
Composition Does Not Imply Adaptive Security

Krzysztof Pietrzak?
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Abstract. We study the question whether the sequential or parallel
composition of two functions, each indistinguishable from a random func-
tion by non-adaptive distinguishers is secure against adaptive distin-
guishers. The sequential composition of F(.) and G(.) is the function
G(F(.)), the parallel composition is F(.) ? G(.) where ? is some group
operation. It has been shown that composition indeed gives adaptive se-
curity in the information theoretic setting, but unfortunately the proof
does not translate into the more interesting computational case.
In this work we show that in the computational setting composition does
not imply adaptive security: If there is a prime order cyclic group where
the decisional Diffie-Hellman assumption holds, then there are functions
F and G which are indistinguishable by non-adaptive polynomially time-
bounded adversaries, but whose parallel composition can be completely
broken (i.e. we recover the key) with only three adaptive queries. We
give a similar result for sequential composition. Interestingly, we need
a standard assumption from the asymmetric (aka. public-key) world to
prove a negative result for symmetric (aka. private-key) systems.

1 Sequential and Parallel Composition

We continue to investigate the question whether composition of (pseudo) random
functions yields a function whose security is in some sense superior to any of it’s
components. The two most natural ways to compose functions is to either apply
them sequentially or in parallel. For two function F and G we denote by G◦F the

sequential composition: G◦F(x)
def
= G(F(x)). And by F?G the parallel composition:

F ? G(x)
def
= F(x) ? G(x) where ? is some group operation defined on the range of

F and G.
In the information theoretic model one considers computationally unbounded

adversaries and only bounds the number of queries they are allowed to make. In
this model Vaudenay [9] shows that if a permutation F cannot be distinguished
from random with advantage more than ε by any adaptive (resp. non-adaptive)1

distinguisher making q queries, then the sequential composition of k such permu-
tations has security 2k−1εk against adaptive (resp. non-adaptive) distinguishers.

? Supported by the Swiss National Science Foundation, project No. 200020-103847/1.
1 Adaptive means that the distinguisher can choose the (i+1)’th query after seeing the
output to the i’th query. A non-adaptive distinguisher must decide which q queries
he wants to make beforehand.



The same holds for parallel composition where F can be a function and doesn’t
have to be a permutation. For the computational case, where one considers poly-
nomially time-bounded adversaries a similar amplification result was proven by
Luby and Rackoff [3].2 So if we have a function with some security against adap-
tive (resp. non-adaptive) distinguishers we can amplify this security for the same

class of distinguishers in both models.

Another question is whether we always get adaptive security by the compo-
sition of non-adaptively secure functions. This is in fact true in the information
theoretic model: Maurer and Pietrzak [4] show that if F and G both have secu-
rity ε against non-adaptive distinguishers, then F ? G has security 2ε(1 + ln ε−1)
against adaptive distinguishers (the same holds for G◦F if F and G are permuta-
tions). But no such result is known for the computational case. In fact, Myers [6]
showed that there is an oracle relative to which non-adaptively secure permuta-
tions exist, but their sequential composition is not adaptively secure. This means
that if it was indeed true that composition would always imply adaptive secu-
rity, no relativizing proof for that does exist. As only very few non-relativizing
proofs are known (not only in cryptography, but in complexity theory in gen-
eral), Myers argues that this might be the reason for the lack of formal evidence
that composition increases security even though this belief is shared by many
cryptographers (including myself until recently).

Here we show that composition does not imply adaptive security in general
if there is a group where the decisional Diffie-Hellman assumption holds. We
will construct functions F and G which are indistinguishable by non-adaptive
(polynomial time) distinguishers if the DDH assumption holds. But where a
simple adaptive strategy exists to get the whole key out of F ?G with only three
adaptive queries. We then construct F and G such that the same holds for G ◦F.

1.1 Notation and Definitions

Efficient/Negligible/Indistinguishable.We denote by κ ∈ N our security
parameter. An efficient algorithm is an algorithm whose running time is poly-
nomial in κ. A function µ : N → [0, 1] is negligible if for any c > 0 there is an
n0 such that µ(n) ≤ 1/n

c for all n ≥ n0. Two families of distributions (indexed
with κ) are indistinguishable if any efficient algorithm has negligible advantage
(over a random guess) in distinguishing those distributions.

The DDH Assumption. The DDH assumption for a prime order cyclic group
G = G(κ) states that for a generator g of G and random x, y the triplet gx, gy, gxy

is indistinguishable from random. We denote the maximal advantage of any

2 Unlike in Vaudenay’s information theoretic result, where k, the number of compo-
nents in the cascade, can be arbitrary (in particular any function of n), the compu-
tational amplification proven in [3] requires k to be a constant and independent of
the security parameter. Myers [5] proves a stronger amplification for PRFs (which
unlike [3] allows to turn a weak PRF into a strong one) for a construction which is
basically parallel composition with some extra random values XOR-ed to the inputs.



algorithm A running in time t for the DDH problem as

AdvDDH(t)
def
= max

A
|Prx,y[A(g

x, gy, gxy)→ 1]− Pra,b,c[A(g
a, gb, gc)→ 1]|

For example the DDH assumption is believed to be true for the following groups:
Let Q be a prime such that Q−1 = rP for some large prime P (say log(P ) ≥ κ).

Let h be a generator of Z∗
Q, then g = hr is a generator of the subgroup G

def
= 〈g〉

of order P . In G any a 6= 1 is a generator, here 1 denotes the identity element.

The El-Gamal Cryptosystem. Let G, g, P be like above. The El-Gamal
public-key cryptosystem [2] over G with generator g is defined as follows: The
private-key is a random x ∈ ZP , and the public key is g

x. To encrypt m ∈ G
with the public key gx we choose r ∈ ZP at random and compute the ciphertext
in G2 as

Encgx(m, r) = (mgxr, gr)

The decryption of a ciphertext (a, b) with secret key x goes as

Decx(a, b) = a/bx

This scheme has some nice properties we will use. It is multiplicative homomor-
phic: Given an encryption (mgxr, gr) = Encgx(m, r) of m we can compute an
encryption of `m as (`mgxr, gr) = Encgx(`m, r) even without knowing m or even
the public key gx. In particular given an encryption (mgxr, gr) = Encgx(m, r)
of a known message m we can compute (gxr, gr) = Encgx(1, r) = Encgx(1, r),
an encryption of 1, without even knowing the public key gx. And further we
can rerandomise this encryption by exponentiating with some random r′ as
(gxrr′ , grr′) = Encgx(1, rr′).3

Distinguisher. By distinguisher we denote an efficient oracle algorithm which
at the end of the computation outputs a decision bit. A distinguisher is non-

adaptive if he generates all his queries before reading any inputs.

A function R : K × X → Y is pseudorandom if for a random key k ∈ K the

function Rk(.)
def
= R(k, .) is indistinguishable from a random function R : X → Y.

We denote the distinguishing advantage for R form R of any distinguisher which
runs in time t and makes at most q queries by

AdvR(q, t)
def
= max

A
|Prk[A

Rk(.) → 1]− Pr[AR(.) → 1]|

We write Advnon−adaptive
R

(q, t) if the maximum is only taken over all non-
adaptive distinguishers.

3 This is not the standard way of randomising El-Gamal encryptions, where one
multiplies (mgxr, gr) with (gxr′ , gr′) for a random r′ to get (mgx(r+r′), gr+r′) =
Encgx(m, r + r′). This randomisation works for any encrypted message (not just for
m = 1), but it requires knowledge of the public key and because of that is not useful
for our purpose.



1.2 Some Intuition

For the counterexamples to the conjecture that parallel (resp. sequential) com-
position does imply adaptive security we will define functions F and G whose
output looks random with high probability for any fixed sequence of queries.
But if we can query F ? G (reps. G ◦ F) adaptively we can somehow “convince”
F and G of the fact that they are queried adaptively. We then define F,G such
that they output their key when they are convinced. We achieve this by letting
F and G “communicate” using a semantically secure public-key cryptosystem.
The El-Gamal cryptosystem has all the additional features we will need.
The Parallel Composition Counterexample. We will now sketch our
counterexample of two non-adaptively secure functions F,G where F ? G can be
broken with three adaptive queries. The full proof is given in Section 2. Let R be
any adaptively secure pseudorandom function. The keyspace of F is a (El-Gamal)
public/secret-key pair (pkF, skF) and a key kF for R (G’s key is (pkG, skG), kG).
The first thing F/G do on any input is to run it through RkF

/RkG
to produce

some pseudorandomness.
We define F and G such that on one particular input α they output their

public keys. So if we query F ? G with α we get pkFpkG.

α→

{

F
→ pkF

G
→ pkG

}

→ pkFpkG

We further define F and G such that for some fixed β on all inputs of the form
(u, β) F computes pk = u/pkF and then outputs the encryption (using the ran-
domness generated by R) of some fixed value γ under pk. G does the same thing.
So if we now feed the output from the first query back into F ? G we get

(pkFpkG, β)→

{

F
→ EncpkG

(γ, r)
G
→ EncpkF

(γ, r′)

}

→ EncpkG
(γ, r)EncpkF

(γ, r′)

And finally on general input (u, v) we define F as follows: First F divides v by
the output it would have produced on input (u, β). If this value is an encryption
of γ under pkF, F is “convinced” that it is in an adaptive setting and outputs his
key, otherwise F just outputs some pseudorandom stuff. G does the same thing.
Let’s see what happens if our third query consists of the outputs from the two
first queries we made, i.e. (pkFpkG,EncpkG

(γ, r)EncpkF
(γ, r′)). Here F checks if

the value computed as

EncpkG
(γ, r)EncpkF

(γ, r′)

EncpkG
(γ, r)← F(pkFpkG, β)

= EncpkF
(γ, r′)

is an encryption of γ, as is the case here F outputs its key, and so will G. To
prove the non-adaptive security of F and G, we first observe that for a fixed
input the above check will fail almost certainly. So we must only care about
the α query, which gives the random pkF and queries of the form (u, β) where



we get Encu/pkF
(γ, r). We show that if (given pkF) we could distinguish such

Encu/pkF
(γ, r) from random, then DDH cannot be hard in G.

The Sequential Composition Counterexample. We will now sketch our
counterexample of two non-adaptively secure functions F,G where G ◦ F can be
broken with three adaptive queries. The full proof is given in Section 3. As in the
previous section, let R be an adaptively secure pseudorandom function. Again,
F’s key is (pkF, skF), kF and G’s key is (pkG, skG), kG.
We define F such that it outputs his public key on some special input α. G

first checks if the input is an encryption of 1 (using skG): if this is the case G is
“convinced” and outputs his key. Otherwise the output is simply an encryption
of the input. If the first query we make to G ◦ F is α then

α
F
→ pkF

G
→ EncpkG

(pkF, r)

except in the unlikely case where by chance pkF happens to be an encryption of
1 under skG.

F on inputs u 6= α “treats” u as if it was Encpk(pkF, r), i.e. an encryption of
his public key pkF under some key pk. Now (as described earlier in this section)
F computes Encpk(1, rr

′), an encryption of 1 with some fresh randomness rr′. If
we now feed back the output of the first query into G ◦ F

EncpkG
(pkF, r)

F
→ EncpkG

(1, rr′)
G
→ G’s key (skG, kG)

and we get G’s key. With the third query, which we will not sketch here we then
can get F’s key as well. Again the non-adaptive indistinguishability of F and G

can be shown under the DDH assumption.

2 Parallel Composition does Not Imply Adaptive

Security

In this section we prove that there are two functions F and G, both K×G3 → G3

(K denotes the keyspace) which are indistinguishable from a random function
G3 → G3 by any non-adaptive distinguisher if the DDH-assumption is true in G.
But the parallel composition F ?G can be completely broken (i.e. we recover the
keys of F and G) with only 3 adaptive queries.
The systems F and G are almost identically defined, we first define F and

then make a small change to get G. Let R : KR×G
3 → Z3

P be any pseudorandom
function with keyspace KR. The keyspace of F and G is KR × ZP .
There is one annoying technicality we must consider; Because we do not only

want to distinguish F?G from a random function in the adaptive case, but recover
the keys of F and G, we must somehow encode the keys (KR×ZP )

2 into the range
G3 of F ? G. For simplicity we will simply assume that this is possible, i.e. there
are two mappings φ1, φ2 : KR×ZP → G

3 such that from φ1(k1, x1)φ2(k2, x2) we
can recover k1, k2, x1, x2.

4

4 One could also easily solve this problem without this assumption by simply extending
the range of F, G and R with a term {0, 1}2` for an ` such that ZP×KR can be encoded



F with key (x ∈ ZP , kF ∈ KR) on input (u, v, w) first computes some pseudo-
random values.

(r1, r2, r3)← RkF
(u, v, w) (1)

Now the output is computed as (we set the values α, β and γ as described in
Section 1.2 to α = (1, 1, 1), β = (1, 1) and γ = 1)

F(1, 1, 1)→ (gx, gr2 , gr3)

F(u 6= 1, 1, 1)→ ((u/gx)r1 , gr1 , gr3)

F(u 6= 1, v 6= 1, w 6= 1)→ (a, b, c) where

(d, e, f)← F(u, 1, 1) (2)

if (v/d) = (w/e)x then (3)

(a, b, c) = φ1(kF, x) (4)

otherwise (a, b, c) = (gr1 , gr2 , gr3)

F( all other cases )→ (gr1 , gr2 , gr3)

G with key (y, kG) is defined similarly, but with (x, kF) replaced with (y, kG) and
(4) replaced with

(a, b, c) = φ2(kG, y)

2.1 Breaking F ? G with 3 Adaptive Queries

We will now describe how to get the key out of F?G with 3 adaptive queries. The
attack below is successful with probability almost 1. It only fails if by chance
P divides one of the random values which appear in the exponent of g below.
Below we denote with r(i,j) the pseudorandom value ri computed by F in step

(1) on the j’th input. We define s(i,j)
def
=gr(i,j) . Similarly the r′, s′ are defined for

G. We will use s and s′ for uninteresting terms whose only raison d’être is to
pad the output to the right length. The first query we make is (1, 1, 1)

(1, 1, 1)→

{

F
→ (gx, s(2,1), s(3,1))
G
→ (gy, s′(2,1), s

′
(3,1))

}

→ {gx+y, s(2,1)s
′
(2,1), s(3,1)s

′
(3,1))

Four our second query we use the first value from the above output.

(gx+y, 1, 1)→
{

F
→ (gyr(1,2) , gr(1,2) , s(3,2))
G
→ (gxr′(1,2) , gr′(1,2) , s′(3,2))

}

→ (gyr(1,2)+xr′(1,2) , gr(1,2)+r′(1,2) , s(3,2)s
′
(3,2))

with ` bits (the group operation on this term is bitwise XOR). If F or G must output
their key, they encode it into this term (F into the first, and G into the second half).
In all other cases this term is simply filled with a pseudorandom value generated by
R.



Our last query is a combination of the two outputs we have seen.

(gx+y, gyr(1,2)+xr′(1,2) , gr(1,2)+r′(1,2)))→

{

F
→ φ1(kF, x)
G
→ φ2(kG, y)

}

→ φ1(kF, x)φ2(kG, y)

Thus we learn the whole key! Let’s see what happened in the last query. F on
this input first by (2) simulated itself on the input (gx+y, 1, 1), which was exactly
the input in the second query.

(gyr(1,2) , gr(1,2) , s(3,2))← F(gx+y, 1, 1)

Next by (3) F checked whether

gyr(1,2)+xr′(1,2)/gyr(1,2) = (gr(1,2)+r′(1,2)/gr(1,2))x

and as this is true, F proceeds with (4) and outputs its key φ1(kF, x). Similarly
G outputs its key φ2(kG, y).

2.2 Non-Adaptive Indistinguishability of F and G

We will prove that

Adv
non−adaptive
F

(q, t) ≤ AdvR(q, t
′) +

2q

P
+ qAdvDDH(t

′) (5)

Where t′ = t + poly(logP, q) for some polynomial poly which accounts for the
overhead implied by the reduction we make. The same bound holds for G. Below
we will treat RkF

as if it was a truly random function, the AdvR(q, t
′) term in

(5) does account for this inaccuracy.
Assume that the non-adaptive distinguisher A chooses to make q queries

(ui, vi, wi) for i = 1, . . . , q. We must only consider inputs of the form (u, 1, 1)
and (u 6= 1, v 6= 1, w 6= 1) as in all other cases the output is simply computed by
RkF

and thus is random.
If we make a (u 6= 1, v 6= 1, w 6= 1) query the output is also computed by

RkF
, except when (v/d) = (w/e)x for random d, e, x (here and below we say an

element is random if its distribution is uniform over his domain. So here e, f are
uniform over G and x over ZP ). Now

Prd,e,x[(v/d) = (w/e)
x] ≤ 2P−1

holds. To see this first note that we have Pr[w/e = 1] = Pr[e = w] = P−1. Now
as in G any element except 1 is a generator, conditioned on w 6= e the (w/e)x is
random and thus equal to v/d with probability P−1.
So probability that for any of the t ≤ q queries of the form (u 6= 1, v 6=

1, w 6= 1) will satisfy (v/e) = (w/f)x is at most 2tP−1, the 2qP−1 term in (5)
does account for this probability.
Now we must only consider the case where all q queries of the from (ui, 1, 1).

We make a deal with A: he will only make queries where ui 6= 1 for all 1 ≤ i ≤ q



but for this we allow A a (q + 1)’th query which must be (1, 1, 1), clearly this
can only help A.
Moreover we assume that A knows the discrete logarithm zi of all his ui’s

(i.e. gzi = ui). Of course this can not be guaranteed, but not knowing them can
only decrease A’s advantage in the analysis below. So the output A gets on his
query (gz1 , 1, 1), . . . , (gzq , 1, 1), (1, 1, 1) is

(g(z1−x)r1 , gr1 , ∗), . . . , (g(zq−x)rq , grq , ∗), (gx, ∗, ∗) (6)

where the ∗’s denote random values which are independent of all the other terms.
Now distinguishing (6) from random is equivalent to distinguishing

(gx, gr1x, gr1), . . . , (gx, grqx, grq ) (7)

for random x, r1, . . . , rq from

(a, b1, c1), . . . , (a, bq, cq) (8)

where a, b1, . . . , bq, c1, . . . , cq are random. To see this consider the (randomised)
mapping τ (here ∗ are random values)

τ [(α, β1, γ1), . . . , (α, βq, γq)]→ [(γ
z1
1 β−1

1 , γ1, ∗), . . . , (γ
zq
q β−1

q , γq, ∗), (α, ∗, ∗)]

We get the distribution (6) if we apply τ to (7) and the uniform distribution
over (G3)q if we apply τ to (8).
So assume A could distinguish (7) from (8) with probability ε, then we can

construct an algorithm A′ which can distinguish (gx, gxr, gr) from a random
(a, b, c) with advantage ε/q using a hybrid argument. The distribution of the
i’th hybrid is

(gx, gr1x, grq ), . . . , (gx, grix, gri), (gx, bi+1, ci+1), . . . , (g
x, bq, cq)

for random x, r1, . . . , rq, bi+1, . . . , bq, ci+1, . . . , cq. OurA
′ on input (α, β, γ) chooses

a random i, 1 ≤ i ≤ q and generates the distribution

(α, αr1 , gr1), . . . , (α, αri−1 , gri−1), (α, β, γ), (α, bi+1, ci+1), . . . , (α, bq, cq)

whose distribution is equal to the i’th hybrid if (α, β, γ) was generated as
(gx, gxr, gr) for random x, r, and equal to the i − 1’th hybrid if (α, β, γ) are
three random values.

3 Sequential Composition does Not Imply Adaptive

Security

We will define two functions F and G, both K × G3 → G3 which are indistin-
guishable from a random function G3 → G3 by any non-adaptive distinguisher
if the DDH-assumption is true in G. But the sequential composition G ◦ F can



be completely broken (i.e. we recover the keys of F and G) with only 3 adap-

tive queries. Unlike in the previous section, here F and G are defined somewhat
differently.
Let R : KR×G

3 → Z3
P be any adaptively secure pseudorandom function. The

keyspace of F and G is KR×ZP . Let φ : KR×ZP → G
2 be some encoding of the

keyspace of G into a subset of the range of G ◦ F.
F with key (x ∈ ZP , kF ∈ KR) on input (u, v, w) first computes the pseudo-

random values
(r1, r2, r3)← RkF

(u, v, w)

Then the output is computed as (we set the value α as described in Section 1.2
to (1, 1, 1))

F(1, 1, 1)→ (gx, gr2 , gr3)

F(u 6= 1, v 6= 1, w)→ if u = gx then (v, φ(kF, x))

else ((u/gx)r1 , vr1 , gr3)

F( all other cases )→ (gr1 , gr2 , gr3)

G with key (y ∈ ZP , kG ∈ KR) on input (u, v, w) first computes the pseudorandom
values

(r1, r2, r3)← RkG
(u, v, w)

Then the output is computed as

G(u 6= 1, v 6= 1, w)→ if u = gy then (u, v, w)

elseif u = vy then (φ(kG, y), 1)

else (ugyr1 , gr1 , gr3)

G( all other cases )→ (gr1 , gr2 , gr3)

3.1 Breaking G ◦ F with 3 Adaptive Queries

We will now describe how to get the key out of G◦F with three adaptive queries.
The attack below is successful with probability almost 1. It only fails if by chance
P divides one of the random values which appears in the exponent of g below.
Let r, r′, s, s′ be like in the previous section. The first query we make is (1, 1, 1)

(1, 1, 1)
F
→ (gx, s(2,1), s(3,1))

G
→ (gxgyr′(1,1) , gr′(1,1) , s′(3,1))

For the next query we use the first two terms of this output

(gxgyr′(1,1) , gr′(1,1) , 1)
F
→ (gyr′(1,1)r(1,2) , gr′(1,1)r(1,2))

G
→ (φ(kG, y), 1)

And we get G’s key. Now with the y we just learned and the first output we can

compute gx = gxgyr′(1,1)/(gr′(1,1))y and get F’s key with the query

(gx, gy, 1)
F
→ (gy, φ(kF, x))

G
→ (gy, φ(kF, x))



3.2 Non-Adaptive Indistinguishability of F and G

The security of F and G can be reduced to the indistinguishability of R and the
hardness of the DDH problem in G as in section 2.2, i.e.

Adv
non−adaptive
F

(q, t) ≤ AdvR(q, t
′) +

2q

P
+ qAdvDDH(t

′) (9)

And the same holds for G. Again we will treat RkF
as if it was a truly random

function, the AdvR(q,t′) term in (9) does account for that.
A query to G of the form (u, v, w) where u = 1 or v = 1 will just produce

a random output. If the i’th query is of the form (ui 6= 1, vi 6= 1, wi) we get as
output (uig

yri , gri , ∗) (again ∗ stands for a random value which is independent of
all other terms) unless ui = vy

i or ui = gy for some i, the probability of each such
event is exactly P−1 as y is random. With the union bound over all i, 1 ≤ i ≤ q
we get an upper bound 2qP−1 for the probability that any such event happens.
Thus we can assume that the queries are all of the form (ui 6= 1, vi 6= 1, wi)

for i = 1, . . . , q and the output on the i’th query is (uig
yri , gri , ∗) for some

random ri. The distinguisher must now distinguish those (uig
yri , gri) from se-

quence of random pairs (bi, ci) for i = 1, . . . , q. Or equivalently (as the ui’s are
known values) he must distinguish the sequence (gyri , gri) from random. We are
generous and give gy to the distinguisher. Now we can state that problem as
distinguishing a sequence (gy, gyri , gri) from (gy, bi, ci) for i = 1, . . . , q, those are
exactly the sequences (7) and (8) for which we already proved that they cannot
be distinguished with advantage more than qAdvDDH(t

′).
Similarly the non-adaptive security of F can be reduced to the task of dis-

tinguishing (uri

i g
−xri , vri

i ) for i = 1, . . . , q from random given gx. We can as-
sume that the adversary knows si = logvi

(g), ti = logvi
(ui). Then he can map

those tuples to (gx, gxri , gri) = (gx, (uri

i g
−xri/(vri

i )
ti)−1, (vri

i )
si). So again this

is equivalent to distinguish the distribution (7) from (8).

4 Conclusions and Further Work

We showed that the sequential or parallel composition of pseudorandom func-
tions with non-adaptive security is not adaptively secure in general if the DDH
assumption is true in any group. Some interesting remaining question we’re cur-
rently looking at are the following:

– Can we prove the same thing with pseudorandom permutations, ideally for
efficiently invertible ones. This would show that cascading non-adaptively
secure block-ciphers will not give adaptive security in general.

– We only gave counterexamples for the composition of two functions. How
does this scale to the composition of n > 2 functions? This question has been
partially answered in [8], where a non-adaptively secure PRF is constructed
(under an assumption which is implied by the DDH-assumption) such that
the sequential composition of any number of this PRFs can be distinguished
with 2 adaptive queries with high probability. Unfortunately the approach
used there seems not to generalise to parallel composition.



– Can we give this result under weaker assumptions or even unconditionally?
Of course we may always assume that one-way functions exist (they imply
pseudorandomness and vice-versa) as otherwise there’s nothing to prove.
We give a negative result in this direction in [7]. There we show that if a
non-adaptively secure PRF exists where the sequential composition can be
distinguished with two queries (as constructed in this paper5), then a secure
key-agreement protocol exists. Thus any construction of such PRFs must
either assume or unconditionally prove the existence of key-agreement (the
DDH-assumption we use is know to imply key agreement [1]).

– The domain and the range for our counterexamples is a product of subgroups
of Z∗

Q. This is not what one usually does, can we adapt this such that the

range and domain are {0, 1}`, ideally with standard bitwise XOR as group
operation for parallel composition.
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