Two attacks against the HBB Stream Cipher
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Abstract. Hiji-Bij-Bij (HBB) is a new stream cipher proposed by Sarkar
at Indocrypt’03. In this algorithm, classical LFSRs are replaced by cel-
lular automata (CA). This idea of using CAs in such constructions was
initially proposed by Sarkar at Crypto’02, in order to instantiate its new
Filter-Combiner model.

In this paper, we show two attacks against HBB. First we apply differ-
ential cryptanalysis to the self-synchronizing mode. The resulting attack
is very efficient since it recovers the secret key by processing a chosen
message of length only 2 Kbytes. Then we describe an algebraic attack
against the basic mode of HBB. This attack is much faster than exhaus-
tive search for secret keys of length 256 bits.

1 Introduction

Stream ciphers are an important class of secret key cryptosystems. Unlike block
ciphers which view the plaintext as blocks of bits (typically 64 bits for the DES or
128 bits for the AES), stream ciphers handle each bit of plaintext separately. Ba-
sically, a stream cipher generates a long pseudo-random sequence (or keystream)
from a seed (usually the secret key). This sequence is XORed with the plaintext
to produce the ciphertext. It is widely believed that secure stream ciphers can
be much faster than block ciphers.

Yet, over the last years, few stream cipher proposals have resisted cryptanal-
ysis efforts. For instance, none of the stream ciphers candidate for the NESSIE
project has been selected in the final portfolio [24], since all schemes revealed
various degrees of weakness. Many of these attacks originate from the mathemat-
ical structure of Linear Feedback Shift Registers (LFSR) [5, 8], which are used as
a building block by many stream ciphers. To avoid these security concerns, alter-
native solutions have been recently proposed. For instance, Klimov and Shamir
have suggested to replace LFSRs by software-efficient nonlinear mappings based
on T-functions [19].

Another contribution came from Sarkar at Crypto’02 [26]. He showed that
some classical models for LFSR-based stream ciphers (Nonlinear Filter and
Nonlinear Combiner) do not provide optimal security against Correlation At-
tacks [30]. He proposed to mix these two concepts, using a new paradigm, the
Filter-Combiner Model. Unfortunately, he also showed that such a construction
cannot be instantiated with LFSRs since they do not fulfill some of the basic
requirements. Instead, the author showed that cellular automata are good can-
didates to replace LFSRs in this model. Moreover, they seem to improve the
resistance against some classical attacks such as Inversion Attacks [15,16] or the



Anderson Leakage [1]. However it was recently shown that this new construction
did not necessarily increase the level of security [17].

In this paper we focus on the HBB stream cipher. This new algorithm [27]
was proposed at Indocrypt’03 by Sarkar. HBB is not exactly an instantiation of
the Filter-Combiner model (since the non-linear component has a memory) al-
though its linear map is based on cellular automata. The outputs of the cellular
automata are combined with a nonlinear map achieved using some of the primi-
tives from Rijndael [12]. In addition, HBB has the particularity of offering a Self-
Synchronizing (SS) mode of operation, in addition to the basic (B) mode of oper-
ation. Self-synchronizing stream ciphers are a rare primitive which can be useful
in specific contexts [21]. However few dedicated designs have been proposed and
many published proposals (such as [11]) did not resist cryptanalysis [18]. In fact,
it is an open problem to design a secure dedicated self-synchronizing stream
cipher.

In this paper, we show that both modes of operation of HBB suffer from
important flaws. Against the SS mode, we use a differential attack which recovers
the secret key by processing 2'* bits of chosen ciphertext. We also describe an
algebraic attack against the B mode of operation, faster than exhaustive search
for key size of 256 bits. In a first section, we give a brief overview of cellular
automata and of the HBB cipher. Then, we describe our attack against the
Self-Synchronizing mode of operation. Finally, we focus on the Basic mode of
operation and apply algebraic cryptanalysis.

2 Stream Ciphers based on Cellular Automata

2.1 Cellular Automata Preliminaries

In general, an automaton consists in a set of [ memory cells, represented at time
t by S® = (sgt), ce sl(t)), with a rule of evolution for each cell depending on
the content of neighboring cells. Details of the theory of cellular automata are
not relevant here, refer to [27] for more information. Basically, the only property
we really take advantage of is their linear behavior. More precisely, a cellular
automaton can be associated with a matrix M that characterizes its evolution.
S+ can then be computed by multiplying S*) with M. This matrix has the
additional properties of being tridiagonal and having a primitive characteristic
polynomial. This guarantees that the linear recurrence has maximal period 2! —1.

2.2 Overview of the HBB Cipher

HBB is a classical keystream generator, which contains a linear finite state ma-
chine and a nonlinear part. It is not a basic instantiation of the Filter-Combiner
model [26] since its nonlinear part has memory (128 bits of internal state), how-
ever it belongs to the same family. According to [27], the use of cellular automata
should improve the security of the cipher against some attacks using the specific
properties of LFSRs.

General Structure of the Cipher An overview of HBB is given in Figure 1.
LC represents the Linear Component (which contains 512 bits of internal state),
and NLC represents the Non Linear Component (which contains 128 bits of
internal state).
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Fig. 1. One round of Hiji-Bij-Bij

Both LC and NLC have an update function which is applied at each round
to their internal state. Then, 128 bits of keystream are extracted using a linear
transform. To summarize, one round of encryption can be expressed as

Update the internal state of NLC

Update the internal state of LC

Extract 128 bits from LC and XOR it with NLC. The result is the keystream.
Extract 128 other bits from LC and XOR it with NLC. The result is the
next state of NLC.

- W=

In general, this technique for producing keystream bits with a whitening layer
after the nonlinear operations is called ‘“linear masking” (see [5]). The initial
states of LC and NLC are derived linearly from the secret key K. Then 16 rounds
are applied for divergence, without using the output keystream for encryption.
However the last 512 bits of keystream are XORed to the internal state of LC
just before the beginning of encryption. Two key sizes are suggested for HBB :
128 and 256 bits.

The Round Function The updating function of LC is based on the cellular
automata theory. Details can easily be obtained from [27]. In fact, there are two
cellular automata of size 256 bits each. Both matrices contains entries of the
form (cy, ..., c256) on the main diagonal, and all entries equal to 1 on the upper
and lower subdiagonals.

The updating function of NLC can be seen as one round of a block cipher (see
Figure 2). It consists of three consecutive layers. The first and third layers apply
the Rijndael S-box [12] to each byte of NLC. The intermediate layer is a simple
linear application over Fy. The author of HBB shows that the global function
has full diffusion, thus any output bit depends on all input bits. Moreover, linear
approximation have been analyzed and it is shown in [27] that none can have a
bias better than 27'2 (actually, it says 273, but bias are represented as 0.5 &
¢, while we prefer the convention 0.5(1 + ¢)). Thus, according to the author,
the cipher should resist attacks based on linear approximations, such as linear
cryptanalysis [20] and correlation attacks [30]. Finally, the previous elements
give an implicit description of the Basic (B) mode of operation of HBB.
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Fig. 2. The NLC updating function

The Self-Synchronizing (SS) Mode of Operation A Self-Synchronizing
mode can be easily derived from the above description by making the keystream
dependent on the previous bits of ciphertext. To do this, one additional step is
added to the previous description.

At the end of round i, the last four blocks of ciphertext (128 bits each),
represented as C;,C;_1,C;_o and C;_3, are XORed together with the secret
key K (if K is 256 bits long, both halves of K are first XORed together). The
resulting value is the new internal state of NLC :

NLC =Fold(K)® C; & Ci—1 @ Ci—a ® C;_3

On the linear side of the generator, the secret key K is linearly expanded into
a 512 bits value, then XORed with the concatenation of the last four ciphertext
blocks, to produce the new value of LC :

LC = Expand(K) (&) (CiHCi—l ||Ci_2||Ci_3)

Therefore, in the SS mode, the internal state of the cipher at the beginning of
each round depends only on the secret key and the last 512 bits of ciphertext,
in a linear manner.

3 Cryptanalysis of the SS mode of operation

In this section, we focus on the SS mode of HBB with secret key K of 128 bits
long. Each round of encryption simply consists in a fixed function applied to K
and the last 4 blocks of ciphertext. We show that this construction actually does
not resist to a chosen-ciphertext differential attack.

3.1 Background on Self-Synchronizing Stream Ciphers

Generally a Self-Synchronizing Stream Cipher (SSSC) is one in which the keystream
bit is a function of the key and a fixed number m of previous ciphertext bits.
This parameter m is called the memory of the cipher.



In order to describe formally a SSSC, let z; denote plaintext bit number ¢,
y: the corresponding ciphertext bit and z; the corresponding keystream bit. The
encryption is generally described

Yt =Tt D2t
where the keystream bit is computed as
2t = F(yt—lu .. 7yt—m7K)

F' denotes the keystream function and K the secret key. The basic idea is to
encrypt each plaintext bit with a function depending only on the secret key and
the previous m ciphertext bits. Therefore each ciphertext bit can be correctly
deciphered as long as the previous m ciphertext bits have been successfully
received.

General properties and design criteria for SSSCs have been studied by Mau-
rer [21]. It pointed out that a self-synchronization mechanism has several ad-
vantages from an engineering point of view. For instance, it may be helpful in
contexts where no lower layer of protocol is present to assure error-correction.
In particular, it prevents long bursts of error when a bit insertion or deletion
occurs during the transmission of the ciphertext.

However in terms of security the analysis of SSSCs requires a completely
different approach from conventional stream ciphers. Indeed, since the pseudo-
random generator does not behave autonomously, the cipher might be subject to
chosen message attacks. Therefore it is not straightforward to turn a conventional
stream cipher into a SSSC and few dedicated designs have been proposed. Using a
block cipher in 1-bit Cipher FeedBack (CFB) mode [14] is usually quite inefficient
in terms of encryption speed, and reduced-round optimizations may be subject
to attacks [25]. KNOT, one of the few dedicated designs [11] was broken at
FSE’03 [18]. An improved version of KNOT, described in Daemen’s thesis [10],
appears to resist this attack, but currently there is no other secure dedicated
SSSC in the literature.

3.2 The attack against HBB in SS mode

This section describes a differential attack using chosen ciphertexts. Accordingly,
we suppose that an attacker gains access to a decryption oracle and introduces
chosen blocks of ciphertext.

The goal of the attacker is to obtain two inputs of the NLC round function
that differ only on one byte, with difference 6. This can be achieved by intro-
ducing the blocks of ciphertext C1, Cs, Cs, Cy and then C1,C5, C3,Cy @ 9. Let j
denote the position of this one byte difference and K; the corresponding byte of
secret key.

At first sight, it seems that the attacker has no access to the output difference
of the NLC updating function because of the linear masking. However at the
beginning of each round, LC is set to the value (see Section 2.2)

LC = Expcmd(K) (&) (CiHCi—l ||Ci_2||Ci_3)

thus the difference of linear masking is a purely linear function of the introduced
ciphertexts only. Thus an attacker able to observe the keystreams can cancel out



the difference of linear masking and observe directly the output difference of the
NLC updating function.

Initially, the difference 0 is confined to one byte. In addition, after the first
layer of S-box in this computation, the difference still only concerns the byte
number j in the internal state. This difference is of the form

§=8SK;®z)®dS(K;®zd0) (1)

where z is a known byte depending on the introduced ciphertext. If ¢’ has ham-
ming weight equal to 1, it is true by construction that the hamming weight of
the difference after the linear layer will be exactly 3 (see [27]). Thus, only 3
bytes will differ after the last layer of S-boxes. This difference trail on NLC is
described in Figure 3 where dashed areas represent the differences.

I
%%%
HEEEEEEEEEEE B

Fig. 3. An illustration of the Differential Trail on NLC

We observe that, when hamming(d’) = 1, the difference on the output of the
NLC updating function is null for 13 bytes of 16. Otherwise this property is
very unlikely. In average the event that the hamming weight of ¢’ is 1 happens
with probability ;5= = 27°. Thus, according to the birthday paradox, testing 23
values of ¢ should be sufficient to detect a collision on 13 out of 16 output bytes.
This event provides a condition on K using relation (1), of the form

hamming(S(K; ®z) @ S(K; @z $0)) =1

In general, only a few K; values will verify it. Furthermore it is straightforward
to eliminate false candidates for K; with a few extra decryption queries. To
summarize, one byte of secret key can be recovered by processing about 2% = 8
blocks of keystream in average. Repeating it 16 times, the full secret key can be
easily obtained.

Moreover this attack can be mounted by processing just a single message.
Indeed an attacker can just concatenate all the chosen ciphertexts he needs for
successive applications of the attack and submit the resulting message to the
decryption oracle. In practice this can be done by just adapting the choice of
ciphertext block number i to the previous blocks of ciphertext. Therefore, to
process 23 x 16 blocks of keystream, a message of length 3 + (23 x 16) blocks
is sufficient. This corresponds to about 2 Kbytes of chosen ciphertext. Besides,
when ¢’ has hamming weight equal to 2,3 or 4, we also obtain detectable colli-
sions on the keystream. So, we think it is even possible to lower a little our data



requirement, using a precise analysis of all these events. We have implemented
our attack using only the case of hamming weight 1 and were able to recover
successfully the bytes of secret key as expected, with about 8 blocks/byte. An
attack against the 256 bits secret keys would work by first recovering the 128
bits used in NLC, and then obtaining the remaining key bits by other means.
This attack represents a real threat in practical applications where the SS
mode of the HBB cipher is used. Indeed, an active attacker can easily introduce
a chosen ciphertext sequence of a few Kbytes in the communication layer. Since
self-synchronizing modes of operation are usually implemented for fast streaming
communications on faulty channels, it is even likely that the error caused by the
action of the attacker would go unnoticed. Then, if the attacker is able to observe
the resulting decrypted plaintext, our attack applies and he would recover the
complete secret key with little offline processing. Thus, we believe the SS mode
of operation of HBB is weak and should not be used as proposed. More generally,
resistance of self-synchronizing stream ciphers against differential attacks should
always be investigated, as in the case of block ciphers (see [22] for more details).

4 Algebraic attack against the B mode of operation

In the previous section, we have described a very efficient differential attack
against the SS mode of HBB. Obviously, this attack does not apply to the Basic
mode of operation since the attacker cannot choose the inputs of NLC (or LC)
at each round. However, other cryptanalysis techniques may be envisaged here.
In particular we propose an algebraic attack against HBB which is faster than
exhaustive search for a key size of 256 bits.

4.1 Algebraic attacks and Stream Ciphers

Algebraic attacks form a class of cryptanalysis techniques which has received a
huge interest in the last years. Indeed new applications have been described in
various fields including block ciphers [9, 23], stream ciphers [7, 8] and even public
key cryptography [13]. Algebraic attacks exploit polynomial equations describing
exactly an algorithm. There is a contrast with classical cryptanalysis techniques
which are often based on approximations of the behavior of the algorithm. In
the recent years many stream ciphers [2—4, 8] have been broken using algebraic
attacks and it has now become important to investigate the security of new
algorithms regarding these techniques.

The general idea in algebraic attacks on stream ciphers is to write keystream
bits as a polynomial of low enough degree in the bits of the secret key, and
then apply an appropriate algorithm for solving this polynomial system. Many
strategies exist like the simple linearization attack or the refined relinearization
attack [28]. In these basic attacks, all monomials are replaced by new variables,
then the resulting linear system is solved by usual linear algebra. In some cases,
better strategies may also apply, such as sparse linear algebra or other dedicated
algorithms. For instance, Grobner base techniques (for an illustration of these
techniques, see [13]) are a well-known mathematical tool helpful in the case of
algebraic attacks. Besides an alternative solution, the XL algorithm has also
been proposed [29] to resolve polynomial systems.

In general, for a recent cipher, it should be impossible to write low degree
equations involving the secret key bits and the plaintext bits. In the next section,
we show that HBB fails to meet these requirements.



4.2 The case of HBB

It is not straightforward to express directly the keystream in function of the
secret key because of the divergence steps executed before the beginning of en-
cryption. However, an attacker can focus on recovering the initial state of LC (of
length 512 bits). Then in a second phase, it might be possible to recover the key
from the initial state, if necessary. Therefore we first focus on writing polynomial
equations between the keystream and the initial state.

In Figure 1, we can see that the internal state of NLC at the beginning of
any round ¢ is a linear function of the initial state of LC and keystream bits.
Looking at two consecutive states of NLC, we can express both the input and
the output of the NLC updating function as linear functions of the initial state
and the keystream bits.

Besides, it is easy to write equations of degree 7 relating inputs and outputs
of the NLC updating function (referred to as @). Let (a;)o<i<127 and (b;)o<i<127
respectively denote the input and output bits of @. Notations ¢; and d; are used
for the intermediate states after the first and second layer of @. It is well known
that the Rijndael S-box (and its inverse) has algebraic degree 7, i.e. the output
bits of the S-box (and its inverse) can be expressed as degree 7 polynomials in
its input bits. Consequently,

b; = Pi(ao, ..., ai27)
where P; is a polynomial of degree 7. Similarly,
C; = Qi(dO; e ,d127)

where (); is a polynomial of degree 7. Furthermore, b; and ¢; are related by a
linear transform. Thus, 128 relations of degree 7 of the form

127 127
> AiPi(ao, ... a127) ® > 11 Qi(do, . .., diz7) =0
i=0 i=0

can be written. As we argued previously the a;’s and d;’s depend linearly on the
initial state and the keystream, thus the previous relation can be rewritten as

Rt('l)(), s 7’05117Zt) - O

where R; is a degree 7 polynomial, the v;’s are the bits of initial state and Z; is
the keystream block number ¢ (which is known).
The number of monomial of degree 7 on 512 unknowns is

512 ~ 950.6
7

which is not sufficient to provide a security level of 256 bits. Indeed, a simple
linearization attack would proceed by linear algebra on all monomials of degree
7. Using Gaussian elimination, the corresponding complexity would be about

3
512 ~ 91518
7



basic binary instructions for inverting the matrix (2145 on a 32 bit processor).

Besides, about 2°96 bits of known plaintext would be needed. The solution of
this system reveals the initial state of the cipher from which it might be possible
to retrieve the actual secret key. This algebraic attack is faster than exhaustive
search only for keys of 256 bits.

However, with better linear algebra such as algorithms! with exponent w =
log,(7), the complexity can be lowered to 2422 binary instructions, and we
even expect that better techniques exist, for instance if we exploit the sparsity
of the system. According to Courtois [7], this kind of attacks can also be further
improved by using optimized resolution algorithms and a precomputation step.
On the whole, it is likely that an improved version of this attack could break the
128 bit version of HBB.

This attack illustrates the fact that linear masking techniques and cellular
automata by themselves do not provide protection against the class of alge-
braic attacks. Basically there is too much linearity in this algorithm. This type
of problem is also encountered when using LFSRs as a building block. Sound
countermeasures are irregularly clocked stream ciphers, like the Shrinking Gen-
erator [6] or the use of nonlinear mappings as a building block instead of LFSRs
or cellular automata [19].

4.3 Recovering the key from the initial state

After the previous attack, we know the initial state of the linear component LC.
This is not fully satisfying in practice. It is often expected to go further and
recover the secret key. We refer to the initial state of LC as S. Our goal is to
derive from S the secret key K. We consider first the key size of 256 bits, since
the previous attack has a complexity larger than 2128,

By construction, S is a linear function of K and 4 keystream blocks (of 128
bits each) produced during the key schedule and discarded immediately after.
We call these blocks Ty, ...,T5 as in [27]. The first block of keystream (called
Zy) can be expressed by (see also Figure 1) :

Zo = M(S) © ¢(T3 @ A2(K)) (2)

where A1, A are linear functions and ¢ is the NLC updating function. From (2),
we retrieve T5 @ \2(K), since ¢ is invertible. With this additional equation, we
get a total of

512+ 128 = 640

binary linear equations involving
256 +4 x 128 = 768

unknowns (corresponding to K, Ty, T1,T> and T3). In average this linear system
should contain 2'2® solutions, one of them corresponding to the correct K. These
solutions can be obtained with the usual Gaussian reduction algorithm. The
complexity required here is about 2'2® steps of computation. Besides, for keys
of 128 bits, there are 128 unknowns less in the system, hence only one solution
is expected.

! We did not consider other algorithms with smaller exponent such as the
Coppersmith-Winograd algorithm, because they are not practical enough



To summarize, the extra work required to find K from the initial state of L.C
depends on the key size. For keys of length 256 bits, this complexity is about
2128 "and for keys of 128 bits, the complexity is negligble. These results allow to
complete the attacks against HBB without increasing the overall complexity.

5 Conclusion

In this paper, we have described two attacks against the new HBB stream cipher.
First a very efficient differential attack breaks the self-synchronizing (SS) mode of
operation by processing a message of length about 2 Kbytes. Then we described
an algebraic attack which breaks HBB in B mode with workload of about 2!42
steps of computation. This is faster than exhaustive search for secret keys of
length 256 bits and we believe optimized versions could threaten 128 bit keys as
well.

These attacks enlighten some important weaknesses in the design of the new
HBB stream cipher. In addition, by breaking the SS mode, we have also shown
that the challenge of designing a secure dedicated self-synchronizing stream ci-
pher, initially proposed by [21] is still an open problem.
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