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Abstract. Determining the minimal assumptions needed to construct
various cryptographic building blocks has been a focal point of research in
theoretical cryptography. Here, we revisit the following question: what are

the minimal assumptions needed to construct statistically-hiding commit-

ment schemes? Previously, it was known how to construct such schemes
based on one-way permutations. We improve upon this by construct-
ing statistically-hiding commitment schemes based on approximable-pre-

image-size one-way functions. These are one-way functions for which
there is an efficient way to approximate the number of preimages of a
given output. A special case (for which we show a somewhat simpler
construction) is that of regular one-way functions where all outputs have
the same number of preimages.

We utilize two different approaches in constructing statistically-hiding
commitment schemes. Our first approach proceeds by showing that the
scheme of Naor et al. can be implemented using any one-way func-
tion having an output distribution which is “sufficiently similar” to uni-
form. We then construct one-way functions with this property from
approximable-preimage-size one-way functions. Our second approach be-
gins by constructing a commitment scheme which is statistically hiding
against an honest-but-curious receiver. We then demonstrate a compiler

which transforms any such commitment scheme into one which is sta-
tistically hiding even against a malicious receiver. This compiler and its
analysis may be of independent interest.

1 Introduction

A central focus of modern cryptography has been to investigate the weakest
possible assumptions under which various cryptographic primitives exist. This
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direction of research has been quite fruitful, and minimal assumptions are known
for a wide variety of primitives: e.g., pseudorandom generators, pseudorandom
functions, symmetric-key encryption/message authentication, and digital signa-
tures [21, 12, 13, 20, 24, 26, 29]. In other cases, black-box separation results exist
which indicate the difficulty — if not impossibility — of constructing “strong”
cryptographic protocols (say, key-exchange) from “weak” building blocks (say,
one-way permutations; see [22]).

The above may give the impression that exact characterizations for all prim-
itives of interest (at least in terms of equivalent complexity-theoretic assump-
tions) are known; however, this is not the case. Questions that remain open (to
choose two examples) include the possibility of constructing efficient-prover non-
interactive zero-knowledge proofs [4] based on assumptions weaker than trapdoor
permutations [9], as well as determining whether constant-round ZK proofs exist
based only on the assumption of one-way functions (see [10, Chap. 4]).

Another key cryptographic primitive in which a weakest possible assump-
tion is not known is statistically-hiding commitment. Informally, a commitment
scheme defines a two-phase interactive protocol between a sender S and a re-
ceiverR; after the commitment phase, S is uniquely bound to (at most) one value
which is not yet revealed to R, and in the decommitment phase R finally learns
this value. The two security properties hinted at in this informal description are
known as binding (namely, that S is bound to at most one value after the com-
mitment phase) and hiding (namely, that R does not learn the value to which S
commits before the decommitment phase). In a statistically-hiding commitment
scheme the hiding property holds even against all-powerful receivers (i.e., hiding
holds information-theoretically), while the binding property is required to hold
only for computationally-bounded (say, polynomial-time) senders.

Statistically-hiding commitment schemes can be used as a building block
in constructions of statistical zero-knowledge arguments [6, 25] or certain coin-
tossing protocols [2, 23]. They are also advantageous when used within protocols
in which certain commitments are never revealed; in this case, it need only be
infeasible to violate the binding property during the period of time the protocol
is run, whereas the committed values will remain hidden forever (i.e., regardless
of how much time the receiver invests after completion of the protocol). Indeed,
this is part of the motivation for statistical zero-knowledge as well. For further
discussion, the reader is referred to [27, 28, 25].

Perfectly-hiding1 commitment schemes were first shown to exist based on spe-
cific number-theoretic assumptions [6, 5] or, more generally, based on any collec-
tion of claw-free permutations [18] with an efficiently-recognizable index set [15]
(see [15] for a definition of a weaker variant of statistically-hiding commitment
which suffices for some applications and for which an efficiently-recognizable
index set is not needed). Naor, et al. [25], using techniques developed earlier

1 Very informally, in a statistically-hiding commitment scheme the receiver learns only
a negligible amount of information about the sender’s committed value, whereas in
a perfectly-hiding commitment scheme the receiver learns nothing. Note that any
perfectly-hiding scheme is also statistically-hiding.



by Ostrovsky, et al. [27, 28], later showed a construction of a perfectly-hiding
commitment scheme based on one-way permutations. Statistically-hiding com-
mitment schemes can also be constructed from collision-resistant hash functions
[8, 19] (see [30] for minimal assumptions for the existence of the latter).

1.1 Our Results

We show how to construct a statistically-hiding commitment scheme given any
approximable-preimage-size one-way function. Informally, this is a one-way func-
tion f satisfying the additional property that, given any y in the image of f ,
the value | {x : f(x) = y} | (i.e., the number of points mapping to y) can be effi-
ciently estimated. An interesting special case, for which our construction may be
somewhat simplified, is that of regular one-way functions for which every point
in the image of f has the same number of preimages. (We still require that it
be feasible to approximate the number of preimages.) A variety of conjectured
one-way functions are regular; we refer the reader to [16] for examples.

We show two different approaches to constructing statistically-hiding com-
mitment schemes: the first is more direct and achieves better computational
efficiency, while the second achieves better round complexity (in fact, it achieves
round complexity identical to [25]). As part of our second approach, we show
a compiler transforming any commitment scheme which is statistically-hiding
against an honest-but-curious (a.k.a. semi-honest) receiver into one which is
statistically-hiding against an arbitrarily-malicious receiver. Since our compiler
requires only the existence of one-way functions, our result implies an equiva-
lence between the two formulations of the problem. (Due to space limitations
the details of our second approach do not appear in this version.)

Our results may be viewed as an example of the paradigm in which a se-
quence of works constructs a given primitive from ever-weaker assumptions;
e.g., in the cases of pseudorandom generators and universal one-way hash func-
tions/signature schemes (see [10, Chap. 2] and [11, Chap. 6]), constructions were
first based on specific, number-theoretic assumptions [3, 18], and then the min-
imal assumptions were gradually reduced to trapdoor permutations [1] (in the
case of signatures), one-way permutations [17, 26], regular one-way functions [16,
31], and (finally) one-way functions [20, 29]. We hope our work will similarly serve
as a step toward resolving the question of the minimal assumptions required for
statistically-hiding commitment.

1.2 Overview of Our Techniques

Our constructions are based on the protocol of Naor et al. [25], which is shown
there to be perfectly hiding (as well as computationally binding) when applied
using a one-way permutation. It is natural to ask what happens when this pro-
tocol is applied using some other function f : {0, 1}n → {0, 1}`. We first ob-
serve that the main argument of [25] shows that the protocol is computationally
binding as long as f cannot be efficiently inverted with respect to the uniform
distribution U` (more formally, no efficient algorithm can compute f−1(y), for



uniformly-chosen y, with non-negligible probability). We call a function with
this property one-way over its range. Note that a function with this property is
not necessarily one-way.

As our first main technical result, we then show that the protocol of Naor et
al. is “somewhat hiding” when applied using a function f for which the distribu-
tion f(Un) is balanced. (By “somewhat hiding” we mean that the receiver cannot
guess the committed bit with probability better than some constant ρ < 1. Such
a protocol can be “amplified” using repetition to give a statistically-hiding pro-
tocol.) Loosely speaking, a distribution over {0, 1}` is balanced if it assigns to
“most” elements y ∈ {0, 1}` a probability that is close to 2−` (say between
(99/100) · 2−` and (101/100) · 2−`). (In the precise definition we allow some ele-
ments to have probability outside this range as long as both the number of such
elements and their total weight are small.)

The remainder of the paper is devoted to constructing functions that are
both balanced and one-way over their range.2 Intuitively, both these proper-
ties require the output distribution f(Un) to be “somewhat similar” to uni-
form. While we do not know how to construct such a function given a general
one-way function, we show how to construct such functions given regular or
approximable-preimage-size one-way functions. We achieve this goal using poly-
wise independent hashing, inspired by [20, 29]. More precisely, given a regular
one-way function f (the case of approximable-preimage-size one-way functions
is more complex), we define f ′(h, x) = (h, h(f(x))) where h is selected from a
family of O(k)-wise independent hash functions (here, k is the security param-
eter). This hashing “smoothes” the output distribution, and we show that by
choosing the output length of h appropriately we obtain an f ′ which is both
balanced and one-way over its range. Note that making the output length of h
“too small” makes f ′ more balanced, but possibly no longer one-way over its
range (and vice versa); we use the fact that f is regular (and that the number
of preimages is known) when setting the output length of h. This is why our
approach does not extend for general one-way functions.

Due to space limitations, some proofs have been omitted or shortened.

2 Preliminaries

Throughout this paper, we let k denote the security parameter. If X1 and X2 are
two distributions over a set X , their statistical difference (written SD(X1, X2))
is defined as:

SD(X1, X2)
def
=

1

2

∑

x∈X

|PrX1 [x]− PrX2 [x]| .

Two distribution ensembles X1 = {X1(k)}k∈ � and X2 = {X2(k)}k∈ � have statis-
tical difference ρ (for ρ a function of k) if SD(X1(k), X2(k)) ≤ ρ(k) for all k large

2 We remark that known constructions of “almost-everywhere one-to-one” one-way
functions [14], “almost one-to-one” one-way functions [10, Sect. 3.5], and the con-
structions of [20] do not suffice for our purposes.



enough. If ρ is negligible, we say the ensembles are statistically indistinguishable.

For a function f : {0, 1}n → {0, 1}`, we let image(f)
def
= {f(x) | x ∈ {0, 1}n}.

2.1 Commitment schemes

An interactive bit commitment scheme is defined via a triple of ppt algorithms
(S,R1,R2). Looking ahead, S and R1 will interact during what is called a com-
mitment phase, whileR2 will be used during the (non-interactive) decommitment
phase. More formally:

– S (the sender) is an interactive Turing machine (ITM) which receives as
initial input the security parameter 1k and a bit b. Following its interaction,
it outputs some information decom (the decommitment).

– R1 (the receiver) is an ITM which receives the security parameter 1k as
initial input. Following its interaction, it outputs some state information s.

– R2 (acting as a receiver, in the decommitment phase) is a deterministic
algorithm which receives as input state information s and a decommitment
decom; it outputs either a bit b or the distinguished value ⊥.

Denote by (decom | s) ← 〈S(1k, b),R1(1
k)〉 the experiment in which S and R1

interact (using the given inputs and uniformly random coins), and then S outputs
decom while R1 outputs s. We make the following correctness requirement: for
all k, all b, and every pair (decom | s) that may be output by 〈S(1k, b),R1(1

k)〉,
it is the case that R2(s, decom) = b.

The security of a commitment scheme can be defined in two complementary
ways, protecting against either an all-powerful sender or an all-powerful receiver.
Since we are interested in the case of statistically-hiding commitment (i.e., the
latter case), we only provide the definition for this case.

Definition 1. Commitment scheme (S,R1,R2) is ρ-hiding (for ρ a function
of k) if the following holds: Given a deterministic ITM R∗1, let view〈S(b),R∗

1〉
(k)

denote the distribution on the view of R∗1 when interacting with S(1k, b) (this
view simply consists of the sequence of messages it receives from S), where this
distribution is taken over the random coins of S. Then we require that for any
(even all-powerful) R∗1 the ensembles {view〈S(0),R∗

1〉
(k)} and {view〈S(1),R∗

1〉
(k)}

have statistical difference at most ρ.

Note that in the above, considering a deterministic R∗1 is without loss of gener-
ality. We say a scheme is statistically hiding if it is ρ-hiding for negligible ρ. A
0-hiding scheme is called perfectly hiding.

Definition 2. Commitment scheme (S,R1,R2) is computationally-binding if
the following is negligible for all ppt S∗:

Pr

[

((decom, decom′) | s)← 〈S∗(1k),R1(1
k)〉 :

R2(s, decom),R2(s, decom′) ∈ {0, 1}
∧

R2(s, decom) 6= R2(s, decom′)

]

,

where the probability is taken over the random coins of both S∗ and R1.



Given the above, we now define a statistically-secure commitment scheme:

Definition 3. Commitment scheme (S,R1,R2) is ρ-secure (resp., statistically
secure, perfectly secure) if it is computationally binding and ρ-hiding (resp.,
statistically hiding, perfectly hiding).

2.2 One-Way Function Families and Variants

Let n, ` = poly(k) be poly-time computable and let F = {fk : {0, 1}n(k) →
{0, 1}`(k)}k∈ � be a function family. We say F is one-way if the following hold:

– (efficiently computable) There exists a (deterministic) polynomial-time
algorithm E such that, for all k and all x ∈ {0, 1}n(k), E(1k, x) = fk(x).

– (one-way) For all ppt algorithms A, the following is negligible (in k):

Pr
x←{0,1}n(k)

[fk(A(1k , fk(x))) = fk(x)].

We consider two additional properties of function families:

– F is r(k)-regular if for every k and every x ∈ {0, 1}n(k) we have

∣

∣

∣{x′ ∈ {0, 1}n(k) | fk(x′) = fk(x)}
∣

∣

∣ = 2r(k)

and r(k) is poly-time computable.3 In other words, for each x ∈ {0, 1}n(k)

there are exactly 2r(k) elements (including x itself) which fk maps to the
same value.

– F is approximable-preimage-size if the function D̃F(y, k)
def
= dlog(|f−1

k (y)| e
is polynomial-time computable.4

For simplicity, we drop the explicit dependence on k when clear. Note that any
regular function family is also approximable-preimage-size.

2.3 Entropy Measures

Let Un denote the uniform distribution over {0, 1}n. Given a function f : {0, 1}n →
{0, 1}`, we let f(Un) denote the distribution over {0, 1}` induced by f operating
on the uniform distribution. Given a distribution D over some set X , the support
of D is defined to be the set {x ∈ X |D(x) > 0}. For D a distribution over some
finite domain X , we use the following “measures” of entropy:

– The min-entropy of D is H∞(D)
def
= minx∈X log( 1

D(x) ).

– The max-entropy of D is Hmax(D)
def
= maxx∈X log( 1

D(x) ).

3 Some previous definitions of regular functions do not require that r be poly-time
computable. However, we do not know how to extend our results to this case.

4 Our constructions generalize to the case where r(k) (resp., D̃F (y, k)) are not com-
puted precisely, but rather approximated to within an additive factor of O(log(k)).



– The Renyi entropy of D is H2(D)
def
= log( 1

CP (D)), where CP (D)
def
=

∑

x∈X D(x)2

is the collision probability of D.

We will be interested in distributions of the form D = f(Un) for f : {0, 1}n →
{0, 1}l. Note that if f is r-regular, then D is uniform over some subset of {0, 1}`

and the above three measures coincide (and D has entropy t = n− r).

2.4 Universal Hashing and an Extended Chernoff Bound

Let H = {Hk}k∈ � be a sequence of function families, where each Hk is a family
of functions mapping strings of length `(k) to strings of length v(k). We say Hk

is an n(k)-universal hash family (following [7]) if for any distinct x1, . . . , xn(k) ∈

{0, 1}`(k), and any y1, . . . , yn(k) ∈ {0, 1}v(k) we have:

Prh←Hk
[h(x1) = y1 ∧ · · · ∧ h(xn) = yn] = 2−v(k)·n.

In this paper, it is convenient to assume that for every k, the size of Hk is a
power of two. This allows us to identify functions h ∈ Hk with binary strings.
We use s(k) to denote the length of these strings.

We say that H is an n(k)-universal hash family if for every k, Hk is an n(k)-
universal hash family and furthermore there is a polynomial time algorithm that
given 1k, x ∈ {0, 1}n(k) and a string h ∈ {0, 1}s(k) outputs h(x) (where h ∈ Hk

is the function described by the string h ∈ {0, 1}s(k)). It is well-known that
there is a family of functions with this property for every choice of ` and v with
s(k) = O(n(k) ·max(`(k), v(k))).

The following Chernoff-like bound will be useful in our analysis:

Lemma 1. (Extended Chernoff Bound [32, Theorem 5]) Let X be the
sum of (any number of) n-wise independent random variables, each taking values
in the interval [0, 1], such that E[X ] = µ. Then for any ε ≤ 1 for which n ≥

bε2µe−1/3c we have Pr[|X − µ| ≥ εµ] ≤ e−bε
2µ/3c.

2.5 Interactive Hashing and the Construction of [25]

Interactive hashing was introduced by Ostrovsky, et al. [27, 28], and used by
Naor, et al. [25] to construct a statistically-secure (actually, perfectly-secure)
commitment scheme based on any one-way permutation family. We review in-
teractive hashing, as well as the resulting commitment scheme, below. In what
follows, we let x · y denote

∑m
i=1 xiyi mod 2 for x, y ∈ {0, 1}m.

Construction 4 (Interactive hashing) The protocol is defined by algorithms
S and R, where S begins with an m-bit value y (with m known to R), and
proceeds as follows:

1. The parties interact in m − 1 stages. In stage i (for i = 1, . . . , m − 1), R
chooses ri ∈ {0, 1}m−i uniformly at random and sends the “query” qi =
0i−11ri to S (in case R aborts, S simply takes qi to be some default value);
in response, S sends ci = qi · y.



2. At the conclusion of the above, there are exactly two strings y0, y1 ∈ {0, 1}m

satisfying the system of equations {qi · X = ci}1≤i≤m−1; let y0 denote the
lexicographically smaller of the two. Both parties compute (y0, y1), and S
chooses v such that y = yv.

We define the output of the protocol to be (y0, y1, v) for S and (y0, y1) for R.
We denote by IH(y) an execution of the interactive hashing protocol, where S
begins with input y.

The above was used in [25] to construct a perfectly-secure commitment scheme
based on one-way permutations via the following approach:

Construction 5 Let F = {fk : {0, 1}n(k) → {0, 1}`(k)} be a function fam-
ily. Commitment scheme (S,R1,R2) is defined as follows: S(1k, b) chooses x ∈
{0, 1}n(k) uniformly at random, computes y = fk(x), and then executes IH(y)
with R1; this protocol results in output (y0, y1, v) for S and (y0, y1) for R1. The
commitment phase concludes by having S send v̂ = v ⊕ b to R1. Finally, S
outputs decom = x while R1 outputs state s = (y0, y1, v̂).

In the decommitment phase, R2((y0, y1, v̂), x) proceeds as follows: if fk(x) =
y0, output v̂; if fk(x) = y1, output v̂ ⊕ 1; otherwise, output ⊥.

It is relatively easy to observe that the above protocol is perfectly hiding if F
is a permutation family (regardless of whether F is one-way). The main result of
[25] was to prove that the above is computationally binding when F is a one-way
permutation family. In fact, careful examination of their proof shows the above
commitment scheme is computationally binding under a weaker condition on F ;
it suffices for F to be what we call “one-way over its range”, defined as follows:

Definition 6. Let n, ` = poly(k) be poly-time computable functions and let
F = {fk : {0, 1}n(k) → {0, 1}`(k)}k∈ � be a function family. We say F is one-way
over its range if the following hold:

– (efficiently computable) There exists a (deterministic) polynomial-time
algorithm E such that, for all k and all x ∈ {0, 1}n(k), E(1k, x) = fk(x).

– (one-way over range) For all ppt A, the following is negligible (in k):

Pr
y←{0,1}`(k)

[fk(A(1k , y)) = y].

Theorem 1 (Implicit in [25]). If F is one-way over its range, then Construc-
tion 5 is computationally binding.

3 Statistical Hiding from Balanced Functions

In this section we define a notion of “balance” and show that if a function
family F is “sufficiently balanced” then Construction 5 yields a protocol that is
“somewhat hiding”. Roughly speaking, a distribution D on {0, 1}` is balanced
if D is “close” to uniform “most” of the time. A function f : {0, 1}n → {0, 1}`

is then defined to be balanced if the distribution f(Un) is balanced. Formally:



Definition 7. Distribution D on {0, 1}` is (α, δ)-balanced if there is a set Bad ⊂
{0, 1}` such that:

1. |Bad| ≤ α · 2`.
2. Pry←D[y ∈ Bad] ≤ α.
3. For every y0 6∈ Bad,

∣

∣Pry←D[y = y0]−
1
2`

∣

∣ ≤ δ
2` (we will always have δ < 1).

Function f : {0, 1}n → {0, 1}` is (α, δ)-balanced if the distribution f(Un) is
(α, δ)-balanced. Function family F = {fk : {0, 1}n(k) → {0, 1}`(k)} is (α, δ)-
balanced if, for all k large enough, fk is (α(k), δ(k))-balanced.

Our main result of this section is the following:

Theorem 2. If F = {fk : {0, 1}n(k) → {0, 1}`(k)} is an (α, δ)-balanced function
family, then Construction 5 is ρ-hiding for ρ = 2α + δ + αδ.

Proof. Fix k large enough so that fk is (α(k), δ(k))-balanced; from now on we
simply write f, α, δ, ρ without explicitly indicating their dependence on k. For a
given execution of the scheme, let τ denote the initial transcript resulting from
the interactive hashing sub-protocol; thus, the view of R∗1 consists of τ and the
bit v̂ sent in the final round. Given a particular (deterministic) R∗1, we therefore

write Exp(b)
def
= (τ, v̂)← view〈S(b),R∗

1〉
(cf. Definition 3) to denote the experiment

in which S chooses a uniform random tape and then executes the protocol with
R∗1 using this random tape and the bit b, resulting in view (τ, v̂) for R∗1. Below,
we define a “good” set of initial transcripts Good, and show that:

Claim. With probability at least 1− α(2 + δ), we have τ ∈ Good.

Claim. The following holds for all τ∗ ∈ Good and v̂∗ ∈ {0, 1}:

∣

∣

∣

∣

Pr
Exp(0)

[v̂ = v̂∗ | τ = τ∗]− Pr
Exp(1)

[v̂ = v̂∗ | τ = τ∗]

∣

∣

∣

∣

≤ δ.

These claims suffice to prove the Theorem, since the statistical difference between
the view of R∗1 when the sender commits to 0 (i.e., b = 0) and the view of R∗1
when the sender commits to 1 (i.e., b = 1) may be bounded as follows:

1

2

∑

τ∗,v̂∗

∣

∣

∣

∣

Pr
Exp(0)

[(τ, v̂) = (τ∗, v̂∗)] − Pr
Exp(1)

[(τ, v̂) = (τ∗, v̂∗)]

∣

∣

∣

∣

=
1

2

∑

τ∗,v̂∗

∣

∣

∣

∣

Pr
Exp(0)

[τ = τ∗] Pr
Exp(0)

[v̂ = v̂∗|τ = τ∗] − Pr
Exp(1)

[τ = τ∗] Pr
Exp(1)

[v̂ = v̂∗|τ = τ∗]

∣

∣

∣

∣

≤ Pr[τ 6∈ Good] +
1

2

∑

τ∗∈Good,v̂∗

Pr[τ = τ∗]

∣

∣

∣

∣

Pr
Exp(0)

[v̂ = v̂∗|τ = τ∗] − Pr
Exp(1)

[v̂ = v̂∗|τ = τ∗]

∣

∣

∣

∣

≤ α(2 + δ) +
1

2

∑

τ∗∈Good;v̂∗

Pr[τ = τ∗] · δ ≤ α(2 + δ) + δ,



where we use the fact that PrExp(0)[τ = τ∗] = PrExp(1)[τ = τ∗] for any τ∗, since
the initial transcript τ does not depend on b.

We proceed with the proof of the first claim by defining the set of good initial
transcripts. Let Bad ⊂ {0, 1}` be the subset whose existence is guaranteed by
Definition 7 (using the fact that f is balanced). Recall that the initial transcript
τ defines two strings yτ

0 , yτ
1 ∈ {0, 1}` (cf. Construction 4). We say τ ∈ Good iff

yτ
0 , yτ

1 6∈ Bad.
We first bound the probability that yv = y is in Bad (we are using here the

notation from Construction 5). Since f is (α, δ)-balanced and since the value of
y depends only on the choices of the sender (who is assumed honest here), it
follows that this probability is at most α.

Next, we bound the probability that yv 6∈ Bad but yv̄ ∈ Bad. Since f is
balanced, we have |Bad| ≤ α2`. Now, since R∗1 is deterministic, we have that
yv̄ is uniquely determined by yv. Let φ be the function mapping the sender’s
chosen value yv to the second value yv̄ resulting from the interactive hashing
protocol. Observe that if φ(y) = y′ then φ(y′) = y; this is because, for either
of these choices, the sender responds with the exact same answer to each of the
receiver’s queries during the interactive hashing sub-protocol. It follows that φ

is a permutation. Letting MapToBad
def
= φ−1(Bad), we get:

Pr
[

yv 6∈ Bad
∧

yv̄ ∈ Bad
]

= Pr [yv ∈ MapToBad \ Bad]

=
∑

y∗∈MapToBad\Bad

Pr [yv = y∗]

≤
∑

y∗∈MapToBad\Bad

(1 + δ)
1

2`

using the definition of Bad. Continuing:

∑

y∗∈MapToBad\Bad

(1 + δ)
1

2`
= |MapToBad \ Bad| · (1 + δ)

1

2`

≤ |MapToBad| · (1 + δ)
1

2`

≤ (1 + δ) · α (1)

(using the fact that |MapToBad| = |Bad|). It follows that τ 6∈ Good with proba-
bility at most (2 + δ) · α, completing the proof of the first claim.

We proceed to prove the second claim. Let P (ỹ)
def
= Prx∈{0,1}n [f(x) = ỹ]. For

any τ∗ and any v̂∗ ∈ {0, 1} we have

Pr
Exp(b)

[v̂ = v̂∗ | τ = τ∗] = Pr
Exp(b)

[v = v̂∗ ⊕ b | τ = τ∗]

= Pr
Exp(b)

[y = yτ∗

v̂∗⊕b | y ∈ {y
τ∗

0 , yτ∗

1 }]

=
P (yτ∗

v̂∗⊕b)

P (yτ∗

0 ) + P (yτ∗

1 )
.



If τ∗ ∈ Good, then yτ∗

0 , yτ∗

1 6∈ Bad and so P (yτ∗

0 ), P (yτ∗

1 ) lie in the range
[(1− δ)2−`, (1 + δ)2−`]. It follows that when τ∗ ∈ Good the following holds for
any v̂∗ ∈ {0, 1}:

∣

∣

∣

∣

Pr
Exp(0)

[v̂ = v̂∗ | τ = τ∗]− Pr
Exp(1)

[v̂ = v̂∗ | τ = τ∗]

∣

∣

∣

∣

=

∣

∣P (yτ∗

0 )− P (yτ∗

1 )
∣

∣

P (yτ∗

0 ) + P (yτ∗

1 )
≤ δ,

which proves the claim. This completes the proof of the Theorem 2.

4 Achieving Our Main Result: a Roadmap

We now outline our approach to constructing statistically-secure commitment
schemes based on assumptions weaker than one-way permutations. It follows
from Theorems 1 and 2 that if we can construct an (α, δ)-balanced F that is
also one-way over its range, then we can construct a ρ-secure commitment scheme
for ρ = O(α + δ). For α and δ sufficiently-small constants we thus obtain a ρ-
secure commitment scheme for some constant ρ < 1. Using standard techniques,
we can then “amplify” this scheme to obtain a statistically-secure commitment
scheme. (Exact details of this amplification will appear in the full version.)

It remains to construct F with the desired properties. In Section 5 we show
how to construct such an F based on any regular one-way function family, while
in Section 6 we show how to base the construction on an approximable-preimage-
size one-way function family. These, in turn, yield statistically-secure commit-
ment schemes based on these assumptions. Altogether we conclude that:

Theorem 3 (Main Theorem). If there exists an approximable-preimage-size
one-way function family then there exists a statistically-secure commitment scheme.

5 Starting from Regular One-Way Functions

In this section we show a construction of statistically-secure commitment based
on any regular one-way function family. More concretely, given an r(k)-regular
one-way function family F , we show how to construct a balanced function F ′

which is also one-way over its range. Note that n(k)−r(k) measures the entropy
of the output distribution of fk, and this holds for all the measures of entropy
defined in this paper.

Construction 8 Let F = {fk : {0, 1}n(k) → {0, 1}`(k)}k∈ � be a family of func-
tions, let t = t(k) be a function, and let c > 0 be a constant. Let H = {Hk} be a
3k-universal collection of hash families where each Hk is a family of functions
mapping strings of length `(k) to strings of length t(k)−log(ck), and furthermore
|Hk| = 2s(k) where s(k) = poly(k). Define:

F ′ =
{

f ′k : Hk × {0, 1}n(k) → Hk × {0, 1}t(k)−log(ck)
}

k∈
�

such that f ′k(h, x) = (h, h(fk(x))).



The main result of this section is the following.

Theorem 4. Let 0 < δ < 1 be an arbitrary constant. Let F be an r(k)-regular
one-way function family. Set t(k) = n(k)− r(k), c = 6 ln 2/δ2, and let F ′ be the
function family defined in Construction 8. Then F ′ is a (2−k, δ)-balanced and
one-way over its range.

5.1 Showing that F
�

is Balanced

We begin by showing that F ′ is (2−k, δ)-balanced. Preparing for the case of
approximable-preimage-size one-way function families, we prove a more general
statement here.

Lemma 2. Let c > 6 ln 2 be an arbitrary constant and k ≥ 2 be an integer, and
set δ = (6 ln 2/c)1/2 and t > log(ck). Let H be a 3k-universal hash family map-
ping strings of length ` to strings of length t− log(ck), and let Z be a distribution
on {0, 1}` with H∞(Z) ≥ t. Then the distribution D = {(h, h(z))}h←H,z←Z is
(2−k, δ)-balanced.

Note that it follows that F ′ is (2−k, δ)-balanced, as the output distribution of
fk has min-entropy at least t(k) (in fact, exactly t(k)).

Proof. For any z ∈ {0, 1}` and y ∈ {0, 1}t−log(ck), define the random variable
Xz,y (over choice of h ∈ H) to take the value 2t · PrZ [z] if h(z) = y, and 0

otherwise. Note that Xz,y ∈ [0, 1] since Z has min-entropy at least t. Let Xy
def
=

∑

z∈{0,1}` Xz,y. For any z, y we have E[Xz,y] = Prh←H [h(z) = y] · 2t · PrZ [z] =

2−(t−log(ck)) · 2t · PrZ [z] = ck · PrZ [z]. It follows that

µ
def
= E[Xy] =

∑

z

E[Xz,y] = ck.

Furthermore, since H is a 3k-universal hash family, the random variables {Xz,y}
are 3k-wise independent. Thus, by Lemma 1, we have that (for any y)

Pr
h

[ ∣

∣

∣Xy − ck
∣

∣

∣ ≥ δck
]

≤ e−bµδ2/3c < 2−k (2)

Define φ(h, y)
def
= 2t·

∑

z:h(z)=y PrZ [z], and Bad = {(h, y) : |φ(h, y)− ck| > δck}.

We show that, setting α = 2−k, the set Bad satisfies the three requirements of
Definition 7. (Note that the quantity 2` in the text of Definition 7 becomes
|H | ·2t−log(ck) in the current context.) Noting that φ(h, y) = 2t Prz←Z [h(z) = y],
observe that

|Bad| =
∑

y

|H | · Pr
h

[(h, y) ∈ Bad]

=
∑

y

|H | · Pr
h

[∣

∣

∣2t · Pr
z←Z

[h(z) = y]− ck
∣

∣

∣ > δck
]

≤ 2t−log(ck) · |H | · 2−k,



using Eq. (2) and the fact that, once h is chosen, Xy = 2t · Prz←Z [h(z) = y].
This proves property 1.

We move on to property 2. We proceed as above except that now, for each
ξ, z ∈ {0, 1}`, we define the binary random variable Rz,ξ to be 2t · PrZ [z] if

h(z) = h(ξ), and 0 otherwise. Again, Rz,ξ ∈ [0, 1]. Let Rξ
def
=

∑

z∈{0,1}` Rz,ξ.

For an arbitrary z ∈ {0, 1}` \ {ξ} we have E[Rz,ξ] = 2−(t−log(ck)) · 2t · PrZ [z] =
ck PrZ [z]; also Rξ,ξ = 2t PrZ [ξ] with probability 1. It follows that

µ′
def
= E[Rξ] =

∑

z

E[Rz,ξ] = ck + (2t − ck) Pr
Z

[ξ]

for any ξ. Note that ck ≤ µ′ ≤ ck + 1. Furthermore, since H is a 3k-universal
hash family, the random variables {Rz,ξ} are (3k − 1)-wise independent. Thus,
by Lemma 1 we have

Pr

[

|Rξ − µ′| ≥
3

4
δµ′

]

≤ e−b3µ′δ2/16c ≤ 2−k, (3)

where we use the fact that µ′ 9
16δ2e−1/3 ≤ (ck + 1) 9

16δ2e−1/3 ≤ 3k − 1 (recall
k ≥ 2). We then derive:

Pr
(h,y)←D

[(h, y) ∈ Bad] =
∑

ξ

Pr
Z

[ξ] · Pr
h

[ ∣

∣

∣φ(h, h(ξ)) − ck
∣

∣

∣ > δck
]

≤
∑

ξ

Pr
Z

[ξ] · Pr
h

[

∣

∣

∣Rξ −E[Rξ]
∣

∣

∣ ≥
3

4
δE[Rξ ]

]

≤ 2−k,

where the first inequality uses the stated bounds on µ′ and the fact that, once h
is chosen, Rξ = 2t ·Prz←Z [h(z) = h(ξ)], while the second inequality uses Eq. (3).
This gives property 2.

Property 3 holds, since for any (h0, y0) we have

Pr
(h,y)←D

[(h, y) = (h0, y0)] = Pr
h←H

[h = h0] ·
∑

z:h0(z)=y0

Pr
Z

[z] =
φ(h0, y0)

|H |2t
.

If (h0, y0) 6∈ Bad, this probability is in the range (1± δ) ck
|H|2t as needed.

5.2 Showing that F
�

is One-Way Over Its Range

We now show that if the initial function family F is one-way, then the de-
rived function family F ′ is one-way over its range. Preparing for the case of
approximable-preimage-size one-way function families, we once more prove a
more general statement here. For this purpose we define the following:

Definition 9. Distribution D has (tRenyi, tmax)-entropy if (1) H2(D) ≥ tRenyi,
and (2) Hmax(D) ≤ tmax. Function f : {0, 1}n → {0, 1}` has (tRenyi, tmax)-
entropy if the distribution f(Un) has (tRenyi, tmax)-entropy. A function family
F = {fk : {0, 1}n(k) → {0, 1}`(k)} has (tRenyi, tmax)-entropy if, for all k large
enough, fk has (tRenyi(k), tmax(k))-entropy.



Note that if f is a member of an r-regular function family then it has (t, t)-
entropy for t = n − r. The following lemma shows that Construction 8, when
given a (tRenyi, tmax)-entropy family of one-way functions, produces a function
family which is one-way over its range.

Lemma 3. Let F = {fk : {0, 1}n(k) → {0, 1}`(k)} be a (tRenyi, tmax)-entropy
one-way function family and let c > 0 be a constant. Let t(k) be a function and
let m ≥ 0 be a constant such that tmax(k)−m log(k) ≤ t(k) ≤ tRenyi(k). Let F ′

be the result of applying Construction 8 with F , t(·), and c. Then F ′ is one-way
over its range.

Note that it follows that F ′ is one-way over its range by using the aforemen-
tioned observation that the regular function family F has (t(k), t(k))-entropy.
We remark that the proof uses only the fact that H is 2-universal.

Proof. Let v(k)
def
= t(k) − log(ck). We start by proving that the Renyi-entropy

of the output of F ′ is high. We then use this fact to show that F ′ is one-way (in
the usual sense). Finally we derive that F ′ is one-way over its range.

Claim. H2(f
′
k(Us(k), Un(k))) ≥ s(k) + v(k)− 1.

Proof.

CP (f ′k(Us(k), Un(k)))

=
∑

(h,y)∈image(fk)

(

Pr
(h′,x)←(Hk×{0,1}n(k))

[f ′k(h′, x) = (h, y)]

)2

=
∑

y∈{0,1}v(k)

∑

h∈Hk

1

22s(k)





∑

z∈h−1(y)

Pr
x←{0,1}n(k)

[fk(x) = z]





2

.

Continuing, we have:

CP (f ′k(Us(k), Un(k)))

=
1

22s(k)

∑

y∈{0,1}v(k)

∑

h∈Hk

∑

z∈h−1(y)

(

Pr
x←{0,1}n(k)

[z]

)2

+
1

22s(k)

∑

y∈{0,1}v(k)

∑

h∈Hk

∑

z1 6=z2∈h−1(y)

(

Pr
x←{0,1}n(k)

[fk(x) = z1] · Pr
x←{0,1}n(k)

[fk(x) = z2]

)

=
1

2s(k)
CP (fk(Un(k)))

+
1

22s(k)

∑

y∈{0,1}v(k)

2s(k)

22v(k)

∑

z1 6=z2∈{0,1}l(k)

(

Pr
x←{0,1}n(k)

[fk(x) = z1] · Pr
x←{0,1}n(k)

[fk(x) = z2]

)

≤
1

2s(k)
(CP (fk(Un(k))) +

1

2v(k)
) ≤

2

2s(k)+v(k)
.

Therefore H2(f
′
k(Us(k), Un(k))) = − log(CP (f ′k(Us(k), Un(k)))) ≥ s(k) + v(k)− 1.



We now use the above claim to prove the one-wayness of F ′.

Claim. F ′ is one-way (in the usual sense).

Proof. Let A′ be a ppt adversary attempting to invert F ′ and let ExptA′(k)
denote the experiment “h ← Hk; x ← {0, 1}n(k); (h, y) = f ′k(h, x); (h′, x′) ←
A′(1k, h, y)”. Let

AdvA′,F ′(k)
def
= Pr[ExptA′(k) : f ′k(h′, x′) = (h, y)]. (4)

Now construct a ppt adversary A (attempting to invert F) as follows:

A(1k, z) // z = fk(x) for some x ∈ {0, 1}n(k) chosen at random.

Choose h ∈ Hk at random, and set y = h(z);
Run A′(1k, h, y) and obtain output h′, x′;
Output x′.

Note that the distribution over the inputs of A′ in the above experiment is
identical to the distribution over the inputs of A′ in Equation 4. For any k ∈

�
,

h ∈ Hk and y ∈ {0, 1}v(k) such that Prx←{0,1}n(k) [f ′k(h, x) = (h, y)] > 0 let:

θh(y)
def
=

minz∈image(fk) � h(z)=y

{

Prx←{0,1}n(k) [fk(x) = z]
}

Prx←{0,1}n(k) [f ′k(x, h) = (h, y)]
.

Observe that:

AdvA,F (k)
def
= Pr

x←{0,1}n(k);z=fk(x);x′←A(1k ,z)
[fk(x′) = z]

≥
∑

ĥ,ŷ

Pr
ExptA′ (k)

[h(fk(x′)) = y
∧

(h, y) = (ĥ, ŷ)] · θĥ(ŷ).

We will make use of the following standard fact (proof in full version).

Claim. Let D be a distribution over some finite domain X such that H2(D) ≥ k
and let ε be any positive constant, then there exists a set B ⊆ X such that the

following hold: (1) PrD[B] ≤ 4ε, and (2) ∀y /∈ B PrD[y] ≤ 21−k

ε .

Let ε
def
= AdvA′,F ′(k). Using the previous claims we have that there exists a

set Bad ⊆ (Hk × {0, 1}v(k)) such that:

1. Pr
(h,x)←(Hk×{0,1}n)

[f ′k(h, x) ∈ Bad] ≤
ε

2

2. ∀(h′, y′) /∈ Bad Pr
(h,x)←(Hk×{0,1}n)

[f ′k(h, x) = (h′, y′)] ≤
32

ε2s(k)+v(k)
.

Moreover, by our choice of the probability of Bad the following holds,

Pr
Expt

A′ (k)
[f ′k(h′, x′) = (h, y)

∧

(h, y) /∈ Bad] ≥
ε

2
.



Finally, by the definition of v(k) the following holds for any (h, y) /∈ Bad

θh(y) ≥
ε2v(k)

32 · 2tmax(k)
≥

ε

32 · (ck) · km
=

ε

32 · c · km+1

Hence:

AdvA,F(k) ≥
∑

(ĥ,ŷ)/∈Bad

Pr
Expt

A′ (k)
[h(fk(x′)) = y

∧

(h, y) = (ĥ, ŷ)] · θĥ(ŷ)

≥
ε

32 · c · km+1

∑

(ĥ,ŷ)/∈Bad

Pr
Expt

A′ (k)
[h(fk(x′)) = y

∧

(h, y) = (ĥ, ŷ)]

=
ε

32 · c · km+1
Pr

Expt
A′ (k)

[f ′k(h′, x′) = (h, y)
∧

(h, y) /∈ Bad]

≥
ε

32 · c · km+1
·
ε

2
=

ε2

64 · c · km+1
.

Since AdvA,F(k) is negligible by assumption, it must be the case that AdvA′,F ′(k)
is negligible as well and thus F ′ is one way.

To finish the proof we show that F ′ is one-way over its range.

Claim. F ′ is one-way over its range.

Proof. Consider any ppt algorithm A′′ inverting F ′ “over its range”. The ad-
vantage of A′′ (in this sense) is given by:

Adv∗A′′,F ′

def
= Pr

h←Hk ;y←{0,1}v(k);(h′,x′)←A′′(1k,h,y)
[f ′k(h′, x′) = (h, y)]

=
1

2s(k)+v(k)
·

∑

h∈Hk

∑

y∈{0,1}t(k)

Pr[A′′ inverts (h, y)],

where “A′′ inverts (h, y)” has the obvious meaning.
Consider now the advantage of A′′ in inverting F ′ in the standard sense:

AdvA′′,F ′

def
= Pr

h←Hk ;x←{0,1}n(k)
[A′′ inverts (h, h(fk(x)))]

=
1

2s(k)+n(k)

∑

h∈Hk

∑

x∈{0,1}n(k)

Pr[A′′ inverts (h, h(fk(x)))]

=
1

2s(k)+n(k)

∑

h∈Hk

∑

z∈image(fk)

Pr
x←{0,1}n(k)

[fk(x) = z] · Pr[A′′ inverts (h, h(z))]

≥
1

2s(k)+tmax(k)

∑

h∈Hk

∑

y∈image(h(fk))

∑

z∈h−1(y)

Pr[A′′ inverts (h, h(z))]

≥
1

2s(k)+tmax(k)

∑

h∈Hk

∑

y∈{0,1}v(k)

Pr[A′′ inverts (h, y)]

=
2s(k)+v(k)

2s(k)+tmax(k)
Adv∗A′′,f ′ ≥

Adv∗A′′,F ′

c · km+1
.



Since AdvA′′,F ′ is negligible (by the one-wayness of F ′), Adv∗A′′,F ′ is negligible
as well. This completes the proof that F ′ is one-way over its range.

6 Starting from Approximable-Preimage-Size One-Way

Functions

Given an approximable-preimage-size one-way function family we first use a re-
sult by H̊astad et al. [20] to transform it into a one-way function family that
is “closer” to regular. From there we use the same construction of the previ-
ous section with a more careful analysis. The main result of this section is the
following:

Theorem 5. If there exists an approximable-preimage-size one-way function
family then for any 0 < δ < 1 there exists a (δ, δ)-balanced function family
which is one-way over its range.

6.1 From Approximable to Dense

The following construction appeared in [20]:

Construction 10 Let F = {fk : {0, 1}n(k) → {0, 1}`(k)}k∈ � be an approximable-
preimage-size one-way function family and let H = {Hk} be a 2-universal col-
lection of hash families where each Hk is a family of functions mapping strings
of length n(k) to strings of length n(k), and furthermore |Hk| = 2s(k) where
s(k) = poly(k). Define:

F̂ =
{

f̂k : Hk × {0, 1}n(k) → Hk × {0, 1}l(k)+n(k)
}

k∈
�

such that f̂k(h, x) = (fk(x), h(x)1...(D̃F (fk(x),k)+2), 0
n−(D̃F (fk(x),k)+2), h), where

h(x)1...m stands for the first m bits of h(x).

The following lemma, proven in [20, Lemma 5.2], shows that F̂ is a family of
(s(k) + n(k)− 1, s(k) + n(k))-entropy one-way functions:

Lemma 4. F̂ as defined in Construction 10 is one-way, and for all k ∈
�
,

H2(f̂k(Us(k), Un(k))) > s(k) + n(k)− 1.

6.2 Starting from a Dense One-Way Function

Given an approximable-preimage-size one-way function family, we can transform
it using Lemma 4 into a one-way function family F that has (n(k) − 1, n(k))-
entropy. Intuitively, such a function is “close” to being 1-regular. The following
lemma shows how to use this property to construct a balanced function family
which is one-way over its range.



Lemma 5. Let F = {fk : {0, 1}n(k) → {0, 1}`(k)}k∈ � be an (n(k) − 1, n(k))-
entropy family of one-way functions, let c > 24 ln 2 be an arbitrary constant, let
δ = (24 ln 2/c)1/2 and let F ′ be the result of applying Construction 8 with F ,
t(k) = n(k) − 1 − log(n(k)) and c. Then F ′ is (2−k + 12/δn(k), δ)-balanced as
well as one-way over its range.

Theorem 5 follows immediately.

Proof. (of Lemma 5) Note that since n(k) is polynomial in k, there exists a
constant m ≥ 0 such that t(k) ≥ n(k)−m log(k). Hence by applying Lemma 3 we
have that F ′ is one-way on range. It is left to prove that F ′ is (2−k+12/δn(k), δ)-
balanced. We use the following standard fact. The proof appears in the full
version.

Claim. Let D be a distribution over some finite domain X such that H2(D) ≥ k
then for every ε > 0 there exists a distribution D′ over X such that H∞(D′) ≥
k − log( 1

ε ) and SD(D, D′) ≤ ε.

Since the Renyi-entropy of fk(Un(k)) is at least (n(k) − 1), we have that
fk(Un(k)) is 1/n(k)-close to having min-entropy (n(k) − log(n(k)) − 1). We
now apply Lemma 2 and deduce that the output distribution of f ′k, that is
(h, h(fk(Un(k)))), is 1/n(k)-close to a distribution that is (2−k, δ/2)-balanced.
The proof concludes by the following claim.

Claim. Let P ′ be a distribution over {0, 1}` that is ε-close to some distribution
P that is (α, δ)-balanced. Then, P ′ is ((α + 6ε/δ), 2δ)-balanced.

Proof. Let Bad be the set of bad elements for P . Let A be the set of elements
y 6∈ Bad such that |PrP ′ [y] − 1/2`| > 2δ/2`. Note that the set of bad elements
Bad′ of P ′ is a subset of (Bad ∪A) and therefore it is enough to bound the size
and probability of this set. Note that since A

⋂

Bad = ∅ we have that ∀y ∈ A
|PrP [y] − 1/2`| ≤ δ/2` and thus |PrP ′ [y] − PrP [y]| > δ/2`. Thus SD(P ′, P ) ≥
1
2 |A| · δ/2`. As the two distributions are ε-close, it follows that 1

2 |A| · δ/2` ≤ ε or

equivalently that |A| ≤ 2ε·2`

δ . Therefore we have that

Pr
P

[Bad′] ≤ Pr
P

[Bad
⋃

A] ≤ Pr
P

[Bad] + Pr
P

[A].

Since for all y ∈ A we have PrP [y] ≤ (1 + δ)/2`, it follows that

Pr
P

[Bad′] ≤ α + |A|(1 + δ)/2` ≤ α + (1 + δ)
2ε

δ
= α + 2ε +

2ε

δ
.

Hence:

Pr
P ′

[Bad′] ≤ α + 2ε +
2ε

δ
+ 2ε = α + 4ε +

2ε

δ
≤ α +

6ε

δ
.

To complete the proof we have to show that |Bad′| ≤ (α+ 6ε
δ )2`. But |Bad′| ≤

|Bad|+ |A| ≤ α2` + 2ε·2`

δ = (α + 2ε
δ )2`.
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