
New Applications of T-functions in

Block Ciphers and Hash Functions

Alexander Klimov and Adi Shamir

Computer Science department,
The Weizmann Institute of Science,

Rehovot 76100, Israel
{ask,shamir}@wisdom.weizmann.ac.il

Abstract. A T-function is a mapping from n-bit words to n-bit words
in which for each 0 ≤ i < n, bit i of any output word can depend only on
bits 0, 1, . . . , i of any input word. All the boolean operations and most
of the numeric operations in modern processors are T-functions, and
all their compositions are also T-functions. Our earlier papers on the
subject dealt with “crazy” T-functions which are invertible mappings
(including Latin squares and multipermutations) or single cycle permu-
tations (which can be used as state update functions in stream ciphers).
In this paper we use the theory of T-functions to construct new types of
primitives, such as MDS mappings (which can be used as the diffusion
layers in substitution/permutation block ciphers), and self-synchronizing
hash functions (which can be used in self-synchronizing stream ciphers
or in “fuzzy” string matching applications).

1 Introduction

There are two basic approaches to the design of secret key cryptographic schemes,
which we can call “tame” and “wild”. In the tame approach we try to use only
simple primitives (such as linear mappings or LFSRs) with well understood
behavior, and try to prove mathematical theorems about their cryptographic
properties. Unfortunately, the clean mathematical structure of such schemes can
also help the cryptanalyst in his attempt to find an attack which is faster than
exhaustive search. In the wild approach we use crazy compositions of operations
(which mix a variety of domains in a non-linear and non-algebraic way), hoping
that neither the designer nor the attacker will be able to analyze the mathemati-
cal behavior of the scheme. The first approach is typically preferred in textbooks
and toy schemes, but real world designs often use the second approach.

In several papers published in the last few years [4–6] we tried to bridge this
gap by considering “semi-wild” constructions, which look like crazy combinations
of boolean and arithmetic operations, but have many analyzable mathematical
properties. In particular, in these papers we defined the class of T-functions
which contains arbitrary compositions of plus, minus, times, and, or, and xor
operations on n-bit words, and showed that it is easy to analyze their invertibility
and cycle structure for arbitrary word sizes. This led to the efficient construction

of multipermutations and stream ciphers. In this paper we explore additional ap-
plications of the theory of T-functions, which do not depend on their invertibility
or cycle structure. In particular, we develop new classes of MDS mappings for
block ciphers and hash functions, self-synchronizing stream ciphers, and self-
synchronizing hash functions which can be used in “fuzzy” string matching to
compare strings with a relatively large edit distance.

2 Basic definitions

Let us first introduce our notation. We denote the set {0, 1} by B. We denote
by [x]i bit number i of word x (with [x]0 being the least significant bit). We
use the same symbol x to denote the n-bit vector ([x]n−1, . . . , [x]0) ∈ B

n and an

integer modulo 2n, with the usual conversion rule: x←→
∑n−1

i=0 2i[x]i.
A collection of m n-bit numbers is described either as a column vector of

values or as an m × n bit matrix x. We start numbering its rows and columns
from zero, and refer to its i-th row xi−1,? as xi−1 and to its j-th column x?,j−1

as [x]j−1.
The basic operations we allow in our mappings are the following primitive

operations : “+”, “−”, “×” (addition, subtraction, and multiplication modulo 2n),
“∨”, “∧”, and “⊕” (bitwise or, and, and xor on n-bit words). Note that left shift
is allowed (since it is equivalent to multiplication by a power of two), but right
shift and circular rotations are not included in this definition, even though they
are available as basic machine instructions in most microprocessors. It does not
mean that we exclude them from further consideration, we just want to use them
in a more restricted way.

Definition 1 (T-function). A function f from B
m×n to B

l×n is called a T-
function if the k-th column of the output [f(x)]k−1 depends only on the first k
columns of the input [x]k−1, . . . , [x]0 :

[f(x)]0 = f0([x]0),
[f(x)]1 = f1([x]0, [x]1),
[f(x)]2 = f2([x]0, [x]1, [x]2),

...
[f(x)]n−1 = fn−1([x]0, . . . , [x]n−2, [x]n−1).

(1)

The name is due to the Triangular form of (1). It turns out that T-functions
are very common since any combination of constants, variables, and primitive
operations is a T-function.

Definition 2. A T-function is called a parameter (and denoted by a Greek letter
such as α) if each bit-slice function fi does not depend on [x]i.

If T-functions can be viewed as triangular matrices, then parameters can
be viewed as triangular matrices with zeroes on the diagonal (note that these
functions are typically non-linear, and thus the matrix form is a visualization

metaphor rather than an actual definition). The name “parameter” usually refers
to some unspecified constant in an expression, and in this context we use it to
denote that in many applications it suffices to analyze the dependence of a bit-
slice of the output [f(x)]i only on the current bit-slice of the input [x]i, and to
consider the effect of all the previous bit-slices of the input (e.g., in the form of
addition or multiplication carries) as unspecified values.

Given an arbitrary expression with primitive operations, we can recursively
apply the following rules to produce a simple representation of its bit-slice map-
pings using such unspecified parameters. Note that in this representation we
only have to distinguish between the least significant bit-slice and all the other
bit-slices, regardless of the word length n:

Theorem 1. For i > 0 the following equalities hold

[x× y]0 = [x]0 ∧ [y]0,
[x± y]0 = [x]0 ⊕ [y]0,
[x⊕ y]0 = [x]0 ⊕ [y]0,
[x ∧

∨ y]0 = [x]0
∧

∨ [y]0,

[x× y]i = [x]iα[y]
0
⊕ α[x]

0
[y]i ⊕ αxy,

[x± y]i = [x]i ⊕ [y]i ⊕ αx±y,

[x⊕ y]i = [x]i ⊕ [y]i,
[x ∧

∨ y]i = [x]i
∧

∨ [y]i,

(2)

where the unspecified parameters α’s denote the dependence of the subscripted
operation on previous bit-slices.

Consider, for example, the following mapping: x→ x+ (x2 ∨ 5).

[

x+ (x2 ∨ 5)
]

0
= [x]0 ⊕

[

x2 ∨ 5
]

0
= [x]0 ⊕

([

x2
]

0
∨ [5]0

)

= [x]0 ⊕ 1

and, for i > 0,

[

x+ (x2 ∨ 5)
]

i
= [x]i⊕

[

x2 ∨ 5
]

i
⊕αx+(x2∨5) = [x]i⊕

([

x2
]

i
∨ [5]i

)

⊕αx+(x2∨5)

= [x]i ⊕ ([x]iα[x]
0
⊕ α[x]

0
[x]i ⊕ αx2) ∨ [5]i ⊕ αx+(x2∨5)

= [x]i ⊕ αx2 ∨ [5]i ⊕ αx+(x2∨5) = [x]i ⊕ α.

This mapping is clearly invertible since we can uniquely recover the consecutive
bit-slices of the input (from LSB to MSB) from the given bit-slices of the output.
A summary of the simplest recursive constructions of parameters can be found
in Figure 1 at the end of the paper.

3 A New Class of MDS mappings

In this section we consider the efficient construction of new types of MDS map-
pings, which are a fundamental building block in the construction of many block
ciphers. Unlike all the previous constructions, our mappings are non-linear and
non-algebraic, and thus they can provide enhanced protection against differential
and linear attacks.

Let X be a finite set and φ be an invertible mapping on m-tuples of val-
ues from X (φ : Xm → Xm). Let y = φ(x) and y′ = φ(x′), where x =

(x0, . . . , xm−1)
T , y = (y0, . . . , ym−1)

T , and, similarly, x′ = (x′0, . . . , x
′
m−1)

T ,
y′ = (y′0, . . . , y

′
m−1)

T , and x 6= x′. Let dx be the number of i’s such that
xi 6= x′i, and, similarly, let dy be the number of differences between y and y′. Let
Dφ = minx,x′(dx + dy). Since dy ≤ m and dx can be equal to 1 it follows that
Dφ ≤ m+ 1 for arbitrary φ.

Definition 3. A mapping φ is called Maximum Distance Separable (MDS) if
Dφ = m+ 1.1

If we use φ as a diffusion layer in a Substitution Permutation2 encryption
Network (SPN),3 then every differential [1] or linear [7] characteristic has at least
Dφ active S-boxes in each pair of consecutive layers of the network. Using this
property we can demonstrate resistance to differential and linear cryptanalysis,
because in combination with the probability bounds on a single S-box it provides
an upper bound on the probability of any differential or linear characteristic.
Consequently, MDS mappings are used in many modern block cipher designs
including AES [3].

Common constructions of MDS mappings use linear algebra over the finite
field GF (2n). This makes the analysis easier, but has the undesirable side effect
that a linear diffusion layer by itself is “transparent” (i.e., has transition proba-
bility of 1) to differential and linear attacks. If we could use a “non-transparent”
MDS diffusion layer we would simultaneously achieve two goals by spending the
same computational effort—forcing many S-boxes to be active and further re-
ducing the upper bound on the probability of characteristics in each diffusion
layer.

One way to construct a linear MDS mapping over a finite field is to use the
following method. Let

W(a0, . . . , am−1) =

1 a0 a2
0 . . . am−1

0

1 a1 a2
1 . . . am−1

1
...

...
...

. . .
...

1 am−1 a
2
m−1 . . . a

m−1
m−1

.

It is known that if all the ai are distinct then this matrix is non-singular. Consider
the following mapping

x→ y =W(a0, . . . , am−1)W
−1(am, . . . , a2m−1)x.

1 In our definition φ can be an arbitrary mapping, even though the name MDS usually
relates to linear mappings or error correcting codes. The alternative definition which
counts the number of non-zero entries in a single input/output pair is applicable only
to linear codes.

2 Note that the name “permutation” here is due to the historical tradition since mod-
ern designs use for diffusion not a bit permutation (as, e.g., in DES) but a general
linear or affine transformation (as, e.g., in AES).

3 Alternatively φ can be used as a diffusion layer in a Feistel construction. Note that
in this case φ need not to be calculated backwards even during decryption.

Let us show that if all the ai’s are distinct then this mapping is MDS. Let

p =W−1(am, . . . , a2m−1)x.

If we consider p as the vector of the coefficients of a polynomial then

xi = p0 + p1am+i + p2a
2
m+i + · · · + pm−1a

m−1
m+i = p(ai+m),

yi = p0 + p1ai + p2a
2
i + . . . + pm−1a

m−1
i = p(ai).

The number of common values c of two distinct polynomials (p and p′, defined
by the two sets of input/output values) of degree m − 1 is at most m − 1 and
thus the number of unequal pairs of primed and non-primed values among all
the inputs and outputs satisfies

d = dx + dy = 2m− c ≥ m+ 1.

Consider an example in F23 (modulo b = 10112 = t3 + t+ 1):

W(1, 2, 3)×W−1(4, 5, 6) =

1 1 1

1 2 4

1 3 5

×

4 3 6

4 7 3

5 6 3

 =

5 2 6

5 3 7

4 2 7

 . (3)

Notice that this mapping uses multiplication in a finite field. We prefer
to use arithmetic modulo 2n, which is much more efficient in software imple-
mentations on modern microprocessors, and would also like to mix arithmetic
and boolean operations in order to make cryptanalysis harder. The general T-
function methodology in such cases can be summarized as follows:

1. Find a skeleton bitwise mapping from 1-bit inputs to 1-bit outputs which
has the desired property (e.g., invertibility).

2. Extend the mapping in a natural way to n-bit words.
3. Add some parameters in order to obtain a larger class of mappings with the

same bit-slice properties, and to provide some inter–bit-slice mixing.
4. Change some ⊕ operations to plus or minus, using the fact that they have

the same bit-slice mappings (up to the exact definition of some parameters).

Let us apply this T-function methodology to the construction of an MDS
mapping with m = 3 input words. First of all, we have to represent xi as a bit
vector (xi,u, xi,v , xi,w) and represent (3) as a mapping of bits:

y0,u = (x0,w) ⊕ (x1,v) ⊕ (x2,v ⊕ x2,u ⊕ x2,w),
y0,v = (x0,u) ⊕ (x1,u ⊕ x1,w) ⊕ (x2,w ⊕ x2,v),
y0,w = (x0,w ⊕ x0,v) ⊕ (x1,u) ⊕ (x2,u ⊕ x2,v),

y1,u = (x0,w) ⊕ (x1,u ⊕ x1,v) ⊕ (x2,v ⊕ x2,w),
y1,v = (x0,u) ⊕ (x1,v ⊕ x1,u ⊕ x1,w) ⊕ (x2,w),
y1,w = (x0,w ⊕ x0,v) ⊕ (x1,w ⊕ x1,u) ⊕ (x2,w ⊕ x2,u ⊕ x2,v),

y2,u = (x0,u ⊕ x0,w) ⊕ (x1,v) ⊕ (x2,v ⊕ x2,w),
y2,v = (x0,u ⊕ x0,v) ⊕ (x1,u ⊕ x1,w) ⊕ (x2,w),
y2,w = (x0,v) ⊕ (x1,u) ⊕ (x2,w ⊕ x2,u ⊕ x2,v).

Note that multiplication in our field works as follows:

(xi,u, xi,v , xi,w)× 1 = (xi,u, xi,v , xi,w),
(xi,u, xi,v , xi,w)× 2 = (xi,v , xi,w ⊕ xi,u, xi,u),
(xi,u, xi,v , xi,w)× 4 = (xi,w ⊕ xi,u, xi,u ⊕ xi,v , xi,v).

So, for example, to get the topmost-leftmost block we calculate

5x0 = 1x0 ⊕ 4x0 =

x0,u ⊕ (x0,w ⊕ x0,u)
x0,v ⊕ (x0,u ⊕ x0,v)
x0,w ⊕ x0,v

 =

x0,w

x0,u

x0,w ⊕ x0,v

 .

Let us now consider each xi,· and yi,· not as a single-bit variable but as
a whole n-bit word, so each xi and yi is now of length 3n. Suppose that for
(x0, . . . , xm)T and (x′0, . . . , x

′
m)T the number of differences dx = D > 0, that is

there areD values of i such that xi 6= x′i. It follows that in each bit-slice d[x]j
≤ D

and so, since at least one bit-slice was changed and the bit-slice mapping

[x0]j
...

[xm−1]j

→

[y0]j
...

[ym−1]j

is MDS, it follows that d[y]
j
≥ m + 1 − D, and thus dy ≥ m + 1 − D, that is

dx + dy ≥ m+ 1, and thus the whole mapping x→ y is also MDS.
Our next goal is to introduce arbitrary parameters in order to define a much

larger class of mappings. Note that if

x0

...
xm−1

→

y0
...

ym−1

is MDS then

x0

...
xm−1

→

φ0(y0)
...

φm−1(ym−1)

,

where the φi’s are any invertible mappings, is also MDS. Since φ : x → x ⊕ α
is an invertible mapping it follows that the introduction of additive parameters
preserves the MDS property of bit-slices. Consequently, we can replace some
“⊕”s with “+”s or “−”s, and add arbitrary parameters in order to obtain the
following “crazier” mapping which is also provably MDS:

y0,u = x0,w − (x1,v ⊕ x2,v) + (x2,u ⊕ x2,w) ⊕ 2x0,ux1,v ,

y0,v = (x0,u + x1,u − (x1,w ⊕ x2,w))⊕ x2,v ⊕ 2x0,vx1,w,

y0,w = x0,w ⊕ (x0,v + x1,u)⊕ x2,u ⊕ x2,v ⊕ 2x0,wx2,u,

y1,u = x0,w + (x1,u ⊕ x1,v ⊕ x2,v) + x2,w ⊕ 2x1,ux2,v ,

y1,v = x0,u ⊕ (x1,v + x1,u − x1,w)⊕ x2,w ⊕ 2x1,vx2,w,

y1,w = (x0,w − x0,v − x1,w)⊕ x1,u ⊕ (x2,w − (x2,u ⊕ x2,v)) ⊕ 2x1,wx0,u,

y2,u = x0,u ⊕ (x0,w + x1,v + x2,v)⊕ x2,w ⊕ 2x2,ux0,v ,

y2,v = x0,u − x0,v + (x1,u ⊕ x1,w ⊕ x2,w) ⊕ 2x2,vx0,w,

y2,w = (x0,v + x1,u ⊕ x2,w)− (x2,u ⊕ x2,v) ⊕ 2x2,wx1,u.

This mapping allows us to intermix 3 S-boxes of 3n bits each. It is possible to
construct a similar mapping which allows us to intermix m S-boxes of ln bits
each as long as 2m ≤ 2l, since in this case F2l contains 2m different elements. In
the above example m = l = 3, and so the block size is mln = 576 bits for n = 64,
and the size of each S-box is ln = 192 bits. Although in some applications (e.g.,
hash functions or stream ciphers) this is not a limitation, in others (e.g., block
ciphers) such long blocks can be a problem. Note that for embedded low-end
devices n = 8 and so the above example is too small (mln = 72 and ln = 24),
but if we use larger parameters, such as l = 4 and m ≤ 8 in a 128-bit block
cipher, we can intermix, for example, the outputs of four 32-bit S-boxes by an
MDS mapping.

4 Simpler mappings which are almost MDS

The constructions in the previous section were somewhat complicated and did
not have ideal parameter sizes (even if we take into account a slight improvement
described in the appendix). The source of the problem was that a non-trivial
linear mapping cannot be MDS modulo 2 and thus it is provably impossible to
have l = 1 and m > 1. Fortunately, we can use much simpler functions which
are almost MDS, and which are almost as useful as actual MDS functions in
cryptographic applications.

Define a mapping as an almost MDS mapping if dx+dy ≥ m. Such a diffusion
layer guarantees that at least m (instead of m + 1) S-boxes are active in any
pair of consecutive layers in a substitution permutation network, and thus in
many block cipher designs they provide almost the same upper bound on the
probability of the cipher’s differential and linear characteristics.

Let us construct an almost MDS mapping with conveniently sized parame-
ters. As usual we start with a skeleton of the bit-slices. In this case we use the
simple skeleton:

y0
y1
y2
y3

=

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

×

x0

x1

x2

x3

+

α0

α1

α2

α3

,

where the αi are arbitrary constants. It is easy to check that dx + dy ≥ 4.
Using this skeleton and replacing the constants αi by simple parameters we can
construct, for example, the following non-linear almost MDS mapping:

y0 = x1 + (x2 ⊕ x3)(2x0 + 1),
y1 = x2 + (x3 ⊕ x0)(2x1 + 1),
y2 = x3 + (x0 ⊕ x1)(2x2 + 1),
y3 = x0 + (x1 ⊕ x2)(2x3 + 1).

This mapping can diffuse the outputs of four S-boxes of arbitrary sizes (e.g., 32-
bit to 32-bit computed S-boxes in a 128-bit block cipher) in a way that guarantees

that at least 4 S-boxes are active in any pair of consecutive layers. A similar
construction can be used to diffuse a higher number of smaller (computed or
stored) S-boxes in other designs.

An interesting application of this mapping is to enhance the security of SHA-
1 against the recently announced collision attacks. The first step in SHA-1 is to
linearly expand the 16 input words into 80 output words. The linearity of this
process makes it easy to search for low Hamming weight differential patterns
in the output words without committing to actual input values. We propose
to replace the linear expansion by the following process: Arrange the 16 input
words in a 4 × 4 array, and alternately apply our 4-word nonlinear mapping
to its rows and columns. This is similar to the AES encryption process, but
without keys and S-boxes, and using 32-bit words rather than bytes as array
elements. Each application produces a new batch of 16 output words, and thus
two row mixings and two column mixings suffice to expand the 16 input words
into 80 output words. To enhance the mixing of the weak LSBs in T-functions,
we propose to cyclically rotate each generated word by a variable number of bits.
The nonlinearity of the mapping makes it difficult to predict the evolution of
differential patterns, the MDS property provides lower bounds on their Hamming
weights, and thus the modified SHA-1 offers greatly enhanced protection against
the new attacks.

5 Self-synchronizing functions

In this section we propose several novel applications of T-functions which are
based on the observation that the iterated application of a parameter slowly
“forgets” its distant history in the same way that a triangular matrix with zeroes
on the diagonal converges to the zero matrix when raised to a sufficiently high
power. Let us start with the following definition:

Definition 4 (SSF). Let
{

c(i)
}

i=0,...
and

{

ĉ(i)
}

i=0,...
be two input sequences,

let s(0) and ŝ(0) be two initial states, and let K be a common key. Assume that
the function U is used to update the state based on the current input and the key:
s(i+1) = U(s(i), c(i),K) and ŝ(i+1) = U(ŝ(i), ĉ(i),K). The function U is called a
self-synchronizing function (SSF) if equality of any k consecutive inputs implies
the equality of the next state, where k is some integer:

c(i) = ĉ(i), . . . , c(i+k−1) = ĉ(i+k−1) =⇒ s(i+k) = ŝ(i+k).

Let us now show why the T-function methodology is ideally suited to the
construction of SSFs:

Theorem 2. Let the T-function U(s, c,K) be a parameter with respect to the
state s and an arbitrary function of the input c and the key K:

[U(s, c,K)]i = fi([s]0,...,i−1, [c]0,...,n−1,K),

then U is an SSF.

Proof. To prove the theorem it is enough to note that bit number i of s(t) can
depend only on

(
[

s(t−1)
]

0,...,i−1
, c(t−1),K),

that, in turn, can depend only on

(
[

s(t−2)
]

0,...,i−2
, c(t−1), c(t−2),K),

. . . that, in turn, can depend only on

(
[

s(t−i)
]

0
, c(t−1), . . . , c(t−i),K),

and, finally, this can depend only on

(c(t−1), . . . , c(t−i−1),K).

So if all the calculations are done modulo 2n, s(t) can depend on c(t−1), . . . , c(t−n),
but cannot depend on any earlier input.

By using the parameters described in Figure 1 it is easy to construct a large
variety of SSFs, for example, U(s, c,K) = 2s⊕ cK or U(s, c,K) = ((s ⊕K)2 ∨
1) + c. In different applications it may be important to have different k values
(representing the number of steps needed to resynchronize). Our constructions
seem to be limited to k = n steps (using n2 input bits), where n is the word-size of
the processor (usually, n = 32 or n = 64). However, it is easy to enlarge or shrink
the size of the effective region by adjusting the size of c used in each iteration.
For example, on a 64-bit processor the above construction has an effective region
of size 212 bits, using one byte of c in each iteration we can reduce it down to 29,
or enlarge it up to 215 if we use eight 64-bit words at a time. Alternatively, to
avoid performance penalties, we can use U(s, c,K) which is a multiple parameter
with respect to s:

[U(s, c,K)]i = fi([s]0,...,i−p, [c]0,...,n−1),

where p is some integer. For such function s(t) depends only on c(t−1), . . . , c(t−
n
p
).

For example, U(s, c,K) = ((s � 8)⊕ c)× (c∨ 1), where a � b denotes left shift of
a by b bit positions, depends only on eight (64

8 = 8) previous c’s.
SSFs have many applications including cryptography, fast methods for bring-

ing remote files into sync, finding duplications on the web, et cetera. Let us now
describe those applications in more detail.

Self-synchronizing stream ciphers allow parties to continue their communica-
tion even if they temporarily lose synchronization: after processing k additional
ciphertexts the receiver automatically resynchronizes it state with the sender.
The standard way to achieve this is to create a state which is the concatenation
of the last k ciphertext symbols, and to compute the next pseudo random value
as the keyed hash of this state. However, in stream cipher construction speed is

extremely important, and thus the active maintenance of such a concatenation
(adding the newest input, deleting the oldest input, and shifting the other in-
puts) wastes precious cycles. In addition, the opponent always knows and can
sometimes manipulate this state, and thus the hash function has to be relatively
strong (and thus relatively slow) in order to withstand cryptanalysis. We propose
to combine the state maintenance and the hash operation (and thus eliminate
the computational overhead of the state maintenance) by applying a mapping
which is a parameter with respect to the state and an arbitrary function with
respect to the ciphertext and secret key. This keeps the current state secret, and
allows us to use a potentially weaker hash function to produce the next output.
More formally, let

{

p(i)
}

i=0,...
denote the plaintext, K denote the secret key,

{

s(i)
}

i=0,...
denote the internal state, and I denote the initialization function.

The state is initially set to s(0) = I(K), and then it evolves over time by an
SSF update operation U : s(i+1) = U(s(i), c(i),K), where

{

c(i)
}

i=0,...
denotes the

ciphertext which is produced using an output function O: c(i) = p(i)⊕O(s(i),K).
The actual construction of a secure self-synchronizing stream cipher requires

great care. Unlike PRNG, where the known-plaintext attack is usually the only
one to be considered, there are many reasonable attacks on a self-synchronizing
stream cipher:

– known plaintext attack,
– chosen plaintext attack,
– chosen ciphertext attack, and probably even
– related key attack.

To avoid some of these attacks, it is recommended to use a nonce in the initial-
ization process to make sure that the opponent cannot restart the stream cipher
in the same state.

In this paper we propose a general methodology for the construction of
cryptographic primitives rather than fully specified schemes, but let us give
one concrete example in order to demonstrate our ideas and encourage further
research on the new approach. Let the state s consist of three 64-bit words:
s = (s0, s1, s2)

T . At each iteration, we would like to output a 64-bit pseudo
random value which can be xored with the next plaintext to produce the next
ciphertext. Since in the T-function–based constructions the LSBs are usually
weaker than the MSBs, the proposed output function swaps the high and low
halves:

O(s0, s1, s2) = ((s0 ⊕ s2 ⊕KO) 	 32)× ((s1 ⊕K
′

O) 	 32) ∨ 1),

where a 	 b denotes circular left shift of a by b bit positions. The state is updated
by the following function:

s0
s1
s2

→

(((s′1 ⊕ s
′
2) ∨ 1)⊕K0)

2

(((s′0 ⊕ s
′
2) ∨ 1)⊕K1)

2

(((s′0 ⊕ s
′
1) ∨ 1)⊕K2)

2

 ,

where s′0 = s0 + c, s′1 = s1 − (c 	 21), and s′2 = s2 ⊕ (c � 21). The best attack
we are aware of against this particular example requires O(296) time.

Let us now consider some non-cryptographic applications of self-synchronizing
functions. Suppose that we want to update a file on one machine (receiver) to
be identical to a similar file on another machine (sender) and we assume that
the two machines are connected by a low-bandwidth high-latency bidirectional
communications link. The simplest solution is to break the file into blocks, and
to send across the hashed value of each block in order to identify (and then
correct) mismatches. However, if one of the two files has a single missing (or
added) character, then all the blocks from that point onwards will have different
hash values due to framing errors. The rsync algorithm [8] allows two parties
to find and recover from such framing errors by asking one party to send the
hash values of all the non-overlapping k-symbol blocks, and asking the other
party to compare them to the locally computed hash values of all the possible
k-symbol blocks (at any offset, not just at locations which are multiples of k).
To get the fastest possible speed in such a comparison, we can again eliminate
the block maintenance overhead by using a single pass SSF computation which
repeatedly updates its internal state with the next character and compares the
result to the hash values received from the other party. Such an incremental
hash computation can overcome framing errors by automatically forgetting its
distant history.

Self-synchronizing functions are also useful in “fuzzy” string matching appli-
cations, in which we would like to determine if two documents are sufficiently
similar, even though they can have a relatively large edit distance (of changed,
added, deleted or rearranged words). Computing the edit distance between two
documents is very expensive, and finding a pair of similar documents in a large
collection is even harder. To overcome this difficulty, Broder et al. [2] introduced
the following notion of resemblance of two documents A and B:

r(A,B) =
|S(A) ∩ S(B)|

|S(A) ∪ S(B)|
,

where S(·) denotes the set of all the overlapping word k-grams (called shingles)
of a document, and | · | denotes the size of a set. It was suggested [2] that a
good estimate of this resemblance can be obtained by computing the set of hash
values of all the shingles in each document, reducing each set into a small num-
ber of representative values (such as the hash values which are closest to several
dozen particular target values), and then computing the similarity expression
above for just the representative values. Since each document can be indepen-
dently summarized, we get a linear rather than a quadratic algorithm for finding
similar pairs of documents in a large collection. In web applications, this makes
it possible to analyze the structure of the web, to reduce the size of its cached
copies, to find popular documents, or to identify copyright violations.

Notice that the notion of the adversary in the non-cryptographic applications
of SSFs is rather limited, and thus we are not bothered by some of the inherent
limitations of any such similarity checking procedure for web documents. For

example, there are many ways to trick a web crawler into “thinking” that your
arbitrary document is similar to a totally different document, or that very similar
documents are quite different. The techniques range from checking the IP address
of the tester (returning to the crawler a different page than to other users), to
creating web pages in such a way that after the execution of JavaScript it
displays the text on the screen in a completely different way than the raw text
which is “seen” by a crawler. Thus it seems that we should not over-design the
application to withstand sophisticated attacks against it, and just make sure
that the hashed values are random looking and reasonably unpredictable when
we use a secret key K in the initialization and state update functions.

References

1. E. Biham and A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems,”
CRYPTO 1990.

2. A. Broder, S. Glassman, M. Manasse, and G. Zweig, “Syntactic Clustering of the
Web.” Available from
http://decweb.ethz.ch/WWW6/Technical/Paper205/Paper205.html

3. J. Daemen, V. Rijmen, “AES Proposal: Rijndael,” version 2, 1999.
4. A. Klimov and A. Shamir, “A New Class of Invertible Mappings,” Workshop on

Cryptographic Hardware and Embedded Systems (CHES), 2002.
5. A. Klimov and A. Shamir, “Cryptographic Applications of T-functions,” Selected

Areas in Cryptography (SAC), 2003.
6. A. Klimov and A. Shamir, “New Cryptographic Primitives Based on Multiword

T-functions,” Fast Software Encryption Workshop (FSE), 2004.
7. M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” EUROCRYPT 1993.
8. A. Tridgell and P. Mackerras, “The rsync algorithm.”

Available from http://rsync.samba.org/tech report/

Smaller MDS mappings

In Section 3 we considered MDS mappings which allow us to intermix m S-
boxes of ln bits each as long as 2m ≤ 2l. In order to study if this inequality is
an essential condition or just an artifact of that skeleton construction method
let us first consider the following question: is it possible to construct an MDS
T-function such that l = 1 and m > 1. The following reasoning shows that it is
impossible. Suppose that we constructed such an MDS T-function θ. Let

x = (0, 0, 0, . . . 0)T ,

x′ = (2n−1, 0, 0, . . . 0)T ,

x′′ = (0, 2n−1, 0, . . . 0)T ,

and θ maps them into y, y′, and y′′ respectively. Since x = x′ = x′′ (mod 2n−1)
and θ is a T-function it follows that y = y′ = y′′ (mod 2n−1). So the only
difference between y, y′, and y′′ is in the most significant bit. Our mapping θ is

an MDS and dx,x′ = 1 so dy,y′ ≥ m and thus the most significant bit in y′i is the
inverse of yi:

∀i, [y′i]m−1 = [yi]m−1.

For the same reason
∀i, [y′′i]m−1 = [yi]m−1,

and so y′ = y′′ which is a contradiction because any MDS mapping has to be
invertible.

Although the algorithm which uses finite field arithmetic does not allow us
to construct a mapping intermixing three S-boxes such that each one of them
consists of fewer than three words (m = 3 and l < 3), it is possible to construct
such a mapping using a different algorithm. Since we already know that the case
of m = 3 and l = 1 is impossible let us try to construct an MDS mapping with
m = 3 and l = 2. To do it we need a skeleton for bit-slices that is an MDS
mapping

ψ : B
2 × B

2 × B
2 → B

2 × B
2 × B

2.

Using a computer search we found the following mapping:4

00? → 000 111 222 333 01? → 123 032 301 210 02? → 231 320 013 102 03? → 312 203 130 021

10? → 132 023 310 201 11? → 011 100 233 322 12? → 303 212 121 030 13? → 220 331 002 113

20? → 213 302 031 120 21? → 330 221 112 003 22? → 022 133 200 311 23? → 101 010 323 232

30? → 321 230 103 012 31? → 202 313 020 131 32? → 110 001 332 223 33? → 033 122 211 300

Interestingly, this mapping is linear:

x0,u

x0,v

x1,u

x1,v

x2,u

x2,v

→

1 0 1 0 1 0
0 1 0 1 0 1

0 1 1 1 1 0
1 1 1 0 0 1

1 1 0 1 1 0
1 0 1 1 0 1

x0,u

x0,v

x1,u

x1,v

x2,u

x2,v

.

Using it as a skeleton we can construct, for example, the following “crazy” map-
ping:

x0,u

x0,v

x1,u

x1,v

x2,u

x2,v

→

x0,u + (x1,u ⊕ x2,u)(2x0,vx1,v + 1)
x0,v − x1,v + x2,v ⊕ ((x0,u ⊕ x1,u)2 ∨ 1)

(x0,v ⊕ x1,u)(2x0,vx2,v − 1)− x1,v + x2,u

(x0,u + x0,v)⊕ (x1,u − x2,v)((x1,v ⊕ x2,u)2 ∨ 1)

(x0,u − x0,v)(2x1,ux2,v + 1) + x1,v ⊕ x2,u

(x0,u ⊕ x1,u)− (x1,v ⊕ x2,v) + ((x0,v ⊕ x2,u)2 ∨ 1)

.

4 This notation means that

(x0 = 0, x1 = 0, x2 = 0) 7→ (y0 = 0, y1 = 0, y2 = 0),
...

(x0 = 3, x1 = 3, x2 = 3) 7→ (y0 = 3, y1 = 0, y2 = 0).

Formal representation Examples
P:
C 3
E × E (x + 5)2

P0 2x

(P ± E) ⊕ E (5 + x) ⊕ x

P ′ ◦ P ′′ x2 + 2x

P0:
C0 2
C0 × E 2(x3 ∧ x)
P ∧ C0 x2 ∧ 1 . . . 102

P0 ×P (x2 ∧ 1 . . . 102)((5 + x) ⊕ x)
P ′

0 ◦ P ′′

0 2x − (x2 ∧ 1 . . . 102)

C constant
P parameter
E expression
C0 constant with 0 in the least significant bit
P0 parameter with 0 in the least significant bit
◦ primitive operation

This table summarize techniques most commonly used to construct parame-
ters. Note that in a single line the same symbol denotes the same expression
(e.g., E × E denotes squaring). Keep in mind that expressions obtained by
means of this table are not necessary parameters in the least significant bit-
slice (clearly, P0 are parameters everywhere).

Fig. 1. Common parameter construction techniques.

