One-time Verifier-based
Encrypted Key Exchange

Michel Abdalla!, Olivier Chevassut?, and David Pointchevall

! Dépt d’informatique, Ecole normale supérieure, 75230 Paris Cedex 05, France
{Michel.Abdalla,David.Pointcheval}@ens.fr —
http://www.di.ens.fr/users/{mabdalla,pointche}.

2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,
OChevassut@lbl.gov — http://www.itg.1lbl.gov/~chevassu.

Abstract. “Grid” technology enables complex interactions among com-
putational and data resources; however, to be deployed in production
computing environments “Grid” needs to implement additional secu-
rity mechanisms. Recent compromises of user and server machines at
Grid sites have resulted in a need for secure password-authentication
key-exchange technologies. AuthA is an example of such a technology
considered for standardization by the IEEE P1363.2 working group. Un-
fortunately in its current form AuthA does not achieve the notion of
forward-secrecy in a provably-secure way nor does it allow a Grid user to
log into his account using an un-trusted computer. This paper addresses
this void by first proving that AuthA indeed achieves this goal, and then
by modifying it in such a way that it is secure against attacks using
captured user passwords or server data.

1 Introduction

Motivation. Next generation distributed infrastructures integrate the ongoing
work in Web Services (WS) with the state-of-the-art in distributed systems to en-
able seamless interaction among computational and data resources. “Grid” tech-
nology for example links computers, storage systems, and other devices through
common interfaces and infrastructure to create powerful distributed comput-
ing capabilities [9,11]. In this model of distributed computing, researchers and
businesses not only plug into a global network of computer systems to access
information but also to access distributed processing power. In parallel with the
growth of Grid concepts and software in the scientific communities, commer-
cial interests have been developing Web Services (WS) for the next generation
business-to-business applications. Interest in both communities has grown to
combine the techniques and concepts of Grid computing with the functionality
of WS. This has led to the development of the Web Service Resource Framework
(WSRF) specification and other elements of the Open Grid Services Architec-
ture (OGSA) within several standard bodies such as the OASIS [19] and the
Global Grid Forum (GGF) [13].

One-time Verifier-based Encrypted Key Exchange 49

Security is one of the major requirements of Grid computing. Any Grid de-
ployment must provide the security services of authentication, authorization,
and secure session establishment. These services are provided by the Grid secu-
rity infrastructure which was initially built upon the Transport Layer Security
(TLS) protocol [10] and with the migration towards Web Services is now being
built upon the WS-security primitives [9]. The current implementation of the
Grid security infrastructure is based on public-key certificates. Recent security
hacks of Grid sites due to the compromise of client and server machines, however,
have led to a trend where many Grid sites are changing their security policies.
The new policy prohibits long-term private keys from being stored on the Grid
user’s machines but requires that the keys are stored on servers in data centers
where their integrity can be better protected. Grid users will authenticate to
the data centers using a (one-time) human-memorable password and be issued
short-lived certificates. Human-memorable passwords are short strings (e.g, 4
decimal digits) chosen from a relatively small dictionary so that they can be
remembered easily.

The unique requirement of Grid provides security researchers with the oppor-
tunity to design and develop “provably-secure” cryptographic technologies that
will play an essential role in securing next generation distributed infrastruc-
tures. The most immediate cryptographic need is certainly a “provably-secure”
One-time Password-authentication and Key-eXchange technology (OPKeyX) for
two-party [8].

Contributions. This paper is the third tier in the treatment of Encrypted Key
Ezchange (EKE), where the Diffie-Hellman key-exchange flows are encrypted
using a password, in the direct model of Bellare-Pointcheval-Rogaway [1]. The
first tier showed that under the computational Diffie-Hellman (CDH) assumption
the AuthA password-authenticated key-exchange protocol is secure in both the
random-oracle and ideal-cipher models [6]; the encryption primitive used is a
password-keyed symmetric cipher. The second tier provided a very ”elegant”
and compact proof showing that under the CDH assumption the AuthA protocol
is secure in the random-oracle model only [7]; the encryption primitive used is a
mask generation function. In the present paper, we propose a slightly different
variant of AuthA, where both flows are encrypted using separate mask generation
functions, similarly to [18]. This Two-Mask Encrypted Key Exchange (EKE—both
flows are encrypted) was not created for the sake of having one more variant,
but simply because it allows us to provide the first complete proof of forward-
secrecy for AuthA. The forward-secrecy of AuthA was indeed explicitly stated as
an open problem in [2, 18]. Our result shows that under the Gap Diffie-Hellman
assumption [20] this variant of AuthA is forward-secure in the random-oracle
model. This is a significant achievement over other works which we hope will
leverage our work to obtain tighter and more meaningful security measurements
for the forward-secrecy of their EKE-like protocols.

We have furthermore augmented the Two-Mask protocol with two crypto-
graphic mechanisms to reduce the risk of corruption of the server and the client.

50 Michel Abdalla, Olivier Chevassut, and David Pointcheval

Corruption of a server occurs when an attacker gains access to the server’s local
database of passwords. If client’s passwords are stored directly in the database,
then the attacker can immediately use any of these passwords to impersonate
these clients. Fortunately, there is a means to prevent an attacker from doing just
that: verifier-based password-authentication. Of course, this mechanism will not
prevent an adversary from mounting (off-line) dictionary attacks but it will slow
him or her down and thus give the server’s administrator time to react appro-
priately and to inform its clients. Corruption of a client occurs when a client is
using an un-trusted machine which happens frequently these days as hackers run
password sniffers on the Internet. There is a means to prevent a client’s password
from being captured: one-time password-based authentication. Passwords sniffed
by hackers are of no use since users’ passwords change from one session to the
other. The end result is a “provably-secure” One-time Password-authentication
and Key-eXchange (OPKeyX) technology for Grid computing.

The remainder of the paper is organized as follows. We first present the
related work. In Section 2, we define the formal security model which we use
through the rest of the paper. In Section 3, we present the computational as-
sumptions upon which the security of Two-Mask and, thus, our OPKeyX tech-
nology are based upon. In Section 4, we describe the Two-Mask protocol itself
and prove that the latter is forward-secure via a reduction from the Two-Mask
protocol to the Gap Diffie-Hellman problem. In Section 5, we augment the Two-
Mask protocol to reduce the risk of stolen server databases and captured client
passwords to construct a technology for OPKeyX.

Related Work. The seminal work in this area is the Encrypted Key Exchange
(EKE) protocol proposed by Bellovin and Merritt in [3,4]. EKE is a classical
Diffie-Hellman key exchange wherein either or both flows are encrypted using
the password as a common symmetric key. The encryption primitive can be in-
stantiated via either a password-keyed symmetric cipher or a mask generation
function computed as the product of the message with the hash of a password.
Bellare et al. sketched a security proof for the flows at the core of the EKE proto-
col in [1], and specified a EKE-structure (called the AuthA protocol) in [2]. Boyko
et al. proposed very similar EKE-structures (called the PAK suite) and proved
them secure in Shoup’s simulation model [5,18]. The PPK protocol in the PAK
suite is similar to our Two-Mask Encrypted Key Exchange protocol; however,
arguments in favor of forward-secrecy under the computational Diffie-Hellman
(CDH) assumption do not give many guarantees on its use in practice [18]. The
KOY protocol [16] is also proved to be forward-secure but it is not efficient
enough to be used in practice.

The PAK suite is in the process of being standardization by the IEEE P1363.2
Standard working group [15]. Server machines store images of the password un-
der a one-way function instead of a plaintext password when the “augmented”
versions of the PAK suite are used. ”Augmented” EKE-like protocols indeed
limit the damage due to the corruption of a server machine, but do not pro-
tect against attacks replaying captured users’ passwords. On the other hand,

One-time Verifier-based Encrypted Key Exchange 51

One-Time Password (OTP) systems protect against the latter kind of attacks
but provide neither privacy of transmitted data nor protection against active
attacks such as session hijacking [14]. The present paper designs and develops
a cryptographic protocol for one-time “augmented” password-authenticated key
exchange.

2 Password-based Authenticated Key Exchange

In this section, we recall the security model of Bellare et al. [1] for password-
based authenticated key exchange protocol.

2.1 Overview

A password-based authenticated key exchange protocol P is a protocol between
two parties, a client A € client and a server S € server. Each participant in a
protocol may have several instances, called oracles, involved in distinct, possibly
concurrent, executions of P. We let U’ denote the instance i of a participant U,
which is either a client or a server.

Each client A € client holds a password pw 4. Each server S € server holds a
vector pwg = (pwg[A]) accient With an entry for each client, where pw ¢[A] is the
derived-password defined in [1]. In the symmetric model, pwg[C] = pw, but
they may be different in general, as in our verifier-based scheme. pw and pwg
are also referred to as the long-lived keys of client C' and server S. Each password
pw 4 is considered to be a low-entropy string, drawn from the dictionary Password
according to the distribution PW. As in [7], we let PW(q) denote the probability
to be in the most probable set of ¢ passwords:

= P P|#P < .
PW(Q) Pgrglazsis)\i/ord {pr%W[pw < | #P < (Z}}

Note that, if we denote by Uy the uniform distribution among N passwords,
then Un(¢) = ¢/N.

2.2 The Security Model

The interaction between an adversary 4 and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack
(see literature for more details [1,7].) The types of oracles available to the ad-
versary are as follows:

— Execute(A?, S7): The output of this query consists of the messages exchanged
during the honest execution of the protocol.

— Reveal(U*): This query is only available to A if the attacked instance actually
“holds” a session key and it releases the latter to A.

— Send(U?,m): The output of this query is the message that the instance U*
would generate upon receipt of message m. A query Send(A‘, Start) initial-
izes the key exchange protocol, and thus the adversary receives the initial
flow that client instance A* would send to the server S.

52 Michel Abdalla, Olivier Chevassut, and David Pointcheval

2.3 Security Notions

In order to define a notion of security for the key exchange protocol, we consider
a game in which the protocol P is executed in the presence of the adversary A.
In this game, we first draw a password pw from Password according to the dis-
tribution PW, provide coin tosses and oracles to A, and then run the adversary,
letting it ask any number of queries as described above, in any order.

AKE Security. In order to model the privacy (semantic security) of the session
key, we consider a new game Game®®(A, P), in which an additional oracle is
available to the adversary: the Test(U") oracle.

— Test(U?): This query tries to capture the adversary’s ability to tell apart a
real session key from a random one. In order to answer it, we first flip a
(private) coin b and then forward to the adversary either the session key sk
held by U? (i.e., the value that a query Reveal(U?) would output) if b = 1 or
a random key of the same size if b = 0.

The Test-oracle can be queried at most once by the adversary A and is only
available to A if the attacked instance U? is Fresh (which roughly means that
the session key is not “obviously” known to the adversary). When playing this
game, the goal of the adversary is to guess the hidden bit b involved in the Test-
query, by outputting a guess b’. Let Succ denote the event in which the adversary
is successful and correctly guesses the value of b. The AKE advantage of an
adversary A is then defined as Advi®(.A) = 2 Pr[Succ] — 1. The protocol P is said
to be (t,¢)-AKE-secure if A’s advantage is smaller than ¢ for any adversary A
running with time ¢. Note that the advantage of an adversary that simply guesses
the bit b is 0 in the above definition due to the rescaling of the probabilities.

Forward-Secrecy. One additional security property to consider is that of for-
ward secrecy. A key exchange protocol is said to be forward-secure if the security
of a session key between two participants is preserved even if one of these par-
ticipants is later compromised. In order to consider forward secrecy, one has to
account for a new type of query, the Corrupt-query, which models the compromise
of a participant by the adversary. This query is defined as follows:

— Corrupt(U): This query returns to the adversary the long-lived key pw; for
participant U. As in [1], we assume the weak corruption model in which the
internal states of all instances of that user are not returned to the adversary.

In order to define the success probability in the presence of this new type of
query, one should extend the notion of freshness so as not to consider those
cases in which the adversary can trivially break the security of the scheme. In
this new setting, we say that a session key sk is F'S-Fresh if all of the following
hold: (1) the instance holding sk has accepted, (2) no Corrupt-query has been
asked since the beginning of the experiment; and (3) no Reveal-query has been
asked to the instance holding sk or to its partner (defined according to the

One-time Verifier-based Encrypted Key Exchange 53

session identification). In other words, the adversary can only ask Test-queries
to instances which had accepted before the Corrupt query is asked.

Let Succ denote the event in which the adversary successfully guesses the
hidden bit b used by Test oracle. The FS-AKE advantage of an adversary A
is then defined as Advi®~™(A) = 2 Pr[Succ] — 1. The protocol P is said to be
(t,e)-FS-AKE-secure if A’s advantage is smaller than ¢ for any adversary A
running with time ¢.

Verifier-Based and One-Time-Password Protocols. In order to mitigate
the amount of damage that can be caused by corruptions in the server and in
the client, we consider two extensions to the standard notion of EKE protocols
which we call Verifier-Based and One-Time-Password protocols.

In a Verifier-Based protocol, the goal is to keep the attacker capable of cor-
rupting the server from obtaining the password for all the clients in the system.
To achieve this goal, we need to adopt the asymmetric model in which the server
no longer knows the password of a user, but only a function of it, which we call
the verifier. In other words, only the client should know its password in a verifier-
based protocol. Even though off-line dictionary attacks cannot be avoided in this
case, the main idea of such protocols is to force an adversary who breaks into
a server to have to perform an off-line dictionary attack for each password that
it wants to crack based on its verifier. Therefore, the security of verifier-based
protocols is directly related to the difficulty of recovering the original password
from the verifier. In a One-Time-Password protocol, on the other hand, the goal
is to limit the damage caused by an attacker who breaks into a client’s machine
or sniffs the password. This is achieved by forcing the user to use a different
password in each session. That is, passwords are good for one session only and
cannot be reused.

3 Algorithmic Assumptions

The arithmetic is in a finite cyclic group G = {g) of order a ¢-bit prime number
q, where the operation is denoted multiplicatively. We also denote by G* the
subset G\{1} of the generators of G.

A (t,e)-CDH,4 ¢ attacker, in a finite cyclic group G of prime order ¢ with
g as a generator, is a probabilistic machine A running in time ¢ such that its
success probability Succ;‘fa(A), given random elements g* and g¥ to output ¢g*¥,

is greater than e:
Succit(4) = Pr[A(g”, ¢%) = g™] > &.

We denote by Succ;ii(g (t) the maximal success probability over every adversaries

running within time ¢. The CDH-Assumption states that Succ;‘fa(t) < ¢ for any

t/e not too large.
A (t,n,e)-GDH, ¢ attacker is a (t,¢)-CDHy g attacker, with access to an
additional oracle: a DDH-oracle, which on any input (9%, g, g*) answers whether

54 Michel Abdalla, Olivier Chevassut, and David Pointcheval

Client Server

pw € Password, PW* = G(A||S|pw), PW* = G(S||A|pw) € G

accept — false accept < false
zd Zq Y = Zq
X —g* Y «g¥
A X"
X* — X x PW* ’ X — X*/PW*
Y*
Y —Y*/PW* S, Y* Y x PW®
sk = H(A[S| XY ||pw|[Y™) sk = H(A[S XY [lpw| X¥)
accept « true accept « true

Fig. 1. An execution of the EKE protocol.

z = xy mod ¢. Its number of queries is limited to m. As usual, we denote by

Succidg (t) the maximal success probability over every adversaries running within

time t. The GDH-Assumption states that Succij(g (t) < e for any t/e not too large.

4 The EKE Protocol: Encrypted Key Exchange

4.1 Description of the Scheme

A hash function from {0,1}* to {0,1}¢ is denoted H. While G denotes a full-
domain hash function from {0,1}* into G. As illustrated on Figure 1 (with an
honest execution of the EKE protocol), the protocol runs between two parties
A and S, and the session-key space SK associated to this protocol is {0,1}*
equipped with a uniform distribution. It works as follows. The client chooses at
random a private random exponent x and computes its Diffie-Hellman public
value g”. The client encrypts the latter value using a password-based mask, as
the product of a Diffie-Hellman value with a full-domain hash of the password,
and sends it to the server. The server in turn chooses at random a private random
exponent y and computes its Diffie-Hellman public value ¢g¥ which it encrypts
using another password-based mask®. The client (resp. server) then decrypts the
flow it has received and computes the session key.

4.2 Security Result

In this section, we assert that under the intractability of the Diffie-Hellman prob-
lem, the EKE protocol, securely distributes session keys: the key is semantically

% this differs from the classical EKE protocol, which uses a common mask [7]. But this
helps to improve the security result.

One-time Verifier-based Encrypted Key Exchange 55

secure. The proof, which is an improvement of [7], can be found in the full version
of this paper.

Theorem 1 (AKE Security). Let us consider the above EKE protocol, over
a group of prime order q, where Password is a dictionary equipped with the dis-
tribution PW. Let A be an adversary against the AKE security within a time
bound t, with less than qs active interactions with the parties (Send-queries) and
qp passive eavesdroppings (Execute-queries), and, asking g4 and qp, hash queries
to G and 'H respectively. Then we have

(gp + q5)* + 3(qg + an)*
2q ’

AdV3E(A) < 2 x PW(gs) + 4qj x Succi it (t +57) +

where T, denotes the computational time for an exponentiation in G.

Let us now enhance the result to cover forward-secrecy. The proof will be
different from previous proofs for EKE-like protocols since the simulation still
must be independent of any password (so that we can say that the adversary
has a minute of chance to guess the correct one), while after a corruption the
adversary will be able to check the consistency. To reach this aim, we will need to
rely on a stronger assumption: the Gap Diffie-Hellman problem. The Decisional
Diffie-Hellman oracle will be used to identify the public random oracle H to the
private one H’ when the input is a valid Diffie-Hellman value.

Theorem 2 (FS-AKE Security). Let us consider the above EKE protocol,
over a group of prime order q, where Password is a dictionary equipped with the
distribution PW. Let A be an adversary against the FS-AKE security within
a time bound t, with less than qs active interactions with the parties (Send-
queries) and g, passive eavesdroppings (Execute-queries), and, asking q, and qn,
hash queries to G and H respectively. Then we have

(gp + q5)* +3(qq + qn)*
2q

eke ’

AdveS(A) < 2 x PW(gs) +4 Succii’&(qh, t+57) +

where T, denotes the computational time for an exponentiation in G.

Proof. As usual, we incrementally define a sequence of games starting at the
real game G(and ending up at Gs. We are interested in the event S, which
occurs if the adversary correctly guesses the bit b involved in the Test-query.
Let us remember that in this attack game, the adversary is provided with the
Corrupt-query.

GAME Ggq: This is the real protocol, in the random-oracle model. By definition
of event Sp, which means that the adversary correctly guesses the bit b involved
in the Test-query, we have

Adv3e™™(A) = 2 Pr[So] — 1.

GAME G;: In this game, we simulate the hash oracles (G and H, but also an
additional hash function H’ : {0,1}* — {0,1}¢ that will appear in the Game

56 Michel Abdalla, Olivier Chevassut, and David Pointcheval

For a hash-query G(gq) such that a record (q,r,x) appears in Ag, the answer is

% r. Otherwise the answer r is defined according to the following rule:
z

° »Rule GV

& Choose a random element r € G. The record (g,r, L) is
2]

= added to Ag.

)}

Note: the third component of the elements of this list will be explained later.
For a hash-query H(q) such that a record (g, r) appears in A5, the answer is 7.
Otherwise, ¢ is parsed as (A||S|| X*||Y*|[pw|/K), one first asks for G(A||.S||pw)
and G(S||Al|pw), using the above simulation, then the answer r is defined
according to the following rule:

»Rule H"
| Choose a random element r € {0, 1}

One adds the record (g, 7) to Axn.
For a hash-query H'(q), such that a record (g,r) appears in A3, the answer

is r. Otherwise, one chooses a random element r € {0, 1}Z, answers with it,
and adds the record (g,r) to Aqy.

Fig. 2. Simulation of the EKE protocol (random oracles)

G3) as usual by maintaining hash lists Ag, Ay and Ay (see Figure 2). Except
that we query G(A||S||pw) and G(S||Al|pw) as soon as A, S and pw appear in a
‘H-query. This just increases the number of G queries. We also simulate all the
instances, as the real players would do, for the Send-queries and for the Execute,

Reveal, Test and Corrupt-queries (see Figure 3).
From this simulation, we easily see that the game is perfectly indistinguish-

able from the real attack.

GAME Go: First, we cancel games in which some collisions appear:

— collisions on the transcripts ((4, X*), (S,Y™));
— collisions on the output of G.

2 2
Pr(Colly] < W £)" | (4s)"
2q 2q
GAME Gg3: In this game, we do not compute the session key sk using the oracle
'H, but using the private oracle H’ so that the value sk is completely independent

not only from H, but also from pw and thus from both K4 and Kg. We reach
this aim by using the following rule:

»Rule A3/S3()
| Compute the session key ska/s = H'(A[S| X*[[Y™*).

Since we do no longer need to compute the values K4 and Kg, we can also
simplify the second rules:

One-time Verifier-based Encrypted Key Exchange 57

We answer to the Send-queries to an A-instance as follows:

— A Send(A’, Start)-query is processed according to the following rule:
»Rule A1)
Choose a random exponent 0 € Z4, compute X = ge and
X* =X x PW*,
Then the query is answered with (A, X*), and the instance goes to an
expecting state.
— If the instance A’ is in an expecting state, a query Send(A,(S,Y™)) is
processed by computing the session key. We apply the following rules:
»Rule A2V

| Compute Y = Y*/PW* and K4 = Y".
»Rule A3
| Compute the session key ska = H(A[S|X*|Y*|lpw|/Ka).
Finally the instance accepts.

Send-queries to A

We answer to the Send-queries to a S-instance as follows:

n
E — A Send(S7, (A, X))-query is processed according to the following rules:
k3 »Rule S1"
< ‘ Choose a random exponent ¢ € Z4, compute Y = ¢g¥ and
7 Y*=Y x PW=.
2 Then the query is answered with (S,Y ™), and the instance applies the
A following rules.
»Rule S2(!)
| Compute X = X*/PW* and Ks = X¥.
»Rule S3
| Compute the session key sks = H(A||S||X*||Y*||pw| Ks).
Finally, the instance accepts.
. |An Execute(A®, §7)-query is processed using successively the above simu-
& |lations of the Send-queries: (A,X*) « Send(A‘,Start) and (S,Y™) «
£ |Send(S7, (A, X*)), and outputting the transcript ((A4, X*), (S,Y™)).
S A Reveal(U)-query returns the session key (ska or sks) computed by the
& |instance I (if the latter has accepted).
5 |A Test(U)-query first gets sk from Reveal(U), and flips a coin b. If b = 1, we

return the value of the session key sk, otherwise we return a random value
drawn from {0, 1}*.
A Corrupt(U)-query returns password pw of the user U.

Fig. 3. Simulation of the EKE protocol (Send, Reveal, Execute, Test and Corrupt
queries)

58 Michel Abdalla, Olivier Chevassut, and David Pointcheval

»Rule A2/S2()
| Do nothing.

The games Gz and Go are indistinguishable unless A queries the hash function
H on either A|S||X*||Y*||pw|Ka or A|lS||X*||Y*||pw| Ks, for some execution
transcript ((A, X™*), (S,Y™*)). We hope to prove that for all the transcripts of
accepted sessions, the probability of such an event is negligible. However, there
is no hope for proving it about sessions accepted after the corruption of the
password, since the adversary may know the x and thus K4 (or y and Kg). One
should note that sessions accepted after the corruption may have been started
before. There is no way in our simulation to anticipate different answers for the
Send-queries according to that. Therefore, we have to make answers from H and
H' (when they correspond to the same query, which can be checked with the
DDH-oracle) to be the same for sessions accepted after the corruption of the
password:

»Rule H®)
— Before the corruption, randomly choose 7 € {0,1}%.
— After the corruption, knowing the correct password, if
e pw is the correct password;
e A S, X* Y* corresponds to the session ID of a session ac-
cepted after the corruption;
o K = CDH, ¢(X*/PW* Y*/PW*) (checked using the DDH-
oracle);
then r is set to H'(A||S|| X*||Y™).
Else, choose a random element r € {0, 1}*.

This new rule for the simulation of H just replaces some random values by other
random values. The games G35 and G are now indistinguishable unless A queried
the hash function H on either A||S||X™*||Y™*||pw| K 4 or A||S|| X*||]Y™||pw| Ks, for
some accepted-session transcript ((4, X*), (S,Y™*)), before corrupting the pass-
word: event AskHbC. This means that, for some transcript ((4,X*),(S,Y™)),
the tuple (4, S, X*, Y*, pw, CDH, ¢ (X*/PW* Y*/PW*?)) lies in the list A.

On the other hand, the session key (associated to a session accepted before the
corruption) is computed with a random oracle that is private to the simulator,
then one can remark that it cannot be distinguished by the adversary unless
the same transcript ((A4, X*),(S,Y™*)) appeared in another session, for which
a Reveal-query has been asked (which event has been excluded in the previous
game). The adversary correctly guesses the bit b involved in the Test-query (event
S3) only by chance: Pr[Ss] = 1/2.

Actually, one does not need the Diffie-Hellman values K 4 or Kg for comput-
ing sk, but the password: we can formally simplify again some rules but thus
without modifying anything w.r.t. the probabilities:

»Rule A1®)

| Choose a random element z € Z, and compute X* = g*.

One-time Verifier-based Encrypted Key Exchange 59

»Rule S13)

| Choose a random element y € Z, and compute Y* = g¥.

GAME Gy4: In order to evaluate the probability of event AskHbC, let us modify
the simulation of the oracle G, with two random elements P, Q € G\{1} (which
are thus generators of G, since the latter has a prime order ¢). The simulation
introduces values in the third component of the elements of Ag, but does not use
it. It would let the probabilities unchanged, but we exclude the cases PW* =1
or PW* = 1:

»Rule G
— If ¢ = “A||S[|»", randomly choose k € Z7, and compute r = Pk,
— If ¢ = “S||A||¥”, randomly choose k € Z}, and compute r = Q~*;
— Else, choose a random element r € G, and set k = L.

The record (g, r, k) is added to Ag.

Since we just exclude k£ = 0, we have:

| Pr[AskHbC,] — Pr[AskHbCs] | < 919
q

GAME Gj5: It is now possible to evaluate the probability of the event AskHbC.
Indeed, one can remark that the password is never used during the simula-
tion, before the corruption. It thus does not need to be chosen in advance,
but at the time of the corruption (or at the very end only). At that time, one
can check whether the event AskHbC happened or not. To make this evalu-
ation easier, we cancel the games wherein for some pair (X*,Y*) € G2, in-
volved in a communication, there are two passwords pw such that the tuple
(A, S, X*,Y*, pw,CDH, ¢ (X*/PW*, Y*/PW*)) is in Ap (which event is de-
noted CollH5). Hopefully, event CollH5 can be upper-bounded, granted the fol-
lowing Lemma:

Lemma 1. For any pair (X*,Y*) involved in a communication, there is at most
one password pw such that (A, S, X*,Y*, pw, CDH, ¢ (X*/PW* Y*/PW*?)) is in
Ay, unless one can solve the Diffie-Hellman problem:

Pr[CollH5] < Succf}f’g(qh,t +57¢).
Proof. Assume there exist (X* = ¢%,Y* = ¢¥) € G? involved in a commu-
nication, PV\//?)5 = Pk £ 1, PWE = Q% £ 1, and PW* = P~h £ 1,
PW5* = Q%1 # 1 such that the two following tuples (for i = 0, 1) are in Ay:
(A, X7, Y", puo,, Z, = CDH, 6 (X* /PWIE,Y* /PW)).

Then, Z; = CDH, ¢ (X* x P¥Y* x Q¥). Since (X*,Y*) € G? has been involved
in a communication (either from Send-queries or an Execute-query), one of X* =

60 Michel Abdalla, Olivier Chevassut, and David Pointcheval

g* or Y* = g¥, has been simulated: at least one of x or y is known. Without loss
of generality, we can assume we know x:

Zi = (Y* x Q)® x CDH,c(Y*, P)" x CDHy g (P, Q)**:
zie 2 = (YRR < PWE PWER) x CDH, (P, Q)0 k)
CDH,6(P, Q) = (((PWF/Y™)"20)" / (PW /™) Z0))
where w is the inverse of kok1 (k] — k{)) in Z4. The latter exists since PWg®, PWg,
PW3®, PWT # 1, and they are all distinct from each other (we have excluded

collisions for G). Since we have access to a DDH-oracle, one can find the two
useful ‘H-queries. 0

For a more convenient analysis, we can split the event AskHbC in two disjoint
sub-cases:

1. AskHbC-Passive, where the transcript ((4, X*), (S,Y™)) involved in the cru-
cial H-query comes as an answer from an Execute-query;
2. AskHbC-Active, the other cases.

About the active case (the event AskHbC-Actives), the above Lemma 1 ap-
plied to games where the event CollH5 did not happen states that for each pair
(X*,Y™) involved in an active transcript, there is at most one pw such that the
corresponding tuple is in Azy:

Pr[AskHbC-Actives] < PW(gs).

Moreover, in the particular case of passive transcripts, one can state a stronger
result:

Lemma 2. For any pair (X*,Y™*) € G2, involved in a passive transcript, there
is no password pw such that (A, S, X*,Y*, pw, CDH, ¢ (X*/PW*,Y* /PW*?)) is
in Ay, unless one can solve the Diffie-Hellman problem:

Pr[AskHbC-Passives| < Succf&(qh, t+47.).

Proof. Assume there exist (X* = ¢%,Y* = g¢¥) € G? involved in a passive
transcript, and values PW® = P=% £ 1, PW® = Q% # 1 such that the tuple

(A, S, X*Y* pw, Z = CDH, ¢(X*/PW?, Y* /PW%))
is in Ax. Then, as above (but with « and y known),
CDHgaG(P7 Q) = (Z X P\Nsaz X PWaSy/gzy)u,

where u is the inverse of kk’ in Z,. By using the DDH-oracle, one easily gets the
crucial ‘H-query. a

One-time Verifier-based Encrypted Key Exchange 61

As a conclusion,
Pr[AskHbCs] < SuccE% (gn., t + 47.) + PW(qs).
Combining all the above equations, one gets

dh dh
e PW(qs) + Succ;G(qh ,2t +4r1.) + SL;CC?G(qh, t+57)
AdVeke (A) <2x qg + qn (Qg + Qh) (Q;D + QS)
+ + +
q 2q 2q

5 The OPKeyX Protocol

The basic EKE protocol withstands password corruption, by providing forward-
secrecy. But this just protects the secrecy of session keys established before the
corruption. Nothing is guaranteed for future sessions. We can even show that one
easily breaks the semantic security of their session keys, by simply impersonating
one of the parties with the knowledge of the password.

In the above protocol, the password can be extracted from both machines:
the server and the client. And moreover, the server stores many passwords (since
its is aimed at establishing sessions with many clients), then the corruption of
the server does not just leak one password, but a huge number of them. This
would be quite useful to be able to reduce the damages of such a corruption. We
propose below two different ways to achieve this task.

5.1 Stealing the Server Database

In a verifier-based protocol, the client owns a password, but the server just knows
a verifier of the latter (which is actually a hash value, or the image by a one-
way function), not the password itself. Hence, the corruption of the server just
reveals this verifier. Of course, an off-line dictionary attack thereafter leads to
the password. Such an exhaustive search cannot be prevented but should be the
most efficient one: by including salts (sent back to the client by the server in the
first flow) would reduce even more the impact of the corruption, since a specific
dictionary attack should be performed towards each specific user, and could not
be generic.

A verifier-based enhancement of EKE is proposed on Figure 4. It is basically
the previous EKE scheme using first the verifier as common password. Then,
the client furthermore proves his knowledge of the password which matches the
password-verifier relation. In our proposal, the relation is the pairs (x,¢”), and
thus the proof is a Schnorr-like proof of knowledge of a discrete logarithm [21],
with a multi-collision resistant function f [12]. To prevent dictionary attacks, we
introduce the Diffie-Hellman secret in the hash input to get the challenge e, so
that the latter can be computed by the two parties only: it is semantically secure
for external adversaries for exactly the same reasons the session key is. Because of

62 Michel Abdalla, Olivier Chevassut, and David Pointcheval

Client Server

pW e Zq pw = gPW
PW* = G(A]|S||pw), PW* = G(S||Al|pw) € G

accept « false accept < false
v & L, X — g y &Ly, Y — g
* sa S7 Y* * sa

Y —Y*/PW Y* Y x PW

X* — X x PW*
r &2 R—g",p=f(R)
e = Ha(A[IS| X*[[Y* | pllpw][Y®)

A X"
s=r—e-pwmod q R il 1L X — X*/PW=
e = Hai(AISI XYl pllpw|[Y™)
if p= f(g°pw°),

then accept < true

sk =HAS[XY |lpllpw][Y™) sk =HAS[XY [[pllpw]|X¥)

accept < true

Fig. 4. An execution of the VB-EKE protocol.

this semantic security, dictionary attacks are still prevented, since the additional
proof of knowledge does not reveal any information: the verification relation
is actually secret, because of the secrecy of e. As a consequence, the private
property of e makes that the proof does not leak any information about both
the password and the verifier to external parties. The zero-knowledge property of
this proof makes that even the server does not learn any additional information
about the password.

To improve efficiency, we also swapped the flows, so that the protocol remains
a 2-pass one. Indeed, the client has to be the last, since it has to send its proof of
knowledge of the password. By swapping the two flows of the basic EKE protocol,
the latter proof of knowledge can be concatenated to the last flow, which does
not increase the communication cost.

From a more practical point of view, this inversion better suits the Transport
Layer Security (TLS) protocol [22]. The flows of the VB-EKE protocol thus have
to comply with the key-exchange phase, which happens right after the hello flows
(the first is from the client to the server, then the second goes back from the
server to the client) and precedes the finish phase (the first finish message is
again from the client to the server). In short, the first message of the VB-EKE
protocol would simply map to the ServerKeyFxchange flows while the second
message to the ClientKeyFExchange message.

One-time Verifier-based Encrypted Key Exchange 63

Client Server

pw € Password, n, pw,, = f™(pw) n,pw = f(pw,)
PW* = G(A|S|pw), PW= = G(S||Allpw) € G

accept <+ false accept < false
v & Ly, X — g" Y& LgY — gt
S, Y* n N -

n correct? Y* Y xPW

Y «Y*/PW*
X* — X x PW*
s = Hi(A[|SI XY [pw]]Y™)
¢c= Ei(pw,) ——— X «— X*/PW*
s = Ha(ASIXTY ™ |[pw]]Y)
p = Ds(c),if pw = f(p),
then pw «— p,n «—n —1,
accept « true

sk = H(A[SII XY [[pw][Y*) sk = H(A|SIIX™[[Y*|[pw]| X¥)

accept < true

Fig.5. An execution of the OPKeyX protocol.

5.2 Capturing the Client Password

The above modified scheme does not really increase the communication cost,
since additional data can be concatenated to existing flows. But both parties
have more computation to do, and namely a few exponentiations. The password-
verifier relation can be more efficient, using any one-way function. However, for
such a general function, a zero-knowledge proof of knowledge of the password
may not be easy to perform. But the zero-knowledge property is not required,
if we move to the one-time password scenario: f(pw) is first used as a common
password, then the client eventually reveals the password, which will thereafter
be the future common data (or verifier) if pw = f™(seed) [17]. The computa-
tion of f™(pw) is performed by a one-time password generator which derives
successive passwords from a seed. Since one-time password generators do not
require reader devices they are much more adapted for the Grid environment
than contact tokens (e.g, smart-card, USB tokens). This discussion leads to the
One-time Password-enhanced version of VB-EKE which is proposed on Figure 5.
The communication of the password has indeed to be sent in a private way, since
it will become the future common data, hence the use of an ephemeral session
key, which is trivially semantically secure (due to Theorem 2).

64 Michel Abdalla, Olivier Chevassut, and David Pointcheval

6 Conclusion

This paper provides strong security arguments to support the EKE-like protocols
being standardized by the IEEE P1363.2 Standard working group (namely the
PPK series). We have reached this aim by slightly modifying the original AuthA
protocol (the two encryption primitives are instantiated using separate mask
generation functions but derived from a unique shared password) to be able
to achieve the security notion of forward-secrecy in a provably-secure way. Our
result is a slight departure from previously known results on EKE-like structures
since the security of AuthA is now based on the Gap Diffie-Hellman problem.
Moreover, we have extended AuthA into a One-time Password-authentication
and Key eXchange (OPKeyX) technology which allows a user to securely log
into his account using a remote un-trusted computer and limits the damages of
corruption of the server.

Acknowledgments

The authors would like to thanks Frank Siebenlist for invaluable discussions re-
lated to Grid computing. The first and third authors have been supported in part
by the European Commission through the IST Programme under Contract IST-
2002-507932 ECRYPT. The second author was supported by the Director, Office
of Science, Office of Advanced Scientific Computing Research, Mathematical In-
formation and Computing Sciences Division, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098. This document is report LBNL-56212.
Disclaimer available at http://www-library.1lbl.gov/disclaimer.

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Se-
cure Against Dictionary Attacks. In FEurocrypt ’00, LNCS 1807, pages 139-155.
Springer-Verlag, Berlin, 2000.

2. M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenti-
cated Key Exchange. Contributions to IEEE P1363. March 2000.

3. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Pro-
tocols Secure against Dictionary Attacks. In Proc. of the Symposium on Security
and Privacy, pages 72-84. IEEE, 1992.

4. S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-
Based Protocol Secure against Dictionary Attacks and Password File Compromise.
In Proc. of the 1st CCS, pages 244-250. ACM Press, New York, 1993.

5. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authenticated
Key Exchange Using Diffie-Hellman. In Furocrypt ’00, LNCS 1807, pages 156—171.
Springer-Verlag, Berlin, 2000.

6. E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for an efficient
password-based key exchange. In Proc. of the 10th CCS, pages 241-250. ACM
Press, New York, 2003.

7. E. Bresson, O. Chevassut, and D. Pointcheval. New Security Results on Encrypted
Key Exchange. In PKC ’04, LNCS, pages 145-159. Springer-Verlag, Berlin, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

One-time Verifier-based Encrypted Key Exchange 65

L. Fang, S. Meder, O. Chevassut, and F. Siebenlist. Secure Password-based Au-
thenticated key Exchange for Web Services In Proc. of the ACM Workshop on
Secure Web Services, 2004.

I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 2004.

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. Security Architecture for
Computational Grids. In Proc. of the 5th CCS, pages 83-92. ACM Press, New
York, 1998.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International J. Supercomputer Applications, 15(3),
2001.

M. Girault and J. Stern. On the Length of Cryptographic Hash-Values used in
Identification Schemes. In Crypto ’94, LNCS 839, pages 202—215. Springer-Verlag,
Berlin, 1994.

The Global Grid Forum (GGF). http://www.ggf .org.

N. Haller, C. Metz, P. Nesser, and M. Straw. RFC 2289: A One-Time Password
System. Internet Activities Board, February 1998.

IEEE Standard 1363.2 Study Group. Password-Based Public-Key Cryptography.
http://grouper.ieee.org/groups/1363/passwdPK.

J. Katz, R. Ostrovsky, and M. Yung. Forward secrecy in password-only key ex-
change protocols. In SCN’02, LNCS 2576, pages 29-44. Springer-Verlag, Berlin,
2002.

L. Lamport. Password Authentication with Insecure Communication. Communi-
cations of the ACM 24, 11:770-771, November 1981.

P. D. MacKenzie. The PAK suite: Protocols for password-authenticated key ex-
change. Technical Report 2002-46, DIMACS, 2002.

The Oasis standard body. http://www.oasis-open.org.

T. Okamoto and D. Pointcheval. The Gap-Problems: a New Class of Problems for
the Security of Cryptographic Schemes. In PKC ’01, LNCS 1992. Springer-Verlag,
Berlin, 2001.

C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryp-
tology, 4(3):161-174, 1991.

M. Steiner, P. Buhler, T. Eirich, and M. Waidner. Secure Password-Based Cipher
Suite for TLS. ACM Transactions on Information and System Security (TISSEC),
4(2):134-157, 2001.

