Breaking a Cryptographic Protocol with
Pseudoprimes

Daniel Bleichenbacher

Bell Labs, Lucent Technologies

Abstract. The Miller-Rabin pseudo primality test is widely used in
cryptographic libraries, because of its apparent simplicity. But the test is
not always correctly implemented. For example the pseudo primality test
in GNU Crypto 1.1.0 uses a fixed set of bases. This paper shows how this
flaw can be exploited to break the SRP implementation in GNU Crypto.
The attack is demonstrated by explicitly constructing pseudoprimes that
satisfy the parameter checks in SRP and that allow a dictionary attack.
This dictionary attack would not be possible if the pseudo primality test
were correctly implemented.

Often important details are overlooked in implementations of cryptographic
protocols until specific attacks have been demonstrated. The goal of the paper
is to demonstrate the need to implement pseudo primality tests carefully. This
is done by describing a concrete attack against GNU Crypto 1.1.0. The pseudo
primality test of this library is incorrect. It performs a trial division and a Miller-
Rabin test with a fixed set of bases. Because the bases are known in advance an
attacker can find composite numbers that pass the primality test with probabil-
ity 1. A protocol implemented in GNU Crypto that requires a reliable primality
test is SRP. The security of SRP depends on a group for which computing DL
is hard. In SRP the server chooses the group parameters and sends them to the
client. It is then important that the client verifies that computing DLs in the
chosen group is indeed hard. Otherwise, the client could expose his password to
a dictionary attack. This paper shows that the flaw in the GNU Crypto primal-
ity test indeed weakens the SRP implementation by explicitly constructing weak
parameters for SRP. The weakness would not exist if a reliable primality test
were implemented.

1 The Miller-Rabin pseudo primality test.

A well-known Theorem by Fermat states that if n is a prime and b is coprime
to n then
" '=1 (mod n) (1)

Hence if Equation (1) is not satisfied for a pair (b,n) that is coprime then n is
composite. Unfortunately, there also exist pairs (b,n) that satisfy Equation (1),
but where n is composite. Composite numbers n that satisfy Equation (1) for all



Breaking a Cryptographic Protocol with Pseudoprimes 11

b coprime to n are called Carmichael numbers. Korselt proposed the following
criterion for such numbers [7].

Korselt’s criterion. A composite number n is a Carmichael number if and
only if n is squarefree and all prime divisors p of n satisfy

p—1n—1.

Because of the existence of Carmichael numbers [4] Equation (1) alone cannot
be used to distinguish composites from primes. Miller and Rabin proposed a
stronger test based on the following observation. Let n be an odd integer and
write n = u2¥ + 1 with v odd. Then for every odd prime n and every base
1 < b < n one of the following two conditions is satisfied:

b* =1 (mod n) (2)
or there exists 0 < i < v such that
S | (mod n) (3)

A composite n is called a strong pseudoprime for the base b if one of the condi-
tions is satisfied. Rabin showed that if n is composite n is a strong pseudoprime
for less than n/4 bases b € [2,n — 1] [10]. Thus any composite number n can
be recognized as composite with probability at least 1 — (1/4)* by selecting k
random bases and testing whether n fails the test for at least one base.

Damgard, Landrock, and Pomerance prove a bound much lower than (1/4)"
on the average probability that a composite number passes a Miller-Rabin test
with & bases [5]. This result, however, cannot be applied in cryptographic proto-
cols for a parameter verification. If a party has to verify that a received integer is
prime, then the party should assume the worst case, i.e., that the integer might
have been chosen to maximize the probability of passing a Miller-Rabin test.

2 SRP

GNU Crypto implements SRP-6 [11]. The goal of the SRP protocol is to avoid
offline dictionary attacks and thus increase the security of password based au-
thentications in the case that the clients password has not much entropy. In
particular, a server that does not know the clients password or a value v, which
is derived from it should only be able to confirm or reject one password guess
per login. This section reviews one version of the SRP protocol and describes
why it is important that the client performs a proper parameter verification in
step 2.



12 Daniel Bleichenbacher

Client Server
1. 1, (lookup s,v, g, N)
2. (verify g, N) pLing

x=H(s,I,P)
3. (choose random a) (choose random b)
4. A = g® mod N i>B=3v—&—gbmodN
5.u=H(A, B) £ w=H(A,B)
6. S = (B —3¢")*T"" mod N S = (Av*)® mod N
7. M, = H(A, B, S) M (verify M)
8. (verify My) A2 6, = H(A, My, S)
9. K = H(S) K = H(S)

In step 1 the client sends its identity I to the server and the server looks up the
corresponding values s, v, g, N, where s is a salt value, g is a generator of ZZ /(N)*
and v is encryption of the clients password defined by v = ¢g"(:1:F) mod N.

In step 2 s and optional g and N are sent to the client. The client must verify
that N is a strong prime > 252 i.e. N and (N — 1)/2 are both prime and that
g has order N — 1 in ZZ/(N)*.

In step 3 both client and server choose some random values a and b respec-
tively and derive two values A and B, which are then exchanged in step 4 and
5. Both server and client can now compute a mutual secret S. This value S is
subsequently used for a mutual authentication in step 7 and 8.

An outsider, or even a malicious server not knowing v should not be able to
verify the correctness of a guessed password P from the values observed during
a protocol run.

Attacking SRP with bogus parameters. MacKenzie noticed that Tom Wu’s SRP
implementations before version 1.6.0 are susceptible to an offline dictionary at-
tack [8]. In particular, MacKenzie noticed that while the SRP documentation
requires that N and (IV — 1)/2 are primes the implementation does not perform
any primality checks when a client receives new parameters from a server. But
these checks are crucial for the protocol.

If an attacker posing as a server is able to submit parameters g, N, such that
computing the discrete logarithm of ¢g* mod N is computable then the following
attack is possible.



Breaking a Cryptographic Protocol with Pseudoprimes 13

Client Attacker
. 1, (select s, g, N)

2. (verify g, N) pLing

x =H(s, I, P)
3. (choose random a)
4. A=g"mod N A, (choose any B)
5.u=H(A, B) £ w=H(A,B)
6.5 = (B —3¢")*""" mod N
7. M, = H(A, B, S) M, (abort)

Hence after aborting the protocol in step 7 the attacker has now enough in-
formation for an offline dictionary attack. SRP was designed to prevent such
attacks. From the assumption that DLs mod N are computable follows that the
server can compute a such that ¢g* = A mod N. Now, the attacker can perform
an offline dictionary attack by first guessing P’, computing 2’ = H(s, I, P) and
S" = (B — 3¢%)*T% mod N. Finally if H(A, B,S’) equals M; then P’ is likely
the client’s password.

3 GNU Crypto

An analysis of the primality test in GNU Crypto 1.1.0 shows a serious flaw.
The primality test, first performs a trial division test and then calls the routine
gnu.util.prime.passEulerCriterion. This routine is a Miller-Rabin with the
primes up to 41 as bases. Since the bases are fixed it is possible to find counter
examples that pass the test with probability 1.

4 Constructing pseudoprimes

Requirements. Composite numbers that pass the GNU Crypto 1.1.0 primality
test are well known. For example Arnault has previously constructed a composite
337 digit number that is a strong pseudoprime for the 200 smallest prime bases
[3]. The construction that Arnault used generates integers that are the product of
a small (i.e. 2 or 3) number of large primes. While these number would incorrectly
pass the parameter checks they cannot be used to break SRP.

The goal of this paper is to find parameters that pass the checks for the SRP
in GNU Cryptos implementation and allow a server to find a users password. This
requires to construct a triple (g, N, ¢) such that computing discrete logarithms
of g% (mod N) is easy, N = 2¢g + 1 > 2512, both N and ¢ pass the primality
test, N > 252 and g = —1 (mod N).

The construction given in this paper constructs ¢ such that it is the product
of small primes. Then computing DLs modulo NV = 2¢ + 1 is easy, because the
algorithm by Pohlig and Hellman [9] can be applied.



14 Daniel Bleichenbacher

Description of the method. The method used here is based on an idea by Erdos [6]
to estimate the distribution of Carmichael numbers. Erdos suggested to construct
Carmichael numbers as follows. First choose an even integer M that has many
divisors. Let R be the set of primes r such that » — 1 is a divisor of M. If a
subset 7' C R can be found such that

C’:HTEI (mod M), (4)

reT

then C' is a Carmichael number, because C satisfies Korselt’s criterion. One can
hope to find such sets T' if R contains more than about log, M primes.

Erdos estimates were only heuristic. But Alford, Granville and Pomerance
extended his idea and were able to prove that there exist infinitively many
Carmichael numbers [2]. The main difficulty of this proof was to show that
for suitably chosen integers M the corresponding set of primes R is large enough
to guarantee that Equation 4 can be solved for a subset T' C R.

Additionally, a Carmichael number C' is a strong pseudoprime for a base b if
the order of b modulo 7 is divisible by the same power of 2 for all primes factors
r of C. If all prime factors r are congruent 3 modulo 4 then this condition is
satisfied when b is a quadratic residue modulo either all prime factors r or none
at all, because in that case the order of b modulo r is either even or odd for all
r. In particular, it is possible to construct a Carmichael number that is strong
pseudoprime for a set of bases B as follows: Choose a suitable integer M. Then
find a set R of primes, such that for all bases b; € B there exists ¢; € {—1,1}
with (b?) = ¢; for all » € R. Finally, find a subset T" C R can be found that
satisfies Equation 4.

The results by Alford, Granville and Pomerance are strong enough to show
that even under these restrictions large enough sets R can be found. In particular,
they showed the existence of infinitively many counter examples to a Miller-
Rabin test with a fixed set of bases [1].

To pass the parameter checks in GNU Crypto the pseudoprime C needs
the additional property that 2C' 4 1 is prime or pseudoprime. Because of this
additional property it appears difficult to prove the existence of counter examples
for arbitrary sets of bases.

However, the goal of this paper is to construct a pseudoprime for a given set
of bases only, i.e. the set B = {2,3,5,7,11,13,17,19,23,29, 31, 37,41} that is
used in GNU Crypto. To do so let

M=2-52.72.112.13-17-19-23-29-31-37-41 - 61.
Next a set R of all integers r satisfying

256 < 1 < 250,
r—1| M,

r is prime,

<E> =g¢; forall 1 <i<13,
r



Breaking a Cryptographic Protocol with Pseudoprimes 15

where the pairs (b;, ¢;) are defined as follows:

12345 6 7 8 910111213
b;|2 357 111317192329 313741
cgi-111-1-111-1-11-111

.

The values ¢; should are chosen in such a way that (%) = ¢; is possible for
primes r =1 (mod b;). The set R can be found efficiently, by first constructing
all divisors d of M and checking if r = d + 1 satisfies the remaining conditions.

The set of integers satisfying all these conditions contains 64 primes R =
{r1,...764}. Next find subsets ' C R with at least 2 elements satisfying Equa-
tion 4, i.e., [[,cpr =1 (mod M). These subsets 7" can be found using a meet-
in-the-middle approach. I.e., R is divided into two distinct subsets R; and Rs.
The values (]_[TGT1 r)_l mod M are precomputed for all 77 C R; and stored in a
table. Then for all 75 C Ry the value ]_[TET2 r mod M is computed. If this value
is contained in the table then set T'=T, UT5 and C = HTET r. If furthermore
N = 2C + 1 is prime and N > 25'2 then N passes the parameter test for SRP
in GNU Crypto. This is shown in the next paragraph.

Correctness of the construction. Since N is prime it remains to show that C
passes the primality test. The assumption 256 < r implies that no prime factor
of C' is found during the trial division test. Thus it is sufficient to show that C'
is a strong pseudoprime for the bases b; where 1 < ¢ < 13.

Since r — 1 divides M and C =1 (mod M) it follows that r — 1 divides
C —1 for all prime factors r of C'. Thus by Korselt’s criterion C' is a Carmichael
number [7]. Because of (2) = —1 we have r =3 (mod 4) for all primes factor
r of C. Moreover, from (%) = ¢; for all 1 < 4 < 13 follows that b; is either a
quadratic residue for all prime factors r or a quadratic nonresidue for all prime
factors r. Hence it follows that C' is a strong pseudoprime for the base b;.

Results. An implementation of the algorithm needed less than 10 days on a 250
MHz CPU to find about 30 examples that pass the parameter checks in GNU
crypto. One example is the 1095 bit number

C = 398462957079251-28278016308851-268974870654491-1239515532971-
12941222544251-2825874899-182200861571-480965007251-8028415890251-
761874633627251-10326412038251-105324823451-7128348371-29542620251-
251906132167691-64654312451-226698699371-130685132579-9167201891-
432876391197251-3077983389251-17767646051-9371850251-954045342251-
112810627931 - 6297653304192251 - 20842025454251

5 GNU Crypto 2.0.1

The authors of GNU Crypto were informed in January 2004 about the flaws in
the primality test. Most of the problems have been fixed in version 2.0.1. How-
ever, an analysis of the source code reveals that GNU Crypto implementation



16 Daniel Bleichenbacher

of SRP still calls the function gnu.util.prime.passEulerCriterion and that
this function has not been changed. Therefore the attack presented in this paper
still exists more than 8 month after the authors have been notified. The next
implementation error can be found just 2 lines later where SRP accepts g = —1
(mod N) as a generator of ZZ/(N)* allowing a simple impersonation attack.
Consequently, I do not recommend the use of GNU Crypto.

6 Proposed parameter verification for SRP

To verify that N > 2512 is a safe prime (that is both N and ¢ = (N —1)/2 are
prime) and g is a generator of ZZ/(N)* with an error probaility < 272* one can
perform the following tests:

— Check N > 2512,
— Test the primality of ¢ with k£ rounds of Miller-Rabin with random bases.
— Test that 1 < g< N—1and g?=-1 (mod N).

The k rounds of Miller-Rabin guarantee that a composite ¢ is detected with a
probability > 1—272*, Assuming that ¢ is indeed prime g9 = —1 (mod N) now
implies that the order of ¢ modulo N is even and divides 2¢q. Hence the order
is either 2 or 2¢. But g2 =1 (mod N) would imply g = ¢? = —1 (mod N)
which is impossible because of 1 < g < N — 1. Thus the order of g must be 2¢
and N = 2¢ + 1 must be prime. Hence no primality test for IV is needed here.

References

1. W. R. Alford, A. Granville, and C. Pomerance. On the difficulty of finding reliable
witnesses. In Algorithmic number theory, volume 877 of Lecture Notes in Computer
Science, pages 1-16, Berlin, 1994. Springer Verlag.

2. W. R. Alford, A. Granville, and C. Pomerance. There are infinitely many
Carmichael numbers. Annals of Mathematics, 140(3):703-722, 1994.

3. F. Arnault. Rabin-Miller primality test: Composite numbers which pass it. Math-
ematics of Computation, 64(209):355-361, Jan. 1995.

4. R. D. Carmichael. On composite numbers P which satisfy the Fermat congruence
a¥~' =1 mod P. American Math. Monthly,, 19:22-27, 1912.

5. I. Damgard, P. Landrock, and C. Pomerance. Average case error estimates for the
strong probable prime test. Mathematics of Computation, 61(203):177-194, 1993.

6. P. Erdés. On pseudoprimes and Carmichael numbers. Publ. Math. Debrecen,
4:201-206, 1956.

7. A. Korselt. Probléeme chinois. L’intermédiaire des mathématiciens, 6:142—143,
1899.

8. P. MacKenzie. Personal communications.

9. S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Inform. Theory, IT-
24:106-110, Jan. 1978.

10. M. Rabin. Probabilistic algorithms for testing primality. J. Number Theory,
12:128-138, 1980.

11. T. Wu. SRP-6: Improvements and refinements to the secure remote password
protocol. URL=http://srp.stanford.edu/doc.html, Oct. 2002.



