
A Verifiable Random Function

With Short Proofs and Keys

Yevgeniy Dodis? and Aleksandr Yampolskiy??

Abstract. We give a simple and efficient construction of a verifiable
random function (VRF) on bilinear groups. Our construction is direct.
In contrast to prior VRF constructions [14, 15], it avoids using an in-
efficient Goldreich-Levin transformation, thereby saving several factors
in security. Our proofs of security are based on a decisional bilinear
Diffie-Hellman inversion assumption, which seems reasonable given cur-
rent state of knowledge. For small message spaces, our VRF’s proofs and
keys have constant size. By utilizing a collision-resistant hash function,
our VRF can also be used with arbitrary message spaces. We show that
our scheme can be instantiated with an elliptic group of very reasonable
size. Furthermore, it can be made distributed and proactive.

1 Introduction

The notion of a verifiable random function (VRF) was introduced by Micali,
Rabin, and Vadhan [15]. A VRF is a pseudo-random function that provides a
non-interactively verifiable proof for the correctness of its output. Given an input
value x, the knowledge of the secret key SK enables computing the function value
y = FSK(x) together with the proof of correctness πx. This proof convinces every
verifier that the value y = FSK(x) is indeed correct with respect to the public
key of the VRF. We can thus view a VRF as a commitment to an exponential
number of random-looking bits.

Since their introduction, VRFs have found useful applications in protocol
design. To give a few examples, in [16], VRFs were used to reduce the num-
ber of rounds for resettable zero-knowledge proofs to three in the bare model.
Micali and Rivest [17] used VRFs to construct a non-interactive lottery system
employed in micropayments. Recently, Jarecki and Shmatikov [12] constructed
a verifiable transaction escrow scheme, which preserves users’ anonymity while
enabling automatic de-escrow, again with the help of VRFs.

Unfortunately, despite their utility, VRFs are not very well studied. As of
this moment, there exist only a handful of constructions in the standard model:
[8, 14, 15]. With the exception of [8], these works first construct a verifiable

? Department of Computer Science, New York University, 251 Mercer Street, New
York, NY 10012, USA. Email: dodis@cs.nyu.edu. Supported in part by NSF CA-
REER award CCR-0133806 and NSF grant CCR-0311095.

?? Department of Computer Science, Yale University, 51 Prospect Street, New Haven,
CT 06511, USA. Email: aleksandr.yampolskiy@yale.edu. Supported by NSF
grants CCR-0098078, ANI-0207399, CNS-0305258, and CNS-0435201.



A Verifiable Random Function With Short Proofs and Keys 421

unpredictable function (VUF), whose output is hard to predict but does not
necessarily look random. Then, they use an inefficient Goldreich-Levin hardcore
bit [10] to convert a VUF into a VRF, thereby losing a factor in security. The
size of proofs and keys of VRFs in [8, 14] is linear in the input size, which may
be undesirable in resource-constrained environments. Meanwhile, the VRF of
Micali-Rabin-Vadhan [15] operates over a large multiplicative group Z∗

n which
has to be very large to achieve reasonable security. Before the VRF value can be
computed, it requires inputs to be mapped to primes in a complicated fashion.

In this paper, we construct a simple VRF on groups equipped with bilinear
maps. Our construction is direct; it does not use a Goldreich-Levin hardcore bit,
saving several factors in security. The inputs need not be primes or codewords of
some special encoding. For small inputs, our VRF has constant size proofs and
keys. We show that by utilizing a collision-resistant hash function, we can use
our VRF with arbitrary inputs as well. Our VRF can be made distributed and
proactive.

We begin in Section 2 by formalizing the notions of a VRF and a VUF. We
also review the definition of bilinear groups, which are used in our constructions.
These groups, recently discovered by Joux and Nguyen [13], have the property
that decisional Diffie-Hellman (DDH) assumption (given g, ga, and gb, distin-
guish gab from random) becomes easy, but computational Diffie-Hellman (CDH)
assumption (given g, ga, and gb, compute gab) still remains hard. This fact gives
us many useful properties like verifiability.

Our proofs of security rely on two assumptions, which we describe in Sec-
tion 3. Informally, they are:

− q-Diffie-Hellman inversion assumption (q-DHI) states that no efficient
algorithm can compute g1/x on input

(

g, gx, . . . , g(xq)
)

[18];
− q-decisional bilinear Diffie-Hellman inversion assumption (q-DBDHI)

states that no efficient algorithm can distinguish e(g, g)1/x from random even
after seeing

(

g, gx, . . . , g(xq)
)

[3]. (Here e(·, ·) is a bilinear map, which we
define later.)

In Section 4, we give our constructions and analyze their efficiency.
First, in Section 4.1, we consider a signature due to Boneh and Boyen [4]. On

input x and a secret key SK, the signature is SignSK(x) = g1/(x+SK). Boneh
and Boyen proved this signature to be existentially unforgeable against non-
adaptive adversaries. By restricting inputs to have slightly superlogarithmic
size (in security parameter), we are able to prove security against adaptive
adversaries. As a result, our proof is more involved, but necessarily less tight than
the proof of [4]. We thus obtain a VUF, which is secure for small inputs. This
VUF can then be converted into a VRF using the approach of prior works [14,15].
Specifically, we could use the Goldreich-Levin hardcore bit [10] to convert it into
a VRF with output size 1, amplify the output size to match the size of the input,
and then follow a tree-based construction to get a VRF with arbitrary input size.
Needless, to say this is rather inefficient.

Instead, we prefer to construct a VRF directly (Section 4.2), saving several
factors in security. We give a simple direct VRF construction for small inputs,



422 Yevgeniy Dodis and Aleksandr Yampolskiy

which is secure under the q-DBDHI assumption. On input x and a secret key
SK, our VRF computes (FSK(x), π(x)), where FSK(x) = e(g, g)1/(x+SK) is the
VRF value and π(x) = g1/(x+SK) is the proof of correctness. We can apply
a collision-resistant hash function to large inputs to transform our VRF into
a VRF with unrestricted input length. By making the group size sufficiently
large, we can construct a VRF with inputs of size roughly 160 bits, which is
the length of SHA-1 digests. In theory, we do not have to assume existence of
collision-resistant hash functions, and could also apply a variant of a generic tree
transformation to amplify the input size. Even though keys and proofs no longer
have constant size, they are still shorter than the keys and proofs in constructions
of [14,15]. We analyze how large the group has to be and how our VRF compares
with other constructions in Section 4.4.

Evaluating the VRF at a single server is a performance bottleneck and a
single point of failure. Naturally, in Section 5, we sketch how to make our VRF
distributed and proactive.

In Section 6, we analyze the q-DBDHI assumption in the generic group model
à la Shoup [21]. We show that if the adversary can distinguish e(g, g)1/x from
random with probability 1

2 + ε, he will need to perform (at least) Ω(
√

εp/q)
generic group operations in a group of size p.

We conclude in Section 7.

2 Definitions

Before presenting our results, we review some basic definitions and assumptions.
Let k be a security parameter. As customary, we model the protocol partic-

ipants by probabilistic Turing machines whose running time is polynomial in k
(abbreviated as PPTs). Hereafter, we use negl(k) to refer to a negligible function
in the security parameter k.1

2.1 VRFs and VUFs

Let a : N 7→ N∪ {∗} and b : N 7→ N be any functions for which a(k) and b(k) are
computable in poly(k) time (except when a takes the value ∗).2

Intuitively, a verifiable random function (VRF) behaves like a pseudo-
random function, but also provides proofs of its outputs’ correctness.

Definition 1. A function family F(·)(·) : {0, 1}a(k) 7→ {0, 1}b(k) is a family of
VRFs if there exists a PPT algorithm Gen and deterministic algorithms Prove

and Ver such that Gen(1k) outputs a pair of keys (PK, SK); ProveSK(x) com-
putes

(

FSK(x), πSK (x)
)

, where πSK(x) is the proof of correctness; and VerPK(x, y, π)
verifies that y = FSK(x) using the proof π. Formally, we require:

1 A function negl(k) : N 7→ (0, 1) is negligible if for every c > 0, for all sufficiently
large k, negl(k) < 1/kc. See any standard reference, such as [11], for details.

2 When a(k) takes the value of ∗, it means the VRF is defined for inputs of all length.



A Verifiable Random Function With Short Proofs and Keys 423

1. Uniqueness: no values (PK, x, y1, y2, π1, π2) can satisfy VerPK(x, y1, π1) =
VerPK(x, y2, π2) when y1 6= y2.

2. Provability: if (y, π) = ProveSK(x), then VerPK(x, y, π) = 1.
3. Pseudorandomness: for any PPT algorithm A = (A1, A2), who does not

query its oracle on x (see below),

Pr






b = b′

(PK, SK)← Gen(1k); (x, st)← A
Prove(·)
1 (PK);

y0 = FSK(x); y1 ← {0, 1}b(k);

b← {0, 1}; b′ ← A
Prove(·)
2 (yb, st)






≤ 1

2
+negl(k)

A verifiable unpredictable function (VUF) is a close relative of a VRF.
Essentially, it is a signature scheme, whose verification algorithm accepts at most
one signature for every public key and message.

Definition 2. A function family F(·)(·) : {0, 1}a(k) 7→ {0, 1}b(k) is a family of
VUFs, if it satisfies the same syntax, uniqueness and provability properties of the
VRFs, except the pseudorandomness property is replaced by the following weaker
property:

3’ . Unpredictability: for any PPT algorithm A, who does not query its oracle
on x (see below),

Pr
[

y = FSK(x) (PK, SK)← Gen(1k); (x, y)← AProve(·)(PK)
]

≤ negl(k)

For exact security bounds, we will occasionally say that F(·)(·) is an (s′(k), ε′(k))
secure VRF (resp., VUF) if no adversary A, running in time s′(k), can break
the pseudorandomness (resp., unpredictability) property with ε′(k) advantage.

2.2 Bilinear Groups

Our constructions utilize bilinear maps. We briefly review their properties below.
Let G and G1 be two (multiplicative) cyclic groups of prime order p. Let g

be a generator of G. We shall call a mapping bilinear if it is linear with respect
to each of its variables. Formally:

Definition 3. An (admissible) bilinear map e : G×G 7→ G1 is a map with the
following properties:

1. Bilinear: for all u, v ∈ G and x, y ∈ Z, we have e(ux, vy) = e(u, v)xy.
2. Non-degenerate: e(g, g) 6= 1.
3. Computable: there is an efficient algorithm to compute e(u, v) for all

u, v ∈ G.

We say that a group G is bilinear if the group action in G is efficiently
computable and there exists a group G1 and an admissible bilinear map e :
G×G 7→ G1. Henceforth, we shall use G∗ to stand for G\{1G}.



424 Yevgeniy Dodis and Aleksandr Yampolskiy

Bilinear maps provide an algorithm for solving the decisional Diffie-Hellman
problem (DDH) in G 3; this property comes in handy for constructing a verifica-
tion algorithm for our VRF. Such maps can be constructed from Weil and Tate
pairings on elliptic curves or abelian varieties [5, 9, 13].

3 Complexity Assumptions

We now state the hardness assumptions on which our constructions are based.
In what follows, we let G be a bilinear group of prime order p, and let g be its
generator.

3.1 Diffie-Hellman Inversion Assumption

Our VUF construction relies on the Diffie-Hellman inversion (DHI) assumption,
which was originally proposed in [18].

The q-DHI problem in G asks: given the tuple
(

g, gx, . . . , g(xq)
)

∈ (G∗)q+1 as

input, compute g1/x. An algorithm A has advantage ε in solving q-DHI in G if

Pr
[

A(g, gx, . . . , g(xq)) = g1/x
]

≥ ε,

where probability is taken over the coin tosses of A and the random choice of
x ∈ Z

∗
p.

4

Definition 4. (q-DHI assumption) We say that (t, q, ε)-DHI assumption holds
in G if, no t-time algorithm A has advantage at least ε in solving the q-DHI
problem in G.

Boneh and Boyen [3] pointed out that the q-DHI assumption implies the (q+
1)-generalized Diffie-Hellman assumption (GDH), on which many cryptographic
constructions are based (e.g., [6, 19, 22] as well as the VUF in [14]). Therefore,
security of our VUF rests on an equivalent complexity assumption to the one
made before.

3.2 Decisional Bilinear Diffie-Hellman Inversion Assumption

In order to construct a VRF directly, we need to make a decisional bilinear
Diffie-Hellman inversion assumption (DBDHI). It was previously used in [3] to
construct a selective-ID secure identity based encryption scheme.

The q-DBDHI problem asks: given the tuple
(

g, gx, . . . , g(xq)
)

as input, dis-

tinguish e(g, g)1/x from random. Formally, an algorithm A has advantage ε in
solving the q-DBDHI problem if

3 Specifically, to determine whether (g, gx, gy, gz) is a DDH tuple, we can check if
e(gx, gy) = e(g, gz).

4 To simplify the notation, from now on, we assume that algorithms implicitly get a
description of the bilinear group (G, ◦, p), on which they operate, as input.



A Verifiable Random Function With Short Proofs and Keys 425

∣

∣

∣ Pr
[

A(g, gx, . . . , g(xq), e(g, g)1/x) = 1
]

− Pr
[

A(g, gx, . . . , g(xq), Γ ) = 1
]∣

∣

∣ ≤ ε,

where the probability is taken over the internal coin tosses of A and choices of
x ∈ Z∗

p and Γ ∈ G1.

Definition 5. (q-DBDHI assumption) We say that the (t, q, ε)-DBDHI assump-
tion holds in G if no t-time algorithm A has advantage at least ε in solving the
q-DBDHI problem in G.

Clearly, q-DBDHI is a stronger assumption than q-DHI. To provide more
confidence in its validity, we analyze this assumption in the generic group model
in Section 6.

4 Our Constructions

In Section 4.1, we show that a signature scheme due to Boneh and Boyen [4] is in
fact a VUF for small inputs. We could then use a Goldreich-Levin hardcore bit
to convert the resulting VUF into a VRF. However, the generic transformation is
rather inefficient, so we choose to forego it. Instead, in Section 4.2, we construct
our VRF directly for inputs of small size. We then show how to extend the VRF
input size in Section 4.3. Finally, we evaluate our construction’s efficiency in
Section 4.4.

Fix input length a(k), output length b(k), and security s(k). For notational
convenience, we will usually omit the security parameter k, writing, for example,
a or s, instead of a(k) or s(k). Let G (|G| = p) be a bilinear group, whose order
p is a k-bit prime. Let g be a generator of G. Throughout, we shall assume that
messages can be encoded as elements of Z∗

p.

4.1 A Verifiable Unpredictable Function

In order to build the intuition for our next proof, we first describe how to con-
struct a simple VUF (Gen,Sign,Ver), which is secure for small (superlogarith-
mic) inputs.

Algorithm Gen(1k): Chooses a secret s ∈r Z
∗
p and sets the secret key to

SK = s and a public key to PK = gs.
Algorithm SignSK(x): Outputs the signature SignSK(x) = g1/(x+SK). Note

that the proof is embedded in the output value so we do not need to include
it explicitly.

Algorithm VerPK(x, y): Outputs 1 if e(gx · PK, y) = e(g, g); otherwise, out-
puts 0. Indeed, if the VRF value y was correctly computed, we have:

e(gx · PK, y) = e(gxgs, g1/(x+s)) = e(g, g).



426 Yevgeniy Dodis and Aleksandr Yampolskiy

Boneh and Boyen [4] proved this scheme to be existentially unforgeable
against non-adaptive adversaries for inputs of arbitrary size. In our proof, we
restrict inputs to have slightly superlogarithmic size in k (just like [15] do); that
is, we set a(k) = log s(k) = Ω(log k). This enables us to enumerate all possible
messages in s(k) time and to respond to adversary’s queries adaptively. Fur-
ther, the proof of [4] is based on a q-strong Diffie-Hellman assumption (q-SDH),
which is implied by a weaker q-DHI assumption used in our proof. Correspond-
ingly, our proof is more involved but necessarily less tight than the proof of [4].

Theorem 1. Suppose the (s(k), 2a(k), ε(k))-DHI assumption holds in a bilinear
group G (|G| = p). Let the input size be a(k) and output size be b(k) = log2 p.
Then (Gen,Sign,Ver) is a (s′(k), ε′(k)) verifiable unpredictable function, where
s′(k) = s(k)/(2a(k) · poly(k)) and ε′(k) = ε(k) · 2a(k).

Proof. It is easy to see that uniqueness and provability properties of Definition 2
are satisfied. We thus concentrate on residual unpredictability.

We shall use a shortcut and write q = 2a(k). Suppose there exists an adversary
A, running in time s′(k), which guesses the value of the function at an unseen
point with non-negligible probability ε′(k). We shall construct an algorithm B
that by interacting with A breaks the q-DHI assumption with non-negligible
probability.

Input to the reduction: Algorithm B is given a tuple
(

g, gα, . . . , g(αq)
)

∈
(G∗)q+1, for some unknown α ∈ Z∗

p. Its goal is to compute g1/α.

Key generation: We guess that A will output a forgery on message x0 ∈r

{0, 1}a(k). We are right with probability 1/2a(k); error probability can be
decreased by repeating the algorithm sufficiently many times. Let β = α −
x0.

5 We don’t know what β is because α is secret. However, we can use the
Binomial Theorem to compute

(

gβ , . . . , g(βq)
)

from
(

gα, . . . , g(αq)
)

. Because
a(k) = log(s(k)), we can enumerate all possible inputs in s(k) time. Let f(z)
be the polynomial

f(z) =
∏

w∈{0,1}a,w 6=x0

(z + w) =

q−1
∑

j=0

cjz
j (for some coefficients c0, . . . , cq−1).

We can compute

h = gf(β) =

q−1
∏

j=0

(

g(βj)
)cj

and hβ =

q
∏

j=1

(

g(βj)
)cj−1

.

Finally, we set h to be the generator and give PK = hβ to A. The secret
key is SK = β, which we don’t know ourselves.

5 For the sake of readability, we slightly abuse the notation. We should really have
written β = α− ψ(x0), where ψ : {0, 1}a(k) 7→ Z

∗

p.



A Verifiable Random Function With Short Proofs and Keys 427

Responding to oracle queries: Without loss of generality, we assume that A
never repeats a query. Consider the ith query (1 ≤ i < q) on message xi. If
xi = x0, then we fail. Otherwise, we must compute SignSK(xi) = h1/(xi+β).
Let fi(z) be the polynomial

fi(z) = f(z)/(z + xi) =

q−2
∑

j=0

djz
j (for some coefficients d0, . . . , dq−2).

We can compute

gfi(β) =

q−2
∏

j=0

(

g(βj)
)dj

= h1/(xi+β)

and return it as the signature.

Outputting the forgery: Eventually,A outputs a forgery (x∗, σ∗). If x∗ 6= x0,
then our simulation failed. Because the signature is unique, we must have
σ∗ = h1/(x0+β) = gf(β)/(x0+β). Compute

f(z)/(z + x0) =

q−2
∑

j=0

γjz
j +

γ−1

z + x0
,

where γ−1 6= 0. Hence,



σ∗ ·
q−2
∏

j=0

(

g(βi)
)−γi





1/γ−1

= g1/(x0+β) = g1/α.

Let ε′(k) = ε(k) · 2a(k) and s′(k) = s(k)/(2a(k) · poly(k)). To finish the
proof, note that algorithm B succeeds with probability ε′(k)/2a(k) = ε(k).
Its running time is dominated by answering oracle queries, and each query
takes (2a(k) − 2) · poly(k) time to answer. Therefore, B will run in roughly
s′(k) · 2a(k)poly(k) = s(k) time.

ut

Remark 1. The security reduction of Theorem 1 is not tight. It allows to con-
struct VUFs with input roughly a(k) = Ω(log s(k)). In theory, this means that
the input size we can achieve might be only slightly superlogarithmic in k (sim-
ilar to [15]). First, it might be reasonable to assume subexponential hardness
of the q-DHI assumption which will immediately allow one to support input of
size kΩ(1). Also, by utilizing a collision-resistant hash function, we will anyway
only need to construct VUFs with relatively small input size such as 160 bits.
Indeed, in Section 4.4, we show that our construction seems to yield a practical
and secure VUF for inputs of arbitrary length already when k = 1, 000 bits.



428 Yevgeniy Dodis and Aleksandr Yampolskiy

4.2 A Verifiable Random Function

Our main contribution is a direct construction of a verifiable random function
from a slightly stronger q-DBDHI assumption. The VRF (Gen,Prove,Ver) is
as follows.

Algorithm Gen(1k): Chooses a secret s ∈r Z∗
p and sets the secret key to

SK = s and the public key to PK = gs.
Algorithm ProveSK(x): We let ProveSK(x) =

(

FSK(x), πSK(x)
)

where

FSK(x) = e(g, g)1/(x+SK) is the VRF output and πSK(x) = g1/(x+SK) is
the proof of correctness.

Algorithm VerPK(x, y, π): To verify whether y was computed correctly, check
if e(gx · PK, π) = e(g, g) and whether y = e(g, π). If both checks succeed,
output 1; otherwise, output 0.

We can prove this scheme to be secure (in the sense of Definition 1) for small
inputs (superlogarithmic in k). We then show how to convert it into a VRF with
unrestricted input size.

Theorem 2. Suppose the (s(k), 2a(k), ε(k))-decisional BDHI assumption holds
in a bilinear group G (|G| = p). Let the input size be a(k) and the output size
be b(k) = log2 p. Then (Gen,Prove,Ver), as defined above, is a (s′(k), ε′(k))
verifiable random function, where s′(k) = s(k)/(2a(k) ·poly(k)) and ε′(k) = ε(k) ·
2a(k).

Proof. It is trivial to show that uniqueness and provability properties of Defini-
tion 1 are satisfied. We thus concentrate on the pseudorandomness property.

We shall use q = 2a(k) as a shortcut. For sake of contradiction, suppose there
exists an algorithm A = (A1, A2), which runs in time s′(k), and can distinguish
between FSK(x) = e(g, g)1/(x+s) (for some x) and a random element in G1 with
probability at least 1/2 + ε′(k). We shall construct an algorithm B that uses A
to break the q-DBDHI assumption in G.

Input to the reduction: Algorithm B is given a tuple (g, gα, . . . , g(αq), Γ ) ∈
(G∗)q+1 ×G1, where Γ is either e(g, g)1/α ∈ G1 or a random element in G1.
Its goal is to output 1 if Γ = e(g, g)1/α and 0 otherwise.

Key generation: We guess that A will choose to distinguish the VRF value
on message x0 ∈ {0, 1}a(k). Let β = α−x0 (see footnote 5). We generate the
public and private keys for algorithm A as in the proof of Theorem 1. Using
the Binomial Theorem, we compute the tuple

(

gβ, . . . , g(βq)
)

. We define

f(z) =
∏

w∈{0,1}a,w 6=x0

(z + w) =

q−1
∑

j=0

cjz
j .

This enables us to compute the new base

h = gf(β) =

q−1
∏

j=0

(

g(βj)
)cj

.



A Verifiable Random Function With Short Proofs and Keys 429

Finally, we give PK = hβ =
∏q

j=1

(

g(βj)
)cj−1

as the public key to A. The

secret key is SK = β, which we don’t know.
Responding to oracle queries: Consider the ith query (1 ≤ i < q) on mes-

sage xi. If xi = x0, we fail. Otherwise, we must respond with the correspond-
ing proof πSK(xi) and a VRF value FSK(xi).
As in Theorem 1, we define

fi(z) = f(z)/(z + xi) =

q−2
∑

j=0

djz
j (for some coefficients d0, . . . , dq−2).

We can thus compute

πSK(xi) =

q−2
∏

j=0

(

g(βj)
)dj

= h1/(β+xi)

and
FSK(xi) = e(h, πSK(xi)) = e(h, h)1/(β+xi),

and return them to algorithm A.
Challenge: Eventually, A outputs a message x∗ on which it wants to be chal-

lenged. If x∗ 6= x0, then we fail. Otherwise, A claims to be able to distinguish
e(h, h)1/(β+x0) = e(h, h)1/α from a random element in G1. Recall that

f(z) =

q−1
∑

i=0

ciz
i.

Because f(z) is not divisible by (z + x0), we have:

f ′(z) = f(z)/(z + x0)−
γ

z + x0

=

q−2
∑

j=0

γjz
j (for some γ 6= 0 and coefficients γ0, . . . , γq−2).

Let Γ0 be

Γ0 =





q−1
∏

i=0

q−2
∏

j=0

e
(

g(βi), g(βj)
)ciγj



 ·
(

q−2
∏

m=0

e
(

g, g(βt)
)γ· γm

)

= e
(

gf(β), gf ′(β)
)

· e
(

gγ , gf ′(β)
)

(1)

= e(g, g)(f(β)2− γ2)/α.

Set Γ ∗ = Γ (γ2)·Γ0. Notice that if Γ = e(g, g)1/α, then Γ ∗ = e(gf(β), gf(β)/α) =
e(h, h)1/α. Meanwhile, if Γ is uniformly distributed, then so is Γ ∗. We give
Γ ∗ to algorithm A.

Note: It may seem as though computing Γ0 is very expensive. However,
from Equation (1), we see that the computation only takes two bilinear map
evaluations.



430 Yevgeniy Dodis and Aleksandr Yampolskiy

Guess: Algorithm A makes some more queries to which we respond as before.
Finally, A outputs a guess b ∈ {0, 1}. We return b as our guess as well.

The running time of the reduction is dominated by simulating oracle queries.
Per every query, we must perform one bilinear map evaluation (this takes poly(k)
time) and (2a − 2) multiplications and exponentiations (this takes 2a · poly(k)
time). Because A can make at most s′(k) queries, the running time of B is alto-
gether s′(k)(2a(k) ·poly(k)). The advantage of B in this experiment is ε′(k)/2a(k).
Setting s′(k) = s(k)/(2a(k) ·poly(k)) and ε′(k) = ε(k) ·2a(k) completes the proof.

ut

4.3 Extending the Input Size

We constructed a VRF (Gen,Prove,Ver), which is provably secure for inputs
of small size a(k) = Ω(log(k)). We now explain how to handle inputs of arbitrary
size.

Hashing the Input. Notice that if we have a VRF ProveSK(·) : {0, 1}a(k) 7→
{0, 1}b(k) and a collision-resistant hash function H(·) : {0, 1}∗ 7→ {0, 1}a(k),
then their composition ProveSK(H(·)) : {0, 1}∗ 7→ {0, 1}b(k) is trivially secure.
Although our security reduction is relatively loose, we can make the size of a
bilinear group large enough (we give exact numbers in Section 4.4) to have inputs
of length roughly a(k) = 160 bits, the length of SHA-1 digests. Restriction to
small inputs is therefore not limiting because we can always hash longer inputs.

Tree Construction. Although, we recommend using the previous construction
(by making the group large enough), in theory, we could always use the (ineffi-
cient) generic tree construction to extend the input length. Then, we do not have
to assume the existence of a collision-resistant hash function; having a universal
hash function suffices.

We shall use the following proposition:

Proposition 1 ([15]). If there is a VRF with input length a(k), output length
1, and security s(k), then there is a VRF with unrestricted input length, output
length 1 and security at least min(s(k)1/5, 2a(k)/5).

The construction first converts a VRF with output length 1 into a VRF with
output length (a−1). This transformation loses a factor of a in security. Because
our VRF has output length much larger than 1, we can omit this step. Instead,
we apply a universal hash function to VRF’s output and let the VRF’s value be
the first (a − 1) bits of hash function’s output (it is easily seen that these bits
will be pseudo-random as well).

The rest of the transformation proceeds as usual. We construct a binary trie
whose nodes are labeled with strings of length (a− 1). The root is labeled with
0a−1 and the children of node y are labeled with VRF values on inputs (y ◦ 0)



A Verifiable Random Function With Short Proofs and Keys 431

and (y ◦1). Computing the VRF value on input x ∈ {0, 1}∗ amounts to tracing a
path through the trie to the leaf corresponding to x. The VRF value is the label
of the leaf, and the proof of correctness is a tuple of VRF proofs—one proof per
each node on the path traced by x.6

We also note that both of the aforementioned techniques can be used to
convert the VUF in Section 4.1 into a VUF with unrestricted input length.

4.4 Efficiency

We now compare the efficiency of our construction with that of prior VRF con-
structions. We fix inputs to be a(k) = 160 bits, the length of SHA-1 digests, and
let q = 2a(k).

Our VRF. According to Theorem 2, if (s(k), q, ε(k))-DBDHI holds on G, then
our VRF is secure against adversaries running in time s′(k) = s(k)/(2a(k) ·
poly(k)) that have advantage ε′(k) = ε(k) · 2a(k). To be generous, we instantiate
ε′(k) = 2−80, s′(k) = 280, and poly(k) = 230. Then, we have: ε(k) = 2−240

and s(k) = 2270. Suppose no better algorithm exists for breaking the q-DBDHI
assumption than a generic group algorithm. Then, by Theorem 3 (which we
prove in Section 6), for these security parameters a bilinear group must have
size:

p ≥ 2(s(k) + q + 3)2q

ε(k)

=
2
(

2270 + 2160 + 3
)2

2160

2−240

≈ 2940.

Therefore, making the group size be a 1,000 bit prime seems sufficient to guar-
antee security of the VRF that takes 160 bit inputs. Proofs and keys consist of a
single group element and will roughly be 125 bytes each. We can generate such
groups using the standard parameter generator of [5].

VRF by Micali-Rabin-Vadhan [15]. This VRF operates over a multiplica-
tive group Z∗

n, where n = pq is a k-bit RSA modulus. The fastest general-purpose
factoring algorithm today is the number field sieve [7]; it takes approximately

O
(

e1.9223(k1/3(log k)2/3)
)

time to factor a k bit number. The RSA based VUF

(not even a VRF) constructed in [15] has security s′(k) = s(k)/(2a(k) · poly(k))
where s(k) is hardness of RSA. Letting s′(k) = 280 and poly(k) = 230 as before,
we obtain an RSA security lower bound s(k) = 280 · (2160 · 230) = 2270. Because

6 The inputs have to be prefix-free for this tree construction to work. This can be
accomplished using techniques of [15].



432 Yevgeniy Dodis and Aleksandr Yampolskiy

RSA is only secure as long as we cannot factor n, to get 270 bits of security, we
need n to be a k-bit number, where

1.9223k1/3(log k)2/3 = 270.

Hence, n must be at least 14, 383 bits long if we want to use this VUF on
160 bit inputs. After following the tree construction, proofs for 160 bit inputs
will have size 280 kilobytes.

VRF by Dodis [8] and VUF by Lysyanskaya [14]. These constructions
work on elliptic curve groups, whose size is usually a 160 bit prime. At the bare
minimum, 160 bit messages yield keys and proofs of size 160 · 160 = 25, 600 bits,
which is about 3.2 kilobytes. In fact, they will probably have larger size due to
use of error-correcting codes and other encoding expansions.

To summarize, none of the prior VRF constructions come close to the 1,000
bit proofs and keys of our construction. If our VRF is used with the generic
tree construction, its keys and proofs consist of |x| group elements (one group
element per input bit) when the input is x ∈ {0, 1}∗. This is less than the |x|2
group elements (|x| group elements per input bit) needed by the VRF of [14].

5 Distributed VRF

We point out that our VUF/VRF constructions can be easily made distributed
(or even proactive). Indeed, both of the constructions simply amount to a secure
computation of the function πSK(x) = g1/(x+SK) when the servers have shares
of the secret SK. Because it is well known how to do multiparty addition, in-
version, and exponentiation [1,2], this extension follows immediately. We notice
however that unlike the construction of Dodis [8], our distributed VUF/VRF is
interactive.

6 Generic Security of the q-DBDHI Assumption

In this section, we examine the q-DBDHI assumption in the generic group model
of Shoup [21]. We proceed to derive a lower bound on the computational com-
plexity of a generic adversary who breaks this assumption.

In the generic group model, elements of G and G1 are encoded as unique
random strings. We define an injective function θ : Zp 7→ {0, 1}∗, which maps
a ∈ Zp to the string representation θ(ga) of ga ∈ G. Similarly, we define a
function θ1 : Zp 7→ {0, 1}∗ for G1. The encodings are such that non-group
operations are meaningless. There exist three oracles which compute the group
action in G, the group action in G1, and the bilinear pairing e : G × G 7→ G1

from elements’ encodings.



A Verifiable Random Function With Short Proofs and Keys 433

Theorem 3. Let A be an algorithm that solves the q-DBDHI problem. Assume
both x ∈ Z∗

p and the encoding functions θ, θ1 are chosen at random. If A makes at
most qG queries to oracles computing the group action in G, G1 and the bilinear
mapping e : G×G 7→ G1, then

∣

∣

∣

∣

∣

Pr

[

A
(

p, θ(1), θ(x), . . . , θ(xq),
θ1(Γ0), θ1(Γ1)

)

= b
b

r← {0, 1};
Γb ← 1/x; Γ1−b

r← Z∗
p

]

− 1

2

∣

∣

∣

∣

∣

≤ 2(qG + q + 3)2q

p
.

Proof. Instead of letting A interact with the actual oracles, we play the following
game.

We maintain two lists: L = { (Fi, si) : i = 0, . . . , t − 1} and L′ = { (F ′
i , s

′
i) :

i = 0, . . . , t′ − 1}. Here si, s
′
i ∈ {0, 1}∗ are encodings and Fi, F

′
i ∈ Zp[X, Γ0, Γ1]

are multivariate polynomials in X, Γ0, and Γ1. The total length of lists at step
τ ≤ qG in the game must be

t + t′ = τ + q + 3. (2)

In the beginning of the game, we initialize the lists to F0 = 1, F1 = X, . . . , Fq =
Xq and F ′

0 = Γ0, F
′
1 = Γ1. The corresponding encodings are set to arbitrary

distinct strings in {0, 1}∗. The lists have length t = q + 1 and t′ = 2.
We start the game by providing A with encodings (s0, . . . , sq, s

′
0). Algorithm

A begins to issue oracle queries. We respond to them in the standard fashion:

Group action: Given a multiply/divide bit and two operands si and sj (0 ≤
i, j < t), we compute Ft = Fi ±Fj accordingly. If Ft = Fl for some l < t, we
set st = sl. Otherwise, we set st to a random string in {0, 1}∗\{s0, . . . , st−1},
and increment t by 1. Group action in G1 is computed similarly, except we
operate on list L′.

Bilinear pairing: Given two operands si and sj (0 ≤ i, j < t), we compute the
product Ft′ = FiFj . If Ft′ = Fl for some l < t′, we set st′ = sl. Otherwise
we set it to a random string in {0, 1}∗\{s0, . . . , st′−1}. We then increment t′

by 1.

After making at most qG queries, A halts with a guess b̂ ∈ {0, 1}. We now

choose x, y
r← Z∗

p and consider Γb ← 1/x, Γ1−b = y for both choices of b. Our
simulation is perfect and reveals nothing to A about b unless the values that we
chose for indeterminates give rise to some non-trivial equality relation. Specifi-
cally, algorithm A wins the game if for any Fi 6= Fj or any F ′

i 6= F ′
j , either of

these hold:

1. Fi(x, 1/x, y)− Fj(x, 1/x, y) = 0
2. Fi(x, y, 1/x)− Fj(x, y, 1/x) = 0
3. F ′

i (x, 1/x, y)− F ′
j(x, 1/x, y) = 0

4. F ′
i (x, y, 1/x)− F ′

j(x, y, 1/x) = 0

Notice that A can never engineer an encoding of an element whose cor-
responding polynomial would have a 1/X term unless he is explicitly given it.



434 Yevgeniy Dodis and Aleksandr Yampolskiy

Therefore, we can only get a non-trivial equality relation as a result of numerical
cancellation.

For all i, deg(Fi) ≤ q and deg(F ′
i ) ≤ 2q. We can use the Schwartz-Zippel

Theorem [20] to bound the probability of a cancellation. It tells us that for all
i, j, Pr[Fi − Fj = 0] ≤ q/p and Pr[F ′

i − F ′
j = 0] ≤ 2q/p. Thus A’s advantage is

ε ≤ 2 ·
((

t

2

)

q

p
+

(

t′

2

)

2q

p

)

< 2(qG + q + 3)2
q

p
(plugging into (2))

= O

(

q2
Gq + q3

p

)

.

ut

It turns out that in a generic group model algorithm A that solves the q-
DBDHI problem has advantage, which is roughly twice as much as an advantage
of an algorithm solving the q-SDH problem (see [4], Section 5). The asymptotic
complexities are the same.

The following corollary is immediate.

Corollary 1. Any adversary that breaks the q-DBDHI assumption with proba-
bility 1

2 + ε (0 < ε < 1/2) in generic groups of order p such that q < o( 3
√

p)

requires Ω(
√

εp/q) generic group operations.

7 Conclusion

We have presented a simple and efficient construction of a verifiable random
function. Our VRF’s proofs and keys have constant size regardless of the size of
the input. Our proofs of security are based on a decisional bilinear Diffie-Hellman
inversion assumption, which seems reasonable given current state of knowledge.
We also demonstrated that our scheme can be instantiated with elliptic groups
of very reasonable size which makes our constructions quite practical.

8 Acknowledgments

The authors would like to thank James Aspnes, Dan Boneh, Salil Vadhan, and
the anonymous referees for their helpful comments.

References

1. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in
a constant number of rounds. In Proceedings of the ACM Symposium on Principles

of Distributed Computation, pages 201–209, 1989.



A Verifiable Random Function With Short Proofs and Keys 435

2. Michael Ben-or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computing. In Proceedings of the

20th Annual ACM Symposium on the Theory of Computing, pages 1–10, 1988.
3. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryp-

tion without random oracles. In Advances in Cryptology—EUROCRYPT 2004, vol-
ume 3027 of Lecture Notes in Computer Science, pages 223–238. Berlin: Springer-
Verlag, 2004.

4. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Ad-

vances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture Notes in Com-

puter Science, pages 56–73. Berlin: Springer-Verlag, 2004.
5. Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing.

Lecture Notes in Computer Science, 2139:213–229, 2001.
6. Dan Boneh and Alice Silverberg. Application of multilinear forms

to cryptography. Cryptology ePrint Archive, Report 2002/080, 2002.
http://eprint.iacr.org/2002/080/.

7. Johannes A. Buchmann, J. Loho, and J. Zayer. An implementation of the general
number field sieve. Lecture Notes in Computer Science, 773:159–166, 1994.

8. Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions.
In Proceedings of 6th International Workshop on Theory and Practice in Public Key

Cryptography, pages 1–17, 2003.
9. Steven D. Galbraith. Supersingular curves in cryptography. Lecture Notes in

Computer Science, 2248:495–513, 2001.
10. Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.

In Proceedings of the 21th Annual ACM Symposium on the Theory of Computing,
pages 25–32, 1989.

11. S. Goldwasser and M. Bellare. Lecture notes on cryptography. Summer Course
“Cryptography and Computer Security” at MIT, 1996–1999, 1999.

12. Stanislaw Jarecki and Vitaly Shmatikov. Handcuffing big brother : an abuse-
resilient transaction escrow scheme. In Advances in Cryptology - Proceedings of

EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
590–608. Springer-Verlag, 2004.

13. Antoine Joux and Kim Nguyen. Separating Decision Diffie-Hellman from Diffie-
Hellman in cryptographic groups. Cryptology ePrint Archive, Report 2001/003,
2001. http://eprint.iacr.org/2001/003/.

14. Anna Lysyanskaya. Unique signatures and verifiable random functions from DH-
DDH separation. In Proceedings of the 22nd Annual International Cryptology Con-

ference on Advances in Cryptology, pages 597–612, 2002.
15. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.

In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science,
pages 120–130, 1999.

16. Silvio Micali and Leonid Reyzin. Soundness in the public-key model. Lecture Notes

in Computer Science, 2139:542–565, 2001.
17. Silvio Micali and Ronald L. Rivest. Micropayments revisited. In CT-RSA, pages

149–163, 2002.
18. Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing.

IEICE Trans. Fundamentals, pages 481–484, 2002.
19. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-

random functions. In Proceedings of the 38th IEEE Symposium on Foundations of

Computer Science, pages 458–467, 1997.
20. Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial

identities. Journal of the Association for Computing Machinery, 27:701–717, 1980.



436 Yevgeniy Dodis and Aleksandr Yampolskiy

21. Victor Shoup. Lower bounds for discrete logarithms and related problems. Lecture

Notes in Computer Science, 1233:256–266, 1997.
22. Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-Hellman key distribu-

tion extended to group communication. In Proceedings of the 3rd ACM Conference

on Computer and Communications Security, pages 31–37, 1996.


