
SMASH - A Cryptographic Hash Function

Lars R. Knudsen

Department of Mathematics, Technical University of Denmark

Abstract. 1 This paper presents a new hash function design, which is different
from the popular designs of the MD4-family. Seen in the light of recent attacks
on MD4, MD5, SHA-0, SHA-1, and on RIPEMD, there is a need to consider
other hash function design strategies. The paper presents also a concrete hash
function design named SMASH. One version has a hash code of 256 bits and
appears to be at least as fast as SHA-256.

1 Introduction

A cryptographic hash function takes as input a binary string of arbitrary length
and returns a binary string of a fixed length. Hash functions which satisfy
some security properties are widely used in cryptographic applications such
as digital signatures, password protection schemes, and conventional message
authentication. In the following let H : {0, 1}∗ → {0, 1}n denote a hash function
which returns a string of length n. Most hash functions in use today are so-called
iterated hash functions, based on iterating a compression function. Examples of
iterated hash functions are MD4[19], MD5[20], SHA[13] and RIPEMD-160[7].
For a cryptographic hash function H, one is interested in the complexity of the
following attacks[16]:

– Collision: find x and x′ such that x′ 6= x and H(x) = H(x′),
– 2nd preimage: given an x and y = H(x) find x′ 6= x such that H(x′) = y,
– Preimage: given y = H(x), find x′ such that H(x′) = y.

Clearly the existence of a 2nd preimage implies the existence of a collision. In
a brute-force attack preimages and 2nd preimages can be found after about 2n

applications of H, and a collision can be found after about 2n/2 applications of
H. It is usually the goal in the design of a cryptographic hash function that no
attacks perform better than the brute-force attacks.

Often hash functions define an initial value, iv. The hash is then denoted
H(iv, ·) to explicitly denote the dependency on the iv. Attacks like the above,
but where the attacker is free to choose the value(s) of the iv are called pseudo-
attacks. The following assumptions are well-known and widely used in cryptol-
ogy (where ⊕ is the exclusive-or operation).

Assumption 1 Let g : {0, 1}n → {0, 1}n be a randomly chosen mapping. Then
the complexities of finding a collision, a 2nd preimage and a preimage are of the
order 2n/2, 2n, respectively 2n. Let f : {0, 1}n → {0, 1}n be a randomly chosen,
bijective mapping. Define the function h : {0, 1}n → {0, 1}n by h(x) = f(x)⊕ x
for all x. It is assumed that the expected complexity of finding collisions, 2nd
preimages and preimages for h is roughly the same as for g.
1 After the presentation of SMASH at FSE 2005, the proposal was broken[15].

Most popular hash functions are based on iterating a compression function,
which processes a fixed number of bits. The message to be hashed is split into
blocks of a certain length where the last block is possibly padded with extra
bits. Let h : {0, 1}n×{0, 1}` → {0, 1}n denote the compression function, where
n and ` are positive integers. Let m = m0 | m1 | . . . | mt be the message to be
hashed, where |mi| = ` for 0 ≤ i ≤ t. Then the hash value is taken as ht, where

hi = h(hi−1,mi),

for h0 = iv an initial, fixed value. The values {hi} are called the chaining
variables. If a message m cannot be split into blocks of equal length n, i.e., if
the last block consists of less than n bits, then a collision-free padding rule is
used. If x and y are two arbitrary different strings, then it must hold that the
corresponding padded strings are different.

For iterated hash functions the MD-strengthening (after Merkle [11] and
Damg̊ard [6]) is as follows. One fixes the iv of the hash function and appends
to a message some additional, fixed number of blocks at the end of the input
string containing the length of the original message. Then it can be shown
that attacks on the resulting hash function implies a similar attack on the
compression function.

There has been much progress in recent years in cryptanalysis of iterated
hash functions and attacks have been reported on MD4, MD5, SHA-0, reduced
SHA-1 and RIPEMD[2, 18, 21]. For these hash functions and for most other
popular iterated hash functions, the compression function takes a rather long
message and compresses this together with a shorter chaining variable (contain-
ing the internal state) to a new value of the chaining variable. E.g., in SHA-0
and SHA-1 the message is 512 bits and the chaining variable 160 bits. One way
of viewing this is, that the compression function defines 2160 functions from
512 bits to 160 bits (from message to output), but at the same time it defines
2512 functions (bijections) from 160 bits to 160 bits (from chaining variable to
output). If just a few of these functions are cryptographically weak, this could
give an attacker the open door for an attack.

In this paper we consider compression functions built from one, fixed bi-
jective mapping f : {0, 1}n → {0, 1}n. A related but different approach is in
[17]. In our model this leads to hash functions where the compression functions
themselves are not cryptographically strong, thus a result similar to the one by
Merkle and Damg̊ard, cf. above, cannot be proved. However, the constructions
have other advantages and it is conjectured that the resulting hash functions are
not easy to break, despite the fact that the compression functions are “weak”.

2 Compression functions from one bijective mapping

Our approach is to build an iterated hash function H : {0, 1}∗ → {0, 1}n from
one fixed, bijective mapping f : {0, 1}n → {0, 1}n. If this bijection is chosen
carefully, the goal or hope is that such a hashing construction is hard to attack.
Such constructions could potentially be built from using a block cipher with a
fixed value of the key.

2.1 Motivation for design

Consider iterated hash functions with compression functions h : {0, 1}n ×
{0, 1}n → {0, 1}n for which the computation of chaining variables is as fol-
lows: hi = h(A,B) = f(A) ⊕ B. Here f : {0, 1}n → {0, 1}n is a bijective
mapping and the inverse of f is assumed to be as easy to compute as f itself.
A and B are variables which depend on the chaining variable hi−1 and on the
message block mi. Ideally we would like to have an efficient (easy-to-compute)
transformation e(hi−1,mi) = (A, B). We do not want e to cause collisions so we
require that it is invertible. Since we want e to be an invertible function (very)
easy to compute, we shall also assume that the inverse of e is easy to compute.

For such compression functions it is possible to invert also h. Given an hi,
simply choose a random value of B, compute A = f−1(B⊕hi), then by inverting
e, find (hi−1,mi) which hash to hi. We shall assume that the complexity of
one application of e is small compared to one application of f and thus that
inverting h takes roughly time one, where one unit is one application of f (or
its inverse). It follows that it is easy to find both collisions and preimages for
the compression function. Next we examine what this means for similar attacks
on the hash functions (where a fixed value of h0 is assumed) induced by these
compression functions.

Inverting h as above enables a (2nd) preimage attack on H by a meet-in-
the-middle approach[10] of complexity about 2n/2+1, i.e., compute the values
of “hi−1” for 2n/2 messages (of each i − 1 blocks) and store them. For a fixed
value of hi choose 2n/2 random values of A,B (as above), which yield 2n/2

“random” values of “hi−1”. The birthday paradox gives the (2nd) preimage. If
f is a truly randomly chosen bijection on n bits (which is the aim for it to be)
then this (2nd) preimage attack is always possible on the constructions we are
considering. So the best we can do regarding (2nd) preimages is try to make
sure that the attacker does not have full control over the message blocks when
inverting h, in which case such preimages may be of lesser use in practice. Thus,
we want to avoid that given (any) hi−1,mi (and thereby hi) and m′

i, it is easy
to find h′i−1 such that (hi−1, mi) 6= (h′i−1,m

′
i) and hi = h′i, since in this case one

can find preimages for the hash function for meaningful messages also in time
roughly 2n/2.

This meet-in-the-middle attack is “irrelevant” regarding collisions, since the
complexity of a brute-force attack is 2n/2 regardless of the nature of the com-
pression function. For collisions it is important that when inverting h the at-
tacker does not have full control over the chaining variable(s) hi−1. If given
(any) hi−1, h

′
i−1, it is easy to find mi,m

′
i such that (hi−1,mi) 6= (h′i−1,m

′
i) and

hi = h′i then one can find a collision easily also for the hash function. Sim-
ply choose two messages m = m1, . . . , mi−1 and m′ = m′

1, . . . , m
′
i−1 (e.g., with

hi−1 6= h′i−1), where i ≥ 2, then the two i-block messages M = m | mi and
M ′ = m′ | m′

i yield a collision for the hash function.
The above is the motivation for examining the compression functions with

respect to the following two attacks:

– I: Given hi−1, h
′
i−1 find mi,m

′
i such that (hi−1,mi) 6= (h′i−1,m

′
i) and hi = h′i.

– II: Given hi−1,mi and m′
i, find h′i−1 such that (hi−1,mi) 6= (h′i−1, m

′
i) and

hi = h′i.

Consider first the simple e-functions where A,B ∈ {mi, hi−1,mi ⊕ hi−1}. With
the requirements for e above, this yields six possibilities for the compression
function, see the first column in Table 1. It follows that in all six cases either

Scheme Attack I Attack II

hi = f(hi−1)⊕mi easy easy
hi = f(mi)⊕ hi−1 easy easy
hi = f(hi−1)⊕mi ⊕ hi−1 easy ?
hi = f(mi)⊕mi ⊕ hi−1 ? easy
hi = f(hi−1 ⊕mi)⊕ hi−1 easy ?
hi = f(hi−1 ⊕mi)⊕mi ? easy

Table 1. Six compression functions.

the first or the second attack is easy to implement, in some cases both. So one
needs to consider more complex e-functions to achieve better resistance against
the two attacks. There may be many possible ways to build such functions; we
believe to have found a simple one.

First we note that there is a natural one-to-one correspondence between bit
vectors of length s and elements in the finite field of 2s elements. We introduce
“multiplication by θ” as follows.

Definition 1. Consider a ∈ GF (2)s. Let θ be an element of GF (2s) such that
θ 6∈ {0, 1}. Define the multiplication of a by θ as follows. View a as an element
of GF (2s), compute aθ in GF (2s), then view the result as an s-bit vector.

Let f : {0, 1}n → {0, 1}n be a bijective mapping and let ⊕ denote the exclusive-
or operation. Consider the compression function h : {0, 1}n×{0, 1}n → {0, 1}n:

h(hi−1,mi) = hi = f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi, (1)

where θ is as in Definition 1. Multiplication with certain values of θ can be done
very efficiently as we shall demonstrate later. Consider Attacks I and II from
before.

Attack I: Given hi−1 and h′i−1 the attacker faces the task of finding mi and
m′

i such that

f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi = f(h′i−1 ⊕m′
i)⊕ h′i−1 ⊕ θm′

i. (2)

Or in other words, with hi−1 ⊕ h′i−1 = α and mi ⊕m′
i = β one needs to find

two inputs to f of difference α⊕ β which yield outputs of difference α⊕ θβ for
a fixed value of θ. But if f is “as good as” a randomly chosen mapping, the
attacker has no control over the relation between the outputs for two different
inputs to f , and he has no better approach than the birthday attack. Note that
with mi⊕m′

i = hi−1⊕h′i−1 = α 6= 0 one never has a collision for h, since in this

case the difference in the outputs of f is zero and the difference in the outputs
of h is (θ + 1)α 6= 0.

Attack II: For fixed values of hi−1,mi and m′
i, the attacker faces the task

of finding h′i−1 such that Eq. 2 is satisfied. But in this case (1) has the form
of g(hi−1) ⊕ hi−1 ⊕ c1, where g(x) = f(x ⊕ c2) and where c1, c2 are constants.
Thus, under Assumption 1 (with sufficiently large n) attacks using a fixed value
of mi seem to be hard to mount.

Although the two attacks above do not seem to be easy to do for the pro-
posed compression function, it is clear that there are properties of it which are
not typical for compression functions. These are already discussed above but
we highlight them here again.

Inversion: (1) can be inverted. Given hi, choose an arbitrary value of a, com-
pute b = f−1(hi ⊕ a) = hi−1 ⊕ mi, then solve for hi−1 and mi. With θ as in
Definition 1 this can be accomplished by solving

(a b) = (hi−1 mi)

(
1 1
θ 1

)

which always succeeds, since θ 6= 1.

Forward prediction: Let hi−1 and h′i−1 be two inputs to (1) where α =
hi−1 ⊕ h′i−1. Choose a value for mi and compute m′

i = mi ⊕ α. Then

hi ⊕ h′i = f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi ⊕ f(h′i−1 ⊕m′
i)⊕ h′i−1 ⊕ θm′

i

= θα⊕ α.

The following is a list of potential problems of hash functions based on the
proposed compression function.

1. Collisions for the compression function.
2. Pseudo (2nd) preimages for the hash function.
3. (2nd) preimages for the hash function in time roughly 2n/2.
4. Non-random, predictable properties for the compression function.

Ad 1: It is easy to find collisions for the compression function, so it is not possible
to prove a result similar to that of Merkle and Damg̊ard, cf., the introduction.
However the simple approach, presented above, does not give the attacker any
control over the values of hi−1 and h′i−1 and it does not appear to be directly
useful in attempts to find a collision for the hash function (with a fixed iv).
Ad 2: Since h can be inverted it is trivial to find a (2nd) message and an ĩv which
is hashed to a given hash value. However, this approach given hi does not give
an attacker control over the value of hi−1 and this approach will not directly
lead to (2nd) preimages for the hash function (with a fixed iv). Moreover the
attacker has no control over mi.
Ad 3: Let there be given a hash value and an iv. Then since the compression
function is easily inverted, it was shown that (2nd) preimages can be found in
time roughly 2n/2 using a meet-in-the-middle attack. One can argue that this
is a weakness, however since for any hash function of size n there is a collision

attack of complexity 2n/2 based on the birthday paradox, one can also argue
that if this level of security is too low, then a hash function with a larger hash
result should be used anyway.
Ad 4: Consider the “Forward prediction” property above with some α 6= 0.
It follows that given the difference in two chaining variables one can find
two message blocks such that the values of the corresponding outputs of the
compression function is γ = α(θ + 1). This approach (alone) will never lead
to a collision since γ 6= 0. Note that the approach extends to longer mes-
sages. E.g., assume that for a pair of messages one has hi−1 ⊕ h′i−1 = α.
Then with mi+s ⊕ m′

i+s = hi−1+s ⊕ h′i−1+s for s = 0, . . . , t one gets that
hi+s ⊕ h′i+s = α(θ + 1)s+1. Note that although α(θ + 1)s+1 6= 0 for any s,
one can compute a long list of (intermediate) hash values without evaluating
h. Also there are applications of hash functions where it is assumed that the
output is “pseudorandom” (e.g., HMAC[4]).

2.2 The proposed hash function

To avoid some of the problems of the compression function as listed above, we
add some well-known elements in the design of the hash function. Let m be
the message to the hashed and assume that it includes padding bits and the
message length. Let m = m0,m1, . . . , mt, where each mi is of n bits. Let iv be
initial value to the hash function, compute

h0 = f(iv)⊕ iv (3)
hi = f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi for i = 1, . . . , t (4)

ht+1 = f(ht)⊕ ht (5)

As seen, we have introduced two applications of a secure compression function
based on f , namely one which from the user-selected iv computes h0 in a secure
fashion, and one which from ht computes the final hash result in a secure fashion.

It is conjectured that this hash function protects against pseudo-attacks,
since the attacker has no control over h0. Moreover because of the final appli-
cation of a secure compression function it is not possible to predict the final
hash value (using the approach of item 4 above). Also, the inclusion of the
message length in the padding bits complicates the utilization of long message
attacks, e.g., using the approach of item 4 above, see also [16, 9]. Finally, the
construction complicates preimage attacks, since the hash results are outputs
of a (conjectured) one-way function.

It is claimed that if f is (as good as) a randomly chosen bijective mapping on
n bits, then the complexity of the best approach for a preimage, 2nd preimage
or a collision attack on the proposed hash function is at least 2n/2.

2.3 θ = 0 and θ = 1

Consider the compression function above with θ = 0. Then

hi = f(hi−1 ⊕mi)⊕ hi−1 for i = 1, . . . , t

This variant of the compression function is easy to break. Choose two different
messages m1, . . . , mi−1 and m′

1, . . . , m
′
i−1 such that hi−1 6= h′i−1. Choose a value

of hi = h′i, and compute mi = f−1(hi−1⊕hi)⊕hi−1 and m′
i = f−1(h′i−1⊕h′i)⊕

h′i−1. Then there is a collision for the messages m1, . . . , mi and m′
1, . . . ,m

′
i.

Therefore, the proposed hash function should not be used with θ = 0. With
θ = 1 it follows that the pairs (hi−1,mi) and (h′i−1,m

′
i) collide when hi−1⊕mi =

h′i−1 ⊕m′
i.

3 SMASH

In this section a concrete hash function proposal is presented which has been
named SMASH.2 The version presented here has a 256-bit output, hence we
refer to it as SMASH-256. Another version with a 512-bit output is named
SMASH-512. These are therefore candidate alternatives to SHA-256 and SHA-
512 [14]. The designs of SMASH-256 and SMASH-512 are very similar but where
the former works on 32-bit words and the latter on 64-bit words. We focus on
SMASH-256 next, the details of SMASH-512 is in an appendix.

3.1 SMASH-256

SMASH-256 is designed particularly for implementation on machines using a
32-bit architecture. A 256-bit string y is then represented by eight 32-bit words,
y = y7, . . . , y0. We shall refer to y7 and y0 as the most significant respectively
least significant words.

SMASH-256 takes a bit string of length less than 2128 and produces a 256-bit
hash result. The outline of the method is as follows. Let m be a u-bit message.
Apply a padding rule to m (see later), split the result into blocks of 256 bits,
m1,m2, . . . , mt and do the following:

h0 = g1(iv) = f(iv)⊕ iv (6)
hi = h(hi−1,mi) = f(hi−1 ⊕mi)⊕ hi−1 ⊕ θmi for i = 1, . . . , t (7)

ht+1 = g2(ht) = f(ht)⊕ ht, (8)

where iv is an initial value. The hash result of a message m is then defined as
Hash(iv,m) = ht+1. The subfunctions g1, g2, and f all take a 256-bit input and
produce a 256-bit output and h takes a 512-bit input and produces a 256-bit
output. g1 is called the input transformation, g2 the output transformation, h is
called the compression function and f the “core” function, which is a bijective
mapping. g1 and g2 are of the same form, constructed under Assumption 1.

As a target value of the iv use the all zero 256-bit string.

Padding rule Let m be a t-bit message for t > 0. The padding rule is as
follows: append a ’1’-bit to m, then append u ‘0’-bits, where u ≥ 0 is the
minimum integer value satisfying

(t + 1) + u ≡ 128 mod 256.
2 smash /smaesh/: to break (something) into small pieces by hitting, throwing, or dropping,

often noisily

H1 ◦H3 ◦H2 ◦ L ◦H1 ◦H2 ◦H3 ◦ L ◦H2 ◦H1 ◦H3 ◦ L ◦H3 ◦H2 ◦H1(·)

Fig. 1. SMASH-256: Outline of f , the core function.

Append to this string a 128-bit string representing the binary value of t.

The compression function, h The function takes two arguments of each
256 bits, hi−1 and mi. The two arguments are exclusive-ored and the result
evaluated through f . The output of f is then exclusive-ored to hi−1 and to
θmi.

“Multiplication” by θ This section outlines one method to implement the
multiplication of a particular value of θ. As already mentioned there is a natural
one-to-one correspondence between bit vectors of length 256 with elements in
the finite field GF (2256). Consider the representation of the finite field defined
via the irreducible polynomial q(θ) = θ256 ⊕ θ16 ⊕ θ3 ⊕ θ⊕ 1 over GF (2). Then
multiplication of a 256-bit vector y by θ can be implemented with a linear shift
by one position plus an exclusive-or. Let z = θy, then

z =

{
ShiftLeft(y, 1), if msb(y) = 0
ShiftLeft(y, 1)⊕ poly1, if msb(y) = 1

,

where poly1 is the 256-bit representation of the element θ16 ⊕ θ3 ⊕ θ ⊕ 1, that
is, eight words (of each 32 bits) where the seven most significant ones have
values zero and where the least significant word is 0001000bx in hexadecimal
notation. In a 32-bit architecture the multiplication can be implemented as
follows. Let y = (y7, y6, y5, y4, y3, y2, y1, y0), where |yi| = 32, then θy = z =
(z7, z6, z5, z4, z3, z2, z1, z0), where for i = 1, . . . , 7

zi =

{
ShiftLeft(yi, 1), if msb(yi−1) = 0
ShiftLeft(yi, 1)⊕ 1, if msb(yi−1) = 1,

and where

z0 =

{
ShiftLeft(y0, 1), if msb(y7) = 0
ShiftLeft(y0, 1)⊕ 0001000bx, if msb(y7) = 1.

The core function, f The core function in SMASH-256 consists of several
rounds, some called H-rounds and some called L-rounds, see Figure 1. There are
three different H-rounds. In each of them a 4×4 bijective S-box is used together
with some linear diffusion functions. The S-box is used in “bit-slice” mode,
which was used also in the block cipher designs Three-way[5] and Serpent[3].
In the following let a = (a7, a6, a5, a4, a3, a2, a1, a0) be the 256-bit input to an
H-round, where each ai is of 32 bits. The outline of all H-rounds is the same, see
Figure 2, where a<<r is the word a rotated r positions to the left. (x, y, z, w) =
Sbs(x, y, z, w) means that for all i = 0, . . . , 31, the four ith bits from x, y, z, w

(a7, a6, a5, a4) = Sbs(a7, a6, a5, a4)

ai+4 = ai+4 + a<<ri
i for i = 0, . . . , 3

(a3, a2, a1, a0) = Sbs(a3, a2, a1, a0)

ai = ai + a
<<ri+4
i+4 for i = 0, . . . , 3

(a7, a6, a5, a4) = Sbs(a7, a6, a5, a4)

ai+4 = ai+4 + a
<<ri+8
i for i = 0, . . . , 3

(a3, a2, a1, a0) = Sbs(a3, a2, a1, a0)

ai = ai + a
<<ri+12
i+4 for i = 0, . . . , 3,

Fig. 2. SMASH-256: Outline of an H-round.

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

S1 : 6 13 12 7 15 1 3 10 8 11 5 0 2 4 14 9
S2 : 1 11 6 0 14 13 5 10 12 2 9 7 3 8 15 4
S3 : 4 2 9 12 8 1 14 7 15 5 0 11 6 10 3 13

Fig. 3. The SMASH-256 S-boxes.

are evaluated through a 4-bit bijective S-box (Sbs is short for S-box bit-slice)
using the convention that the bit from x is the most significant bit. In one
H-round the same particular S-box is used in all four bitslice applications. The
differences between H1, H2, and H3 are in the S-box used and in the rotations
used. For Hi the S-box used is Si, and the rotations are Ri, see Figures 3 and 4.
The L-round (there is only one) is defined as in Figure 5, where ShiftLeft(x, 8)
is the 32-bit quantity x shifted eight positions to the left and ShiftRight(x, 8)
is x shifted eight positions to the right.

3.2 Some ideas behind the design

In this section some further details of the design of the core function of SMASH-
256 are explained. Let a = (a7, a6, a5, a4, a3, a2, a1, a0) be a 256-bit variable,
where the ais are of 32 bits each. a represents the internal state of the compres-
sion function. We concentrate first of the design of the H-rounds and L-rounds
in the core function. Arrange the 256 bits of the internal state in a matrix as
follows.

a7 a6 a5 a4

a3 a2 a1 a0

Consider Figure 2. First a bitslice S-box is applied to the top row. Rotated
versions of the words in the top row are then added to words in the second row.
Then a bitslice S-box is applied to the second row, and rotated versions of words
of this result added to words in the top row. This is repeated once, such that in
total in one H-round, four bitslice S-box applications and four diffusion layers
are performed. The rotations in the H-rounds have been chosen such that each

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

R1 : 19 18 17 7 1 7 26 20 0 16 20 5 28 2 20 4
R2 : 22 29 12 4 18 2 13 29 26 20 16 29 18 4 10 9
R3 : 4 21 19 5 24 20 12 16 14 30 3 4 23 15 13 12

Fig. 4. The SMASH-256 rotations.

a3 = a3 ⊕ ShiftLeft(a7, 8)
a2 = a2 ⊕ ShiftLeft(a6, 8)
a1 = a1 ⊕ ShiftRight(a5, 8)
a0 = a0 ⊕ ShiftRight(a4, 8)

Fig. 5. SMASH-256: Outline of an L-round.

of the 256 bits in the internal memory is mixed with all other bits as quickly as
possible (relative to this design!). It is clear that with rotations and modular
additions all bits depend on all bits after a few steps. However, the H-rounds
were designed such that the dependencies between the bits are stronger than
just via the carry bits of the addition.

The diffusion layer. For the purpose of studying optimum diffusion func-
tions replace all additions in the H-rounds by exclusive-ors. Also, it shall be
assumed that each of the four output bits of an S-box depend on all four input
bits. Because of the bitslice method and the assumption on the S-box (that all
output bits depend on all input bits), it is convenient to consider only the 32
bit positions in words of the top row and 32 bit positions in the words of the
second row when discussing dependencies of bits. Consider one bit in the top
row of the input to an H-round. After the first bitslice S-box, this bit affects still
only one bit position (of 32 in total) in the top row. After the diffusion layer,
the bit affects in the best cases four bit positions in the second row (if the four
rotations r1, r2, r3, r4 are all different). After the bitslice of the second row, the
bit still only affects four bit positions in the second row, however after the next
diffusion layer, the bit affects up to 17 positions in the top row, where we have
counted also the initial single position from the beginning. After the subsequent
bitslice of the top row together with the diffusion layer, the bit affects in the
best cases all 32 positions in the second row, but still only 17 positions in the
top row. The fourth and last bitslice and diffusion layer of the H-round ensures
that the initial bit affects in the best cases all 32 positions of both the top and
the second row.

Consider next one bit in the second row of the input to an H-round. After
the first bitslice S-box and diffusion layer, this bit affects still only one bit
position in the second row and zero in the top row. After the next bitslice S-
box and diffusion layer, the bit affects (in the best case) four bit positions in the
top row (if the four rotations r5, r6, r7, r8 are all different) and one bit position
in the second row. After the subsequent bitslice of the top row together with
the diffusion layer, the bit affects 17 positions in the second row in the best
case, but still only 4 positions in the top row. After the fourth and last bitslice

and diffusion layer of the H-round the initial bit affects in the best cases all
32 positions of the top row and 17 positions of the second row. It is a simple
matter to implement a search algorithm which finds values of r0, . . . , r15 such
that the diffusion is optimum as outlined here. All H-rounds in SMASH-256 are
designed according to this strategy.

The L-round. Consider variants of SMASH-256 where the modular ad-
ditions are replaced by exclusive-ors. Let a be the 256-bit input to the core
function f . Then the following property holds for the H-rounds:

H(a)<<c = H(a<<c).

This property does not always hold when modular additions are used in the
H-rounds, that is,

(a + b)c = a<<c + b<<c, (9)

does not always hold, since there is no carry bit in the least significant bit of a
modular addition and since the carry in the most significant bit of a modular
addition is thrown away. However, empirical results show that equality holds in
(9) with a probability of about 1/4. Therefore we introduce the L-round, which
uses the shift operation. The shift operation is not invariant under rotations. We
believe that the L-round together with modular additions prevent exploitable
properties like (9) for the core functions in SMASH-256.

The S-boxes. The S-boxes are chosen as in the design of the block cipher
Serpent [3]. These are 4-bit permutations with the following properties:

– each differential characteristic has a probability of at most 1/4, and a one-bit
input difference will never lead to a one-bit output difference;

– each linear characteristic has a probability in the range 1/2 ± 1/4, and a
linear relation between one single bit in the input and one single bit in the
output has a probability in the range 1/2± 1/8;

The three S-boxes used in SMASH-256 are derived as linear variants of the
S-boxes S0, S2, and S4 from Serpent [3]. An implementation of SMASH-256 [1]
uses the bitslice implementations of the Serpent S-boxes from [12], which were
modified slightly to reduce the number of variables used in the program.

4 Short analysis of SMASH

There is very little theory in the design of cryptographic hash functions today
and it is very difficult to prove much about the security of these. Therefore it
is not possible to give a precise analysis of cryptographic hash functions like
SMASH. In this section we consider a few general attacks and (try to) argue
that they are unlikely to succeed.

SMASH-256 consists of a total of 48 S-box layers. Differential characteristics
with one active S-box per S-box layer are not possible due to the above design
criteria. A very crude estimate is that there are at least three active S-boxes
per every two S-box layers. Since the most likely differential characteristic for
one layer has probability 2−2 this leads to a complexity of ((2−6)24)−1 = 2144

for a differential characteristic for the function f . A linear characteristic for

one S-box layer has a bias of at most 2−2. An analogue crude estimate for lin-
ear cryptanalysis gives a complexity of 2144. Since the aim for SMASH-256 is
a security level of 2128 it is believed that (traditional) approaches in differen-
tial and linear cryptanalysis are unlikely to be very efficient when applied to
SMASH-256.

Dobbertin’s attacks on MD4 and MD5 as well as the recent attacks[2, 18]
on SHA-0 and SHA-1 exploit that the attacker has much freedom to influence
many of the individual steps of the respective compression functions, namely
through the message blocks. SMASH is different from the SHA-designs in that
the message is input at the beginning (at step 0) only, and it seems this gives
an attacker much less room to play. This is not a proof that these attacks will
not work and the readers are invited to apply them (or variants of them) to
SMASH.

5 Performance

An implementation of SMASH-256 [1] shows a performance of about 30 cycles
per byte in a pure C-implementation. For comparison the implementation of
SHA-256 by B. Gladman [8] produced a speed of 40 cycles per byte on the
same platform using the same compiler. Speeds of about 21 cycles per byte for
SHA-256 have been reported in an assembler implementation. It is expected
that an assembler implementation of SMASH-256 would likewise increase the
performance.

6 Finishing remarks

We have presented a new approach in hash function design together with a
concrete proposal for a hash function. The proposal deviates from the most
popular hash function designs in use today, in that only one, fixed and bijective,
(supposedly strong) cryptographic mapping is used. After the presentation at
FSE 2005 SMASH was broken. In [15] it is shown that it is possible to find
messages with 256 blocks which collide when compressed through SMASH-256.
There appears to be a similar attack on SMASH-512 for messages of 512 blocks.
The attack makes use of the “forward prediction” together with some differential
techniques. It appears that there are several ways to modify SMASH to thwart
the new attacks. One is to use different f functions for every iteration[15].
Another is to use a secure compression function not only in the first and last
iteration (see (3)-(5)) but after the processing of every n blocks of the message
for, say, n = 8 or n = 16.

One interesting avenue for further research is compression function designs
using two (or more) fixed, bijective mappings.

7 Acknowledgments

The author would like to thank Martin Clausen for many discussions regarding
this paper and for implementing SMASH-256.

References

1. Martin Clausen. An implementation of SMASH-256. Private communications.

2. E. Biham, R. Chen. Near-Collisions of SHA-0. In Matt Franklin, editor, Advances in
Cryptology: CRYPTO’2004, Lecture Notes in Computer Science 3152. Springer Verlag,
2004.

3. R.J. Anderson, E. Biham, and L.R. Knudsen. SERPENT - a 128-bit block ci-
pher. A candidate for the Advanced Encryption Standard. Documentation available at
http://www.ramkilde.com/serpent.

4. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authenti-
cation. In Neal Koblitz, editor, Advances in Cryptology: CRYPTO’96, Lecture Notes in
Computer Science 1109, pages 1–15. Springer Verlag, 1996.

5. J. Daemen. A new approach to block cipher design. In R. Anderson, editor, Fast Software
Encryption - Proc. Cambridge Security Workshop, Cambridge, U.K., Lecture Notes in
Computer Science 809, pages 18–32. Springer Verlag, 1994.

6. I.B. Damg̊ard. A design principle for hash functions. In G. Brassard, editor, Advances
in Cryptology: CRYPTO’89, Lecture Notes in Computer Science 435, pages 416–427.
Springer Verlag, 1990.

7. H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A strenghened version of
RIPEMD. In Gollmann D., editor, Fast Software Encryption, Third International Work-
shop, Cambridge, UK, February 1996, Lecture Notes in Computer Science 1039, pages
71–82. Springer Verlag, 1996.

8. Brian Gladman. Available at
http://fp.gladman.plus.com/cryptography technology/sha/index.htm

9. X. Lai. On the design and security of block ciphers. In J.L. Massey, editor, ETH Series
in Information Processing, volume 1. Hartung-Gorre Verlag, Konstanz, 1992.

10. X. Lai and J.L. Massey. Hash functions based on block ciphers. In Advances in Cryptology -
EUROCRYPT’92, Lecture Notes in Computer Science 658, pages 55–70. Springer Verlag,
1993.

11. R. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances in Cryp-
tology - CRYPTO’89, Lecture Notes in Computer Science 435, pages 428–446. Springer
Verlag, 1990.

12. D.A. Osvik. Speeding Up Serpent, Third Advanced Encryption Standard Candidate Con-
ference, April 13–14, 2000, New York, USA, pp. 317-329, NIST, 2000.

13. NIST. Secure hash standard. FIPS 180-1, US Department of Commerce, Washington
D.C., April 1995.

14. NIST. Secure hash standard. FIPS 180-2, US Department of Commerce, Washington
D.C., August 2002.

15. N. Pramstaller, C. Rechberger, and V. Rijmen. Smashing SMASH. The IACR Eprint
Archive, 2005/081.

16. B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, Katholieke
Universiteit Leuven, January 1993.

17. B. Preneel, R. Govaerts, and J. Vandewalle. On the power of memory in the design of
collision resistant hash functions. In J. Seberry and Y. Zheng, editors, Advances in Cryp-
tology: AusCrypt 92, Lecture Notes in Computer Science 718, pages 105–121. Springer
Verlag, 1993.

18. V. Rijmen. Update on SHA-1. Accepted for presentation at CT-RSA’2005.

19. R.L. Rivest. The MD4 message digest algorithm. In S. Vanstone, editor, Advances in Cryp-
tology - CRYPTO’90, Lecture Notes in Computer Science 537, pages 303–311. Springer
Verlag, 1991.

20. R.L. Rivest. The MD5 message-digest algorithm. Request for Comments (RFC) 1321,
Internet Activities Board, Internet Privacy Task Force, April 1992.

21. X. Wang, D. Feng, X. Lai, H. Yu. Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199. Available at
eprint.iacr.org/2004/199.

H1,3,2 ◦ L ◦H2,3,1 ◦ L ◦H1,2,3 ◦ L ◦H2,1,3 ◦ L ◦H3,2,1 ◦ L ◦H3,1,2(·)

Fig. 6. SMASH-512: Outline of f , the core function, where Ha,b,c denotes Ha ◦Hb ◦Hc.

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

R1 : 56 40 24 8 55 48 61 14 37 13 25 17 61 29 13 45
R2 : 24 8 48 32 12 62 57 35 1 45 33 13 4 60 12 20
R3 : 8 56 48 0 22 21 7 44 34 30 62 2 58 50 34 10

Fig. 7. The SMASH-512 rotations.

SMASH-512

SMASH-512 takes a bit string of length less than 2256 and produces a 512-bit
hash result. The outline of the method is as follows. Let m be a u-bit message.
Apply a padding rule to m (see later), split the result into blocks of 512 bits,
m1,m2, . . . , mt and do as in (6), (7), and (8). The hash result of a message m
is the defined as Hash(iv,m) = ht+1. The subfunctions g1, g2, and f all take a
512-bit input and produce a 512-bit output and h takes a 1024-bit input and
produces a 512-bit output. As a target value of the iv use the all zero 512-bit
string. The design is very similar to that of SMASH-256, the main difference is
that the latter is designed for 32-bit architectures whereas SMASH-512 is for
best suited for 64-bit architectures.

Consider the representation of the finite field GF (2512) defined via the irre-
ducible polynomial q(θ) = θ512⊕θ8⊕θ5⊕θ2⊕1 over GF (2). Then multiplication
by θ can be defined by a linear shift by one position and an exclusive-or. In a
64-bit architecture the multiplication can be implemented as follows. Let y =
(y7, y6, y5, y4, y3, y2, y1, y0), where |yi| = 64, then θy = z = (z7, z6, z5, z4, z3, z2, z1, z0),
where for i = 1, . . . , 7

zi =

{
ShiftLeft(yi, 1), if msb(yi−1) = 0
ShiftLeft(yi, 1)⊕ 1, if msb(yi−1) = 1,

and where

z0 =

{
ShiftLeft(y0, 1), if msb(y7) = 0
ShiftLeft(y0, 1)⊕ 0000000000000125x, if msb(y7) = 1.

The core function in SMASH-512 consists of a mix of 18 H-rounds and five
L-rounds, see Figure 6. The differences between the H-rounds of SMASH-256
and of SMASH-512 are in the rotations used. The outline is the same as for
SMASH-256, see Figure 2, as are the S-boxes. The rotations for SMASH-512 are
in Figure 7. The definition of the L-round is the same as the one for SMASH-256,
see Figure 5.

Padding rule Let m be a t-bit message for t > 0. The padding rule is as
follows: append a ’1’-bit to m, then append u ‘0’-bits, where u ≥ 0 is the

minimum integer value satisfying

(t + 1) + u ≡ 256 mod 512.

Append to this string a 256-bit string representing the binary value of t.

