sig · 2
a ·

(

Tµ(k2) +O(k2
3)

)

, (4)

q′sig(k1, k2) = qsig(k1)− 2a+1 , (5)

ε′(k1, k2) = 4 · ε(k1) . (6)

and Tµ(k2) is the time required to compute µ(m) for security parameter k2.

Proof. Without loss of generality, we can assume that t(k), qsig(k) and Tµ(k)
are increasing functions of k, and that ε(k) is a decreasing function of k.

Let F ′ be a forger that breaks the signature scheme (Generate’, Sign’, Verify’)
for the parameters (k1, k2). We construct a forger F1 for the signature scheme
(Generate, Sign, Verify) for the parameter k = k1 and a forger F2 for same
signature scheme with parameter k = k2. When the same property holds for
both F1 and F2, we write this property for a generic forger F . The forger F will
run F ′ in order to produce a forgery; it will answer the signature queries of F ′

by itself. F has access to a signing oracle S for (Generate, Sign, Verify) .
First, we pick a random bit b. If b = 1, we construct a forger F1 for the

parameter k = k1. If b = 0, we construct a forger F2 for the parameter k = k2.
F is first given as input (N, e) where N, e were obtained by running Generate

for the parameter k defined previously. The forger F then starts running F ′ with
the public key (N1, N2, e2), where N1, N2, e2 are defined as follows :

If b = 1, the forger F1 sets N1 ← N , e1 ← e and runs RSA(1k2) to obtain
(N2, e2, d2). Otherwise (if b = 0) the forger F2 sets N2 ← N , e2 ← e and runs
RSA(1k1) to obtain (N1, e1, d1).

We observe that the view of the forger F ′ in independent of the bit b, since in
both cases the moduli N1 and N2 are generated using RSA(1k1) and RSA(1k2),
either by F itself or through (N, e) given as input to F .

When F ′ asks the signature of the j-th message mj with mj = mj [1]|| . . . ||
mj [rj], F computes:

αj =

rj
∏

i=1

µ1(i||mj [i]) mod N1

If b = 0 then F2 requests the signature sj of αj from S. If b = 1 then F1 can
compute sj = µ2(αj)

d2 mod N2 directly since it knows d2. Let q′sig be the total
number of signatures requested by F ′.

Fixed to Arbitrary-Length RSA Revisited 243

Eventually F ′ outputs a forgery (m′, s′) for the signature scheme (Generate’,

Sign’, Verify’) with m′ = m′[1]|| . . . ||m′[r′], from which F computes:

α′ =

r′

∏

i=1

µ1(i||m
′[i]) mod N1 (7)

We denote by β the probability that α′ /∈ {α1, . . . , αq}. Note that since the view
of F ′ is independent of b, this event is independent of b as well. We distinguish
three cases:

First case: α′ /∈ {α1, . . . , αq} and b = 0. From the remark above, this
happens with probability β/2. In which case F2 outputs the forgery (α′, s′) and
halts. This is a valid forgery for the signature scheme (Generate, Sign, Verify)
since s′ = µ2(α

′)d2 mod N2 and the signature of α′ was never asked to the
signing oracle S.

Second case: α′ ∈ {α1, . . . , αq} and b = 1. This happens with probability
(1 − β)/2. Let c be such that α = αc. We write m = mc, α = αc and r = rc,
which gives using (7) :

r′

∏

i=1

µ1(i||m
′[i]) mod N1 =

r
∏

i=1

µ1(i||m[i]) mod N1 (8)

We show that the previous equation leads to a multiplicative forgery for the
modulus N1 = N , which enables F1 to compute a forgery.

First, the message m′ must be distinct from m because the signature of m
has been requested by F ′ whereas the signature of m′ was never requested by
F , since m′ is the message for which a forgery was obtained. Consequently there
exists an integer j such that either :

j||m′[j] /∈ {1||m[1], . . . , r||m[r]} (9)

or :
j||m[j] /∈ {1||m′[1], . . . , r′||m′[r′]} (10)

We assume that condition (9) is satisfied (condition (10) leads to the same re-
sult). Therefore from (8) we can write :

µ(j||m′[j]) =
(

∏

i

µ(i||m[i]
)(

∏

i6=j

µ(i||m′[i])
)−1

mod N1 (11)

Consequently, F1 asks the signing oracle S for the signatures xi of the messages
i||m[i], 1 ≤ i ≤ r, and for the signatures x′

i of the messages i||m′[i], 1 ≤ i ≤ r′,
i 6= j. Using (11), F1 can compute the signature of j||m′[j] from the other
signatures :

x′
j = µ(j||m′[j])d1 =

(

∏

i

xi

)(

∏

i6=j

x′
i

)−1

mod N1

244 Julien Cathalo, Jean-Sébastien Coron, and David Naccache

and F1 finally outputs the forgery (j||m′[j], x′
j). This is a valid forgery for the

signature scheme (Generate, Sign, Verify) since the signature of j||m′[j] was never
asked to the signing oracle.

Third case: α′ /∈ {α1, . . . , αq} and b = 1, or α′ ∈ {α1, . . . , αq} and b = 0. In
this case, F fails. This happens with probability 1/2.

To summarize, from a forger F ′ that breaks the signature scheme (Generate’,
Sign’, Verify’) with probability ε′(k1, k2) for the parameters (k1, k2), we construct
a forger F that breaks the signature scheme (Generate, Sign, Verify) with prob-
ability ε′ · β/2 for the parameter k2, and with probability ε′ · (1− β)/2 for the
parameter k1, for some (unknown) β.

Therefore, if we assume that the signature scheme (Generate, Sign, Verify)
cannot be broken in time t(k) with probability greater than ε(k) for all k, we
must have :

ε′(k1, k2) · β/2 ≤ ε(k2)

and

ε′(k1, k2) · (1− β)/2 ≤ ε(k1)

which implies using ε(k2) ≤ ε(k1) that :

ε′(k1, k2) ≤ 4 · ε(k1)

which gives (6).

If b = 0, then for each of the q′sig queries of F ′, the forger F2 makes at most
2a multiplications modulo N1 and one query to S. Thus F2 runs in time

t(k2) = t′(k1, k2) + q′sig · 2
a ·

(

Tµ(k1) +O(k1
2)

)

(12)

If b = 1 then for each query of F ′, the forger F1 makes at most 2a multiplications
modulo N1 and one exponentiation modulo N2. After it has received the forgery,
it makes at most 2a+1 multiplications modulo N1 to compute its own forgery.
Thus F1 runs in time :

t(k1) = t′(k1, k2) + q′sig ·
(

2a ·
(

Tµ(k1) +O(k1
2)

)

+ Tµ(k2) +O(k2
3)

)

(13)

From inequalities (12) and (13), and using t(k1) ≤ t(k2) and Tµ(k1) ≤ Tµ(k2)
we obtain (4).

Finally, the forger F2 makes at most q′sig queries to the signing oracle, and the

forger F1 makes at most 2a+1 queries to the signing oracle. This gives qsig(k2) ≤
q′sig(k1, k2) and qsig(k1) ≤ 2a+1. Using qsig(k1) ≤ qsig(k2), we obtain

qsig(k1) ≤ 2a+1 + q′sig(k1, k2),

which gives (5). ut

Fixed to Arbitrary-Length RSA Revisited 245

5 Conclusion

In this paper, we showed how to construct a secure RSA encoding scheme for
signing arbitrarily long messages, given any secure encoding scheme for signing
fixed-size messages. This solves a problem left open by Coron et al. in [5]. We
believe that our work focuses the question of finding a secure encoding for RSA
signatures, by showing that the difficulty in building secure encoding schemes
for RSA is not in handling messages of arbitrary length, but rather in finding a
secure redundancy function for short messages, which remains an open problem
in the standard model.

References

1. G. Arboit and J.M. Robert, From Fixed-Length to Arbitrary-Length Messages
Practical RSA Signature Padding Schemes, in LNCS 2020 – Topics in Cryptology
CT-RSA 2001, Springer-Verlag, p. 44-51.

2. M. Bellare and P. Rogaway, Random oracles are practical : a paradigm for designing
efficient protocols, proceedings of the First Annual Conference on Computer and
Commmunications Security, ACM, 1993.

3. M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin, proceedings of Eurocrypt’96, LNCS vol. 1070, Springer-
Verlag, 1996, pp. 399-416.

4. R. Canetti, O. Goldreich and S. Halevi, The Random Oracle Methodology, Revis-
ited, STOC ’98, ACM, 1998.

5. J.S. Coron, F. Koeune, D. Naccache, From fixed-length to arbitrary-length RSA
padding schemes, Proceedings of Asiacrypt 2000, LNCS vol. 1976, Springer-Verlag,
2000.

6. S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against
adaptive chosen-message attacks, SIAM Journal of computing, 17(2):281-308, april
1988.

7. ISO/IEC 9796, Information technology - Security techniques - Digital signature
scheme giving message recovery, Part 1 : Mechanisms using redundancy, 1999.

8. ISO/IEC 9796-2, Information technology - Security techniques - Digital signature
scheme giving message recovery, Part 2 : Mechanisms using a hash-function, 1997

9. J.F. Misarsky, How (not) to design signature schemes, proceedings of PKC’98,
Lecture Notes in Computer Science vol. 1431, Springer Verlag, 1998.

10. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures
and public key cryptosystems, CACM 21, 1978.

11. RSA Laboratories, pkcs #1 : RSA cryptography specifications, version 2.0,
September 1998.

