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Abstract. We prove, under the strong RSA assumption, that the group
of invertible integers modulo the product of two safe primes is pseudo-
free. More specifically, no polynomial time algorithm can output (with
non negligible probability) an unsatisfiable system of equations over the
free abelian group generated by the symbols g1, ..., gn, together with a
solution modulo the product of two randomly chosen safe primes when
g1, ---,gn are instantiated to randomly chosen quadratic residues. Ours
is the first provably secure construction of pseudo-free abelian groups
under a standard cryptographic assumption, and resolves a conjecture of
Rivest (TCC 2004).

1 Introduction

The notion of “pseudo-free group”, put forward by Hohenberger in [10] and
subsequently refined by Rivest [20], informally describes a finite computational
group (i.e. a group that admits an efficient algorithmic implementation) with the
security property that it is computationally hard to find solutions to any non-
trivial equation over the group. More specifically, Rivest [20] defines pseudo-free
(abelian) groups as computational (commutative) groups such that no polyno-
mial time adversary, given random group elements gy, . .., g, (chosen using to an
appropriate sampling procedure), can output (with non negligible probability)
an equation which is unsatisfiable over the free abelian group generated by the
symbols g1, ..., gn, together with a solution to the equation in the computational
group. As shown in [20], pseudo-freeness is a very strong assumption, and it im-
plies many other computational assumptions typically used in cryptography, like
the hardness of computing discrete logarithms and the RSA assumption in its
standard and strong version. Each of these computational assumptions corre-
sponds to a specific class of equations, e.g., the strong RSA assumption asserts
that it is computationally infeasible to come up with an equation of the form
z¢ = g (which is unsatisfiable over the free group {g‘ : i € Z} for e > 1) to-
gether with a solution = h such that h® = g in the multiplicative group Z%
of the invertible integers modulo the product N = PQ of two large primes.
Free groups are widely used in computer science, and most modern cryptog-
raphy relies on the hardness of computational problems over finite groups. So,
as argued in [20], pseudo-free groups are a very interesting notion from a cryp-
tographic perspective. For example, (non abelian) free groups are used in the so



called Dolev-Yao model [7] for the symbolic analysis of public key cryptographic
protocols. In the last few years, there have been several efforts to bridge the gap
between the symbolic model of [7] (typically used in the area of formal methods
for the analysis of security protocols) and the standard computational model
used in cryptography (see for example [1,18,19,17,13,11,3]) with the goal of
proving computational soundness results for symbolic analysis methods. An in-
teresting question is whether pseudo-free groups can be used to extend (in a
computationally sound way) the Dolev-Yao security model (in which encryption
and decryption are viewed as black-box operations with no algebraic properties)
with richer data structures and cryptographic functions (e.g., homomorphic en-
cryption schemes) that make fundamental use of computational groups. Other
motivations for studying pseudo-free groups mentioned in [20] are the following:

— Using a stronger assumption (that subsumes many other common crypto-
graphic assumptions, like the hardness of computing discrete logarithms, and
the strong RSA assumption) may make proofs easier.

— As the strong RSA assumption has been very useful in the construction
of many cryptographic functions [8,4,6] which are not known to be secure
under the standard version of the RSA assumption, assuming that a group
is pseudo-free may allow an even wider range of applications.

— Pseudo-freeness has been linked [10] to the construction of specific crypto-
graphic primitives, like directed transitive signature schemes, for which no
solution is currently known.

The main question left open by Rivest in [20] is: do pseudo-free groups exist?

In [20] Rivest suggested the RSA group Z} (where N = PQ is the product
of two large primes) as a possible candidate pseudo-free abelian group, and
nicknamed the corresponding conjecture the “super-strong RSA assumption”.
In this paper we resolve Rivest’s conjecture and prove that ZZ} is pseudo-free
under the strong RSA assumption, at least when N = P() is the product of two
“safe primes” (i.e., odd primes such that p = (P—1)/2 and ¢ = (Q —1)/2 are also
prime!), a special class of prime numbers widely used in cryptography. In other
words, we prove that if the strong RSA assumption holds true, then the super-
strong RSA assumption also holds. Our result is the first example of provably
secure pseudo-free group based on a standard cryptographic assumption. In fact,
we prove that the RSA group satisfies an even stronger version of the pseudo-
freeness property than the one defined in [20]: we show that no adversary can
efficiently compute an unsatisfiable system of equations (as opposed to a single
equation) together with a solution in the given computational group.

Our proof is based on a rewriting process that, starting from an arbitrary
equation (or system of equations), yields simpler and simpler equations with the
following properties:

— unsatisfiable equations over the free group are mapped to unsatisfiable equa-
tions over the free group, and

! Equivalently, using more standard mathematical terminology, P = 2p+ 1 and Q =
2q + 1 where p and q are Sophie-Germain primes.



— solutions to the original equations (over a computational group) can be effi-
ciently mapped to solutions to the resulting equations (over the same com-
putational group).

Some of our transformations work for arbitrary groups and might be of inde-
pendent interest. For example, we show how to transform systems of equations
into a single equation (Theorem 4), how to map equations in several variables
to univariate equations (Lemma 3), and how to map unsatisfiable equations of
the form z¢ = g¢ (where e and d are arbitrary integers) to equations where the
exponents are of the form e = ¢"*! and d = ¢ (Theorem 3).

Organization The rest of the paper is organized as follows. In Section 2 we
introduce basic definitions and notation for equations and groups. In Section 3
we prove that the RSA group satisfies the basic definition of pseudo-free group
(involving a single equation). In Section 4 we extend the result to systems of
equations. Section 5 concludes with a discussion of open problems.

2 Preliminaries

A group is an algebra with a binary associative operation o, a unary operation
()7! (inverse) and a constant 1 (identity) satisfying the equational axioms (z o
y)oz=xo(yoz),zol=1lox=x,andzo(z) ! =(z) Loz =1. A groupis
abelian if the operation o is commutative, i.e., it also satisfies zoy = yoz. In
this paper we are interested in computational groups, i.e., groups that admit an
efficient algorithmic implementation.

Definition 1. A computational group (associated to group (G,o,()71,1)) is de-
fined by a mapping {(-): G — {0,1}* (the representation function) such that the
following operations can be performed in polynomial time:

— Test membership in (G), i.e., given a string x, determine if it is a valid
representation of a group element.

— Given {x) and (y), compute (x o y).

— Given (z), compute (z~1).

— Compute the representation of the group identity element (1).

— Sample a group element (g) € (G) (with not necessarily uniform probability
distribution.)

For simplicity, in the definition above, we focused on computational groups in
which each group element has a unique representation, as all the computational
groups studied in this paper have this property. (The definition of computational
group can be easily extended to cases where group elements may have multiple
representations, by introducing an efficiently computable equivalence relation on
group representations.) The requirement that membership in (G) be efficiently
decidable is also not strictly necessary, but convenient, and all computational
groups studied in this paper have this property. Also, sometimes the definition of



computational group requires the distribution output by the sampling algorithm
{g) € (G) to be uniform over G, while other times no sampling algorithm is
required at all. In this paper (g) € (G) is an arbitrary sampling procedure,
which is used to generate nontrivial group elements.

For brevity, we identify computational groups with the underlying mathe-
matical group, and write z oy, 27!, etc., to denote the corresponding operation
on the representations of the group elements. Also, we use multiplicative nota-
tion zy for the group binary operation z o y, and use exponential notation z™
to denote the n-fold composition of x with itself. Formally, ™ is defined induc-
tively by the rules 20 = 1, z"*! = z o 2™. The notation is extended to negative
exponents in the obvious way =" = (z™)~!.

For any set of symbols A, the free abelian group F(A) generated by A is the
initial algebra with constant symbols A satisfying the abelian group equations. It
is easy to see that each group element has a unique representation as a product
[Toca a®, where d, € Z for all a € A.

Let X and A be two disjoint finite sets of variable and constant symbols. We
define X' = {z7':2z € X} and A~! = {a~':a € A}. A group equation over
variables X and constants A, is a pair E = (w1, w2) of words (usually written as
E : wy = ws) over the alphabet XUX 1UAUA~!. Unless otherwise specified, we
interpret E as an equation over the free group F(A). A solution to E : w; = wy
(over the free group F(A)) is a function o: X — F(A) such that o(w;) = o(w2),
where o is extended to words over X U X~! U AU A~! homomorphically in the
obvious way. We say that an equation E : w; = ws is satisfiable (over the free
group) if it admits a solution. We say it is unsatisfiable otherwise.

Let G be a (computational) group. A group equation over G (denoted E,)
is defined by an equation E over variables X and constants A, and a function
a: A = @. A solution to equation E, : w; = ws is a function £ : X — G such
that (a U &)(w1) = (a U &)(w2).

From a computational point of view, we assume that equations E : w; = ws
are represented using compact notation for exponential expressions a‘, so that
exponentially large exponents ¢ can be stored in polynomial space. This is easily
seen to be equivalent to many other formalisms to compactly represent terms
wy, Wa, like, for example, the straight-line programs used in [10].

2.1 Statistical Distance

A function f is negligible if it decreases faster than any inverse polynomial, i.e.,
for any ¢ > 0 there is an ng such that |f(n)| < 1/n° for any n > ng.

Let X and Y be two discrete random variables over a (countable) set A. The
statistical distance between X and Y is the quantity

A(X,Y) = % > IPr{X =a} - Pr{Y =a}|.
a€A

In this paper we use the fact that for any two random variables X and Y over
set A, and predicate p: A — {0, 1},

| Pr{p(X) = 1] - Pr[p(¥) = 1]] < A(X,Y).



In particular, if p(X) happens with non negligible probability, and A(X,Y") is
negligible, then also p(Y) happens with non negligible probability.

2.2 Pseudo-free groups

Intuitively, a computational group is pseudo-free if no efficient algorithm can find
a nontrivial relation among randomly chosen group elements, i.e., an equation (or
system of equations) which is unsatisfiable over the free group, together with a
solution over the computational group. Since for any finite group G, the equation
z/G+1 = s unsatisfiable over the free group F({a}), but has solution z = a over
G, in order to properly define pseudo-free groups we need to consider families
of groups {Gn} where N is chosen at random from a probability ensemble N
In particular, given a randomly chosen N € N, the order of the group o(Gn)
should be hard to compute.

Definition 2. A family of computational groups G = {GN}nen is pseudo-free
if for any set A of polynomial size |A| = p(k) (where k is a security parameter),
and probabilistic polynomial (in k) time algorithm A, the following holds. Let
N € N (k) be a randomly chosen group indez, and a: A — G a function defin-
ing |A| group elements chosen independently at random according to the compu-
tational group sampling procedure. Then, the probability that A(N,a) = (E,§)
outputs an unsatisfiable equation E (over variables X and constants A) together
with a solution & X — Gy to E, over Gy, is negligible.

2.3 The RSA group

In this paper, we study the group Z of invertible integers modulo N. This
is a computational group, with the usual representation of each group element
as an integer in {0,..., N — 1}. Membership g € ZZ can be easily tested by
computing ged(g, N) and checking that ged(g, N) = 1. The group Z can be
efficiently sampled uniformly at random by picking an integer g € {0,..., N —1}
with uniform distribution, and checking if g € ZZ. However, in this paper, it
is more convenient to consider the computational group Z7 together with a
different sampling procedure that chooses g at random from a subgroup of ZZ}.
An element g € Z}, is called a quadratic residue if g = h? mod N for some
h € Zy. The set of quadratic residues modulo N is denoted QRy, and it is
a subgroup of ZZ. The subgroup @Ry can be efficiently sampled by picking
h € Z% uniformly at random and setting g = h% mod N. Unless otherwise
specified, in this paper we always consider the computational group ZZ3 with
this sampling procedure that selects g uniformly at random from QR .

When N = P-Q is the product of two prime numbers, ZZ%; is commonly called
an RSA group, after the encryption function of Rivest, Shamir and Adleman [21],
which started a widespread use of these groups in cryptography. In this paper
we are interested in RSA groups where P and @) are primes of special form. A
prime number p is called a Sophie-Germain prime if 2p + 1 is also prime. In the
cryptographic literature, the number 2p+1 (where p is a Sophie-Germain prime)



is usually called a safe prime. In other words, a safe prime P = 2p+ 1 is an odd
prime number such that p = (P — 1)/2 is also prime. Safe primes are relatively
eagsy to find in practice (e.g., by choosing p at random and testing p and 2p+1 for
primality), although there is no known mathematical proof showing that there
are infinitely many of them. Safe primes are widely used in cryptography. For
example, the RSA group Z where N = P-(Q is the product of two safe primes
has been used in [8,9, 6].

Let \V be the set of all safe prime products. We assume some standard prob-
ability distribution on N, as typically used in many cryptographic applications.
(E.g., choose N as the product of two random k-bit safe primes.) The following
computational problems are considered hard, and have been used as the basis
for many cryptographic applications:

— Factoring problem: given an integer N € N, compute prime factors P, Q
such that N = P - Q;

— RSA problem: given an integer N € N, an integer e relatively prime with
¢(N) = (P —1)(Q — 1), and a randomly chosen group element v € Z7y,
compute a £ € Z such that £° = v mod N;

— Strong RSA problem: given an integer N € A/, and a randomly chosen group
element v € ZZ%;, output an integer e > 1 and a group element £ € Z}
such that £&¢ =y mod N.

In this paper we are primarily interested in the strong RSA problem and its
relation to pseudo-freeness. It is convenient to consider the following variant of
the strong RSA problem where the input v is chosen as a random quadratic
residue:

— Strong QR-RSA problem: given an integer N € A/, and a randomly chosen
quadratic residue v € QRy, output an integer e > 1 and a group element
& € ZZ}y such that £ =y mod N.

It can be easily shown [6] that this variant is not any easier than the standard
strong RSA problem.

Theorem 1 (See [6], Section 4). If the strong RSA problem modulo a safe
prime product is hard, then the strong QR-RSA problem modulo a safe prime
product is also hard.

For any prime product N = P - ), the group ZZ} has cardinality o(Z}) =
#(N) = (P —1)(Q — 1) and it is isomorphic to ZZp x Zg,, with isomorphism
given by £ = (§mod P,émod Q). If P = 2p+ 1 and Q = 2q + 1 are safe
primes, the group Z has order 4pq, and the subgroup QRy C Z has order
o(QRN) = pq. In particular, all elements in QRy have order? 1,p, q or pq.

% The order of an element + in a group G is the smallest positive integer o(y) > 1 such
that y°) = 1.



3 The RSA group is pseudo-free

In this section we prove, under the strong RSA assumption, that the RSA group
ZZy (where N is the product of two safe primes, and elements are sampled
uniformly at random from QRy) is pseudo-free.

Theorem 2. Let N be a distribution over safe prime products such that the
strong RSA problem modulo N € N is hard. Then the family of computational
groups Z of invertible integers modulo N € N (with the modular multiplication
group operation, and uniform sampling procedure over QRy ) is pseudo-free.

Proof. Assume that ZZ73; is not pseudo-free, i.e., there is a probabilistic polyno-
mial time algorithm A that on input a randomly chosen N € N (k) and random
group elements a: A — QRpy (for some polynomial sized set A), outputs an
unsatisfiable equation E:w; = wa (over constants A and variables X) together
with a solution &: X — Z to E, over the group ZZ}. We use A to solve the
strong QR-RSA problem for the same distribution of the modulus N. Namely,
given a randomly chosen N € NV (k) and v € QRN, we compute an integer e > 1
and group element £ € ZZ} such that £¢ = . By Theorem 1 this also implies
an algorithm to solve the standard strong RSA problem.

The reduction works as follows. Let (IV,v) be an instance of the strong QR-
RSA problem. We begin by checking if v is a generator for ()QRy. This can be
easily done using the following lemma.?

Lemma 1. Let N = P - @Q be the product of two distinct safe primes, and v €
QRN a quadratic residue. Then v is a generator for QRy if and only if ged(y —
1,N)=1.

If v is not a generator for Q Ry, then we can easily solve the strong QR-RSA
problem instance (N, ) as described below. Given N and v € Q Ry, we compute
g =ged(y—1,N). Since N = PQ, it must be g € {1, P,Q, PQ}. We distinguish
three cases.

— If g= PQ = N, then N divides y — 1, and vy =1 (mod N). So, we can
immediately output a solution to the strong QR-RSA input problem (N, 7),
e (6,¢) = (1,3)

— If g € {P,Q}, then we can easily compute ¢(N) = (P —-1)-(Q —1) =
(9 —1)(N/g —1). This also easily yields a solution (&, e) = (v, #(N) + 1) to
the strong QR-RSA problem (N, 7).

— If g = 1, then by Lemma 1 « is a generator for QRy and we proceed as
follows.

In the rest of the proof we assume that 7 is a generator of QRy. We use
~ to sample the group elements a(a) € QRN and generate an input instance
(N, ) for algorithm A. Since A works only with non negligible probability, we

3 The proof of this and other lemmas are omitted because of space limitations. All
proofs can be found in the full version of the paper on the author’s web page.



need the input values a(a) to be distributed (almost) uniformly at random over
QRy. The following lemma shows that + can be used to sample QRy almost
uniformly at random.

Lemma 2. For any cyclic group G and generator v € G, if v € {0,...,B —1}
is chosen uniformly at random, then the statistical distance between v and the
uniform distribution over G is at most |G|/2B.

For any a € A, choose v, € [0,...,N - |A|- K — 1] uniformly at random for
some super-polynomial function K (k) = k“")| and set a(a) = . By Lemma 2,
the statistical distance between «(a) and the uniform distribution over QR is
at most |QRn|/2N|A|K < 1/|A|- K. Since the values a(a) are independently
chosen, the statistical distance between « and a uniformly chosen assignment is
at most 1/2K = k1),

Invoke algorithm A on input (N,a). We know that when « is distributed
uniformly at random, algorithm 4 is successful with non negligible probabil-
ity 6(k) = k~°M). Since a is within negligible statistical distance 1/K (k) from
uniform, A succeeds on input « at least with non negligible probability §(k) —
1/K (k). In the rest of the proof, we assume A is successful, and we consider the
conditional success probability of the reduction. We will show that the condi-
tional success probability is at least 1/3.

Fix the value of N, generator v € Q Ry, and input (IV, ) passed to algorithm
A. Let E : wy = wy and £ be the equation and solution to E, returned by
A. Remember that, for every a € A, a(a) = 7%+ for a randomly chosen v, €
{0,...,N-|A|-K —1}. For any a € A, let w, = v, mod pq and z, = (v, —w,)/pg.
We remark that although the values v, are known, and w,, 2, are uniquely
determined by wv,, the values w, and z, cannot be easily computed from v,
because the product pq is not known. Therefore, the values w, and z, cannot be
used in the reduction process. We will use w, and z, only in the analysis of the
reduction.

Notice that, given w,, the conditional distribution of z, is uniform over the
set

S =1{0,.., [(NJAIK — 1= w,)/pa]}. (1)

Also, given w,, a(a) = y¥* = ™= is uniquely determined, and z, is uniformly
distributed over the set S, independently from «, E and &. In particular, the
integers z, € S, are uniformly distributed independently from the success of
algorithm A.

Assume that A is successful, i.e., E is unsatisfiable over F(A4), and & X —
@Ry is a valid solution to E,. We use equation E and solution £ to solve the
original strong QR-RSA problem (N,). This is done in two steps. First, we
transform equation E and solution £ to E,, into a new unsatisfiable equation E’
and solution &' to E!, containing only one variable symbol. Then, E' and ¢’ are
used to solve the strong QR-RSA problem (N, ).

The equation and solution (FE, £) is transformed into a univariate equation
and solution (E', ') using the following lemma.



Lemma 3. For any computational group G, there is a polynomial time algo-
rithm that on input an equation E over constants A and variables X, and a

variable assignment £ : X — G, outputs a univariate equation E' and value
&' € G, such that

— if E is unsatisfiable over the free group F(A), then E' is also unsatisfiable
over F(A); and

— for any assignment o : A — G, if € is a solution to E, then &' is a solution
to El,.

At this point we have an unsatisfiable equation of the form E' : z¢ = [], ade
and a solution &' € Zy to E!,. Notice that E' is satisfiable over the free group
F(A) if and only if e| ged(d, : a € A). So, it must be e fged(d, : a € A). Also,
from the definition of a(a), we know that

€)= [[ @)™ = e v, 2)

Assume without loss of generality that e > 0 and d = ) vad, > 0. (Other-
wise, change the sign of e and/or the d, for all a € A, and possibly replace &'
with (¢)71 in order to satisfy (2).) In the rest of the proof we distinguish various
cases, depending on the value of gcd(e, pq).

— If ged(e, pg) = pg and e # 0, then we can immediately output the solution
(v,e + 1) to the strong QR-RSA problem (N,v) because o(y) = pg and
vt =~v.4¢ =+ (mod N). We remark that, although we cannot compute
ged(e, pg) (or even check if ged(e, pg) = pg) because pg is not know, we can
guess that this is the case, and simply check if v,e + 1) is indeed a solution
to the given strong QR-RSA problem. Similar remarks apply to the other
cases below.

— If ged(e, pg) € {p,q}, then o(v*) = pq/ gcd(e, pq) € {p,q}. In particular, ¢
is not a generator of QRy, and, by Lemma 1, gcd(y® — 1, N) # 1. Since
v¢ #1 (mod N), we also have gcd(y¢ — 1, N) # N. Therefore, it must be
g=gcd(y¢ —1,N) € {P,Q}. So, we can compute ¢(N) = (P -1)(Q —1) =
(9—1)(N/g—1), and output the solution (v, ¢(N)+1) to the strong QR-RSA
problem (N,7).

— The remaining cases are when e = 0 or ged(e,pg) = 1, and are described
below.

If e = 0, Lemma 4 below shows that d = 0 with probability at most 1/2. It
follows that with probability at least 1/2, (v,d + 1) is a solution to the strong
QR-RSA problem (N,v) because d +1>d > 1 and 44 =y - 4% = 4. £0 = 4.
So, the conditional success probability of the reduction is at least 1/2.

Lemma 4. The conditional probability (given a, e = 0, and {d, : a € A} such
that e fged{d, : a € A}) that d =, v.ds # 0 is at least 1/2.

The last case to consider is when ged(e, pg) = 1. This is the most complicated
of all cases. This time, we first show that e|d with probability at most 2/3.



Lemma 5. The conditional probability (given «, ged(e,pq) = 1, and {d, : a €
A} such that e fgcd{d, : a € A}) that e divides d = ), v,d, is at most 2/3.

We conclude the reduction showing that if e > 0 and e fd, then we can solve
the strong QR-RSA problem (N, ). The proof is based on the following theorem.

Theorem 3. For any abelian group, there is a polynomial time algorithm that
on input (v,&,e,d), where v,£ are group elements and e,d integers, satisfying
£ =~ e # 0,efd, outputs (6,c,h) such that 6" =~ |c| > 2, c"*'|e and
h

c|d.

Proof. We define the algorithm A(+y, &, e, d) recursively, by induction on the size
of e and d. At each iteration, either d or e is replaced by a proper factor, while
the other number is unchanged. It follows that the algorithm terminates within
at most log, (de) iterations.

Algorithm A(v, &, e, d) works as follows:

— If d fe, compute d; = ged(e,d) using the extended Euclidean algorithm to
find integers e’,d’ such that di = e-¢e' + d - d'. Then invoke recursively
Ay, &4~ e, dy) and output the result.

— Otherwise, d|e, and we can compute ¢ = e/d. If d is a power of ¢, i.e., d = c"
for some integer h, return (&, ¢, h).

— If d is not a power of ¢, let h be the largest exponent such that c¢”|d. Invoke
recursively A(y,£%°" "1, d) and return the result.

We need to prove that the algorithm is correct, and that either e or d decreases
at every iteration.

First consider the case d fe. The input to the recursive call is given by & =
£74¢ ey = e and dy = ged(e, d). Notice that

f1 — (gd ,ye )e — (Ee)d ,yee — ’)’dd +ee _ ’Ydl.

Moreover, e; = e # 0, and e; Jd;, because otherwise e = e;1|d;|d, contradicting
e fd. So, the input to the recursive call is valid, i.e., it satisfies the assumptions in
the theorem. In order to ensure termination, we need to check that d; properly
divides d. Assume for contradiction d = d;. From the definition of d;, it follows
that d|e, but this contradicts the condition d fe tested by the algorithm.

Now assume d|e. Notice that d # 0, because otherwise e|d. So, the quotient
¢ = e/d is well defined. Moreover, |¢| > 1 because e # 0, and e /d. If d = ", then
the algorithm terminates with output 8 = £, ¢, h. Notice that

Ch+1 c e Ch
0" =gt =g =yt =

i.e., the output is correct.
Finally, consider the case when dle, but d is not a power of ¢. Notice that
d # 0 because e Jd. Since |c| > 1 and d # 0, the maximum h = max{h : c*|d}



is well defined, and d/c" is an integer. This time, the algorithm is recursively
invoked on input & = £¥/°" e; = ¢h+! and d; = d. This input satisfies

€fl — é—dc — €dc — é-e — ’Yd — ’)’dl-
h+1 __

Moreover e; = ¢ht! # 0 because ¢ # 0. Also, e Jd;, because otherwise ¢ =
e1|d; = d, contradicting the maximality of h. This time, we want to prove that
e; properly divides e. Clearly, e; = c"c|dc = e. Now, assume e; = e. Then,

c" =e;/c=e/c=d, and d is a power of c. o

h+1/ch

Applying Theorem 3 to equation £¢ = 7%, we get values ¢ > 2, h > 0 and
6 € ZZy such that gt = 'ych. If 6¢ = ~, then (0,¢) is a solution to the
strong QR-RSA problem. So, assume (8°/v) # 1, and assume also, without
loss of generality that h is the smallest integer such that (6¢ /v)ch = 1. Let
§=(6°/7)"""". We know that § # 1 and 6° = 1.

The following lemma shows that ¢ is a quadratic residue.

Lemma 6. The value § = (6° /fy)ch_1 is a quadratic residue.

Apply Lemma 1 to quadratic residue . Since § # 1, either § is a generator
for QRy, or ged(6—1,N) € {P,Q}. As before, if g = ged(6—1,N) € {P,Q}, we
can compute ¢(N) = (P —1)(Q — 1) = (9 — 1)(N/g — 1) and output the trivial
strong QR-RSA solution (v, ¢(N) + 1)

So, assume 4 is a generator for Q Ry . Since §° = 1, it must be pg = o(d)|c. In
particular, we also have v° = 1, and (v, ¢+1) is a solution to the strong QR-RSA
problem.

This completes the proof that if the RSA group is not pseudo-free, then we
can solve the strong RSA problem. O

4 Systems of equations

The intuition behind the definition of pseudo-free group is that no polynomial
time adversary can “prove” that the given computational group is not free. The
kind of proofs implicit in Definition 2 consist of a single equation which is unsat-
isfiable over the free group, but satisfiable over the computational group. This
choice is motivated by the fact that unsatisfiability of equations over free groups
and satisfiability over computational groups can be efficiently demonstrated.
(Specifically, unsatisfiability over free abelian groups is decidable in polynomial
time, and satisfiability over arbitrary computational groups can be proved by
giving a satisfying assignment.) An immediate extension that comes to mind is
to consider systems of equations. Satisfiability for systems of equations is de-
fined in the obvious way: a variable assignment satisfies a system of equations if
it simultaneously satisfies all the equations in the system. As observed in [20],
for the case of non abelian free groups, the results in [14] (see also [12, Lemma
3 and Corollary 2 and 3]) allow to combine systems of equations into a single
equation. Specifically, the method is based on showing that the two equations



xz =1 and y = 1 are equivalent to the single equation z2az?a=! = (ybyb—')2, and
it allows to transform any finite system of equations into a single equation with
exactly the same set of solutions. Unfortunately, the same is not true for abelian
groups, and the set of solutions of a system of equations cannot in general be
represented by a single equation. Consider for example the equations x = 1 and
y = 1. The solution to this system is clearly unique. However, no single equation
in two variables can have a unique solution. (Any bivariate equation has always
either zero or infinitely many solutions over the free group.)

In this section we show that in the case of abelian groups, it is still possible
to transform systems of equations into a single equation which is equivalent to
the system, but in a weaker sense than having exactly the same set of solutions.
The transformation maps any system of equations to a single equation whose
solution set is a superset of the solutions to the system. However, if the system is
unsatisfiable, then also the single equation is guaranteed to be unsatisfiable. This
weaker notion of equivalence is enough to prove that Definition 2 is equivalent
to the following seemingly stronger definition.

Definition 3. A family of computational groups G = {GN}nen is pseudo-
free if for any set A of polynomial size |A| = p(k) (where k is a security pa-
rameter), and probabilistic polynomial (in k) time algorithm A, the following
holds. Let N € N(k) be a randomly chosen group index, and a: A — Gy a
function defining |A| group elements chosen independently at random accord-
ing to the computational group sampling procedure. Then, the probability that
A(N,a) = ({Et}ier,€) outputs an unsatisfiable system of equations {E'};cr
(over variables X and constants A) together with a solution £&: X — Gy to
{E!}ic1 over Gy, is negligible.

The transformation from systems of equations to single equations is described
in the following theorem.

Theorem 4. There is a polynomial time algorithm that on input a system of
equations {E%};cr over constants A and variables X, outputs a single equation
E over the same sets of constants A and variables X, such that the following
holds.

— If {E'}icr is unsatisfiable (over the free abelian group generated by A), then
E is also unsatisfiable;

— For any computational group G and assignment a: A — G, any solution
& X — G to {E: }ier is also a solution to E,.

The proof of the theorem is based on elementary lattice techniques. For a
detailed introduction to lattices and their computational complexity the reader
is referred to [16]. Here we briefly recall the basic definitions and simple facts
about lattices used in the proof of Theorem 4. For any matrix M with rational
entries the lattice generated by a matrix M = [my,...,m,] is the set L(M) =
{>;zimix; € Zfori = 1,...,n} of all integer linear combinations of the
columns of M. There is a polynomial time algorithm that on input two rational



matrices M and M’, determines if £L(M) C £(M'), and if not, finds a vector
u € L(M) \ L(M'). The dual of a lattice £(M) is the set of all vectors u
in the linear span of the columns of M that have integer scalar product with
all lattice vectors in £(M). The dual of a lattice is a lattice, and the dual of
the dual of a lattice equals the original lattice. The dual of a lattice £(M) is
denoted £(M). Moreover, there is a polynomial time algorithm that on input a
rational matrix M outputs a rational matrix M’ such that L(M') = L(M). It
immediately follows from the definition of dual lattice that £(M) is a sub-lattice
of L(M') (i.e., £L(M) C L£(M')) if and only if £(M') is a sub-lattice of £(M)
(i.e., £L(M') C £(M)). We are now ready to prove Theorem 4.

Proof. Let {E};cr be a system of equations over the set of constant symbols A
and variables X, and let 0: X — F (A) be a generic variable assignment. Write
each equation E* and the assignment o(x) as

Ei. H rfie = H adi,a
zeX a€A

o(z) = H a’®*,

a€A

where the €; 4, d; o and s, o are integers for all 1 € I, ¢ € X and a € A. We use
notation ey« to denote the matrix with |I| rows and |X| columns with integer
entries (e;,3)icr,zex, and e; « and e, ; to denote the rows and columns of matrix
ex,x. The matrices dy «, 5«,» and vectors d; «, dx g, Sz, S«,o are defined similarly.
Notice that ¢ is a solution to the system of equations over the free group if and

only if
E €i,xSz,0 = di,a
rzeX

for all ¢ € I and a € A, or, equivalently, in matrix notation, e, .S« = du x-
So, the system of equations is solvable over the free group if and only if the
integer lattice L£(ex «) contains £(dx «) as a sub-lattice. Moreover, the two lattices
satisfy L(exx) 2 L(d. ) if and only if their duals satisfy the reverse inclusion
ﬁ(e*,*) C ﬁ(d*,*). The inclusion ﬁ(e*,*) C ﬁ(d*,*) can be checked using standard
techniques, and if it is not satisfied, one can efficiently find a vector (u;)icr €
L(ex ) such that (u;)ier ¢ L(dx ).

If /:'(e*,*) C ﬁ(d*,*), then the system of equations {E*};c; is satisfiable over
the free group, and the algorithm can simply output an arbitrary equation £ =
E® from the system. Clearly, any solution to the system is also a solution to
E. Moreover, the other condition in the theorem is vacuously satisfied because
{E%};¢; is satisfiable over the free group.

So, let us assume that £(es.) € L(ds.), and let u, = (u;)ics be a vector
such that (us)ier € L(exn) \ L(ds). We know that > ; Uieig is an integer for
all z € X because u, belongs to the dual lattice ﬁ(e*7*). Moreover, since L(ex «)
is an integer lattice, all entries u; are rational numbers. It follows that for any
a € A, Y, uid;, is a rational number, but ), u;d; , is not an integer for some



a € A. Let M be the smallest integer such that M -}, u;d; o is an integer for all
a € A. In other words, let M be the least common multiple of the denominators
of the fractions ), u;d;, for all a € A. The output of the algorithm is the

equation
B H ':CMZ1 Uiz _ H aM'Zi uid,',a-
zeX a€A

We need to show that this equation satisfies the two properties in the theorem.

Let a: A - G and £&: X — G be two assignments such that £ is a solution
to the system {Ef};cr over computational group Gy, i.e., [],cy &(@)%* =
[T,ca @(a)®= for all i € I. It follows that

¢ (H :EMEI uiei,z> — H (H 6(1’)6’”)

zeX i€l \zeX

(I ew)

i€l \a€A

=a (H M2 ""d"’“)

a€A

i.e., £ is also a solution to equation E,. This proves the second property. For
the first property, since the system is unsatisfiable, we need to prove that E is
also unsatisfiable over the free group F(A). Assume for contradiction that E is
satisfiable over the free group and let o(z) = [],.4 a®>* be a solution, i.e.,

= H aM'Zi u"di’“_

a€A

Mz:1 Uiei,z
I ()

z€X \a€A

Since the group F(A) is free, this is true if and only if

M Z Se,a Zuiem =M- Zuidi,a

zeX i€l i€l

for all @ € A. Since ), . x Sz,a ) _jcs Ui€i,z 18 an integer, the left hand side of the
last equation is a multiple of M. So, the right hand side is also a multiple of M,
and ) . u;d; q is an integer for all a € A. But this is a contradiction because by
construction (namely, by the choice of (u;);cs) there exists an a € A such that
>; widi o is not an integer. |

Corollary 1. A family of computational groups {Gn}nen satisfies Definition 2
if and only if it satisfies Definition 3.

Proof. If a group family is pseudo-free in the sense of Definition 3, then it sat-
isfies Definition 2 as well because single equations are a special case of systems
containing only one equation. Conversely, assume a group family does not sat-
isfies Definition 3, i.e., there exists an adversary 4 that on input a group index



N € N and random assignment a: A — G, outputs an unsatisfiable system of
equations {F;};cr over constants A and variables X, together with a solution
&: X — G to the system over the computational group G . Then, using Theo-
rem 4, A can be easily converted into an adversary A’ contradicting Definition 2.
Namely, on input group index N € N and random assignment a : A — Gy, ad-
versary A’ invokes A on input (N, «) to get an unsatisfiable system of equations
{E;}ic1 together with a solution & over the computational group G . Finally, A’
transforms {E; };cr into a single equation E using Theorem 4, and outputs E, €.
By Theorem 4, equation E is unsatisfiable over the free group, and ¢ is a solution
to E, over Gy, proving that the group family does not satisfies Definition 2. 0O

The following corollary immediately follows from Theorem 2 and 1.

Corollary 2. Let N be a distribution over safe prime products such that the
strong RSA problem modulo N € N is hard. Then the family of computational
groups Z7 of invertible integers modulo N € N (with the modular multipli-
cation group operation, and uniform sampling procedure over QRN ) satisfies
Definition 3, i.e., it is pseudo-free with respect to systems of equations.

5 Conclusion

We have given the first example of provably secure pseudo-free group under
standard cryptographic assumptions. In particular, we proved that the RSA
group Zy where N is the product of two safe primes is pseudo-free, assuming
the hardness of the strong RSA problem. Many open problems remain. In this
section we illustrate some of them.

Our proof uses the fact that N is the product of two safe primes, and elements
are sampled uniformly at random from the subgroup Q Ry of quadratic residues.
A natural question is whether ZZ}; is pseudo-free even when N is the product of
two arbitrary primes, and elements are sampled uniformly at random from the
whole group ZZ . Another open problem is to relax the hypothesis of Theorem 2,
and prove that ZZ; is pseudo-free assuming that factoring N is hard. Notice that
this last problem is probably very hard, as it would imply that inverting the
RSA function is at least as hard as factoring, a long standing open problem in
cryptography. However, there are many other cryptographic problems that have
been proved at least as hard as factoring, like the discrete logarithm problem
[2], the Diffie-Hellman problem [15], and the generalized Diffie-Hellman problem
[5] modulo Blum integers. We remark that while computing discrete logarithms
in pseudo-free groups is provably hard [20], no relation between pseudo-freeness
and the Diffie-Hellman problem is currently known. An interesting open question,
already posed in [20], is to show that the Diffie-Hellman problem in pseudo-free
groups is computationally hard.

Another interesting problem is to find other examples of pseudo-free groups,
beside ZZ%, and possibly proving their security based on standard cryptographic
assumptions. Of particular interest would be to find a good candidate of non
abelian pseudo-free group.



Finally, it would be nice to find applications of pseudo-free groups, as those
mentioned in [20] and in the introduction, to demonstrate the usefulness of the
notion of pseudo-free group. It might be the case that some applications require
even stronger notions of pseudo-freeness than the one defined in [20]. In Section 4
we already considered extending the definition to systems of equations, and
proved that pseudo-freeness with respect to systems of equations (Definition 3
) is equivalent to the basic definition of pseudo-free group. Another possible
extensions is to consider more general boolean combinations of equations, e.g.,
one can consider systems of equations w; = ws and inequations wy # ws. For
example, 22 = 1 and = # 1 cannot be simultaneously satisfied over the free
group, but admit a solution z = N — 1 in Z} for any N # 2. We remark
that the satisfiability problem over free abelian groups for arbitrary boolean
combinations of equations is NP-hard. (E.g., 3SAT can be immediately reduced
to such a formula mapping each boolean variable x to a corresponding equation
x = 1.) So, some unsatisfiable formula do not have short (polynomial size) proofs
of unsatisfiability, unless NP=coNP. Extensions of the notion of pseudo-free
group to general boolean combinations of formulas should require the adversary
to output not only an unsatisfiable formula over the free group (together with
a solution over the computational group), but also a short and easily verifiable
proof that the formula is indeed unsatisfiable.
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