
Private Searching On Streaming Data?

Rafail Ostrovsky 1?? and William E. Skeith III 2

1 UCLA Computer Science Department, Email: rafail@cs.ucla.edu
2 UCLA Department of Mathematics, Email: wskeith@math.ucla.edu

Abstract. In this paper, we consider the problem of private searching
on streaming data. We show that in this model we can efficiently imple-
ment searching for documents under a secret criteria (such as presence
or absence of a hidden combination of hidden keywords) under vari-
ous cryptographic assumptions. Our results can be viewed in a variety
of ways: as a generalization of the notion of a Private Information Re-
trieval (to the more general queries and to a streaming environment as
well as to public-key program obfuscation); as positive results on privacy-
preserving datamining; and as a delegation of hidden program computa-
tion to other machines.

KEYWORDS Code Obfuscation, Crypto-computing, Software secu-
rity, Database security, Public-key Encryption with special properties,
Private Information Retrieval, Privacy-Preserving Keyword Search, Se-
cure Algorithms for Streaming Data, Privacy-Preserving Datamining,
Secure Delegation of Computation, Searching with Privacy, Mobile code.

1 Introduction

DATA FILTERING FOR THE INTELLIGENCE COMMUNITY. As our
motivating example, we examine one of the tasks of the intelligence commu-
nity: to collect “potentially useful” information from huge streaming sources of
data. The data sources are vast, and it is often impractical to keep all the data.
Thus, streaming data is typically sieved from multiple data streams in an on-
line fashion, one document/message/packet at a time, where most of the data is
immediately dismissed and dropped to the ground, and only some small fraction
of “potentially useful” data is retained. These streaming data sources, just to
give a few examples, include things like packet traffic on some network routers,
on-line news feeds (such as Reuters.com), some internet chat-rooms, or poten-
tially terrorist-related blogs or web-cites. Of course, most of the data is totally
innocent and is immediately dismissed except for some data that raises “red
flags” is collected for later analysis “on the inside”.

? For the full version of this paper, see the IACR E-Print Archive.
?? Supported in part by Intel equipment grant, Teradata Corporation, NSF Cybertrust
grant, OKAWA research award, B. John Garrick Foundation and Xerox Innovation
group Award.

In almost all cases, what’s “potentially useful” and raises a “red flag” is
classified, and satisfies a secret criteria (i.e., a boolean decision whether to keep
this document or throw it away). The classified “sieving” algorithm is typically
written by various intelligence community analysts. Keeping this “sieving” algo-
rithm classified is clearly essential, since otherwise adversaries could easily avoid
their messages from being collected by simply avoiding criteria that is used to
collect such documents in the first place. In order to keep the selection criteria
classified, one possible solution (and in fact the one that is used in practice) is
to collect all streaming data “on the inside” —in a secure environment— and
then filter the information, according to classified rules, throwing away most of
it and keeping only a small fraction of data-items that are interesting according
to the secret criteria, such as a set of keywords that raise a red-flag. While this
certainly keeps the sieving information private, this solution requires transfer-
ring all streaming data to a classified environment, adding considerable cost,
both in terms of communication cost and a potential delay or even loss of data,
if the transfer to the classified environment is interrupted or dropped in transit.
Furthermore, it requires considerable cost of storage of this (un-sieved) data in
case the transfer to the classified setting is delayed.

Clearly, a far more preferable solution, is to sieve all these data-streams at
their sources (even on the same computers or routers where the stream is gen-
erated or arrives in the first place). The issue, of course, is how can we do it
while keeping sieving criteria classified, even if the computer where the sieving
program executes falls into enemy’s hands? Perhaps somewhat surprisingly, we
show how to do just that while keeping the sieving criteria provably hidden from
the adversary, even if the adversary gets to experiment with the sieving exe-
cutable code and/or tries to reverse-engineer it. Put differently, we construct a
“compiler” (i.e. of how to compile sieving rules) so that it is provably impossi-
ble to reverse-engineer the classified rules from the executable complied sieving
code. Now, we state our results in a more general terms, that we believe are of
independent interest:

PUBLIC-KEY PROGRAM OBFUSCATION: Very informally, given a pro-
gram f from a complexity class C, and a security parameter k, a public-key
program obfuscator compiles f into (F,Dec), where F on any input computes
an encryption of what f would compute on the same input. The decryption algo-
rithm Dec decrypts the output of F . That is, for any input x, Dec(F (x)) = f(x),
but given code for F it is impossible to distinguish for any polynomial time ad-
versary which f from complexity class C was used to produce F . We stress that
in our definition, the program encoding length |F | must polynomially depend
only on |f | and k, and the output length of |F (x)| must polynomially depend
only on |f(x)| and k. It is easy to see that Single-Database Private Information
Retrieval (including keyword search) can be viewed as a special case of public-key
program obfuscator.

OBFUSCATING SEARCHING ON STREAMING DATA: We consider
how to public-key program obfuscate Keyword Search algorithms on streaming
data, where the size of the query (i.e. complied executable) must be independent

of the size of stream (i.e., database), and that can be executed in an on-line
environment, one document at a time. Our results also can be viewed as im-
provement and a speedup of the best previous results of single-round PIR with
keyword search of Freedman, Ishai, Pinkas and Reingold [10]. In addition to the
introduction of the streaming model, this paper also improves the previous work
on keyword PIR by allowing for the simultaneous return of multiple documents
that match a set of keywords, and also the ability to more efficiently perform
different types of queries beyond just searching for a single keyword. For exam-
ple, we show how to search for the disjunction of a set of keywords and several
other functions.

OUR RESULTS: We consider a dictionary of finite size (e.g., an English dic-
tionary) D that serves as the universe for our keywords. Additionally, we can
also have keywords that must be absent from the document in order to match it.
We describe the various properties of such filtering software below. A filtering
program F stores up to some maximum number m of matching documents in an
encrypted buffer B. We provide several methods for constructing such software
F that saves up to m matching documents with overwhelming probability and
saves non-matching documents with negligible probability (in most cases, this
probability will be identically 0), all without F or its encrypted buffer B re-
vealing any information about the query that F performs. The requirement that
non-matching documents are not saved (or at worst with negligible probability)
is motivated by the streaming model: in general the number of non-matching
documents will be vast in comparison to those that do match, and hence, to use
only small storage, we must guarantee that non-matching documents from the
stream do not collect in our buffer. Among our results, we show how to execute
queries that search for documents that match keywords in a disjunctive manner,
i.e., queries that search for documents containing one or more keywords from a
keyword set. Based on the Paillier cryptosystem, [18], we provide a construction
where the filtering software F runs in O(l ·k3) time to process a document, where
k is a security parameter, and l is the length of a document, and stores results
in a buffer bounded by O(m · l ·k2). We stress again that F processes documents
one at a time in an online, streaming environment. The size of F in this case
will be O(k · |D|) where |D| is the size of the dictionary in words. Note that in
the above construction, the program size is proportional to the dictionary size.
We can in fact improve this as well: we have constructed a reduced program
size model that depends on the Φ-Hiding Assumption [5]. The running time of
the filtering software in this implementation is linear in the document size and
is O(k3) in the security parameter k. The program size for this model is only
O(polylog(|D|)). We also have an abstract construction based on any group ho-
momorphic, semantically secure encryption scheme. Its performance depends on
the performance of the underlying encryption scheme, but will generally perform
similarly to the above constructions. As mentioned above, all of these construc-
tions have size that is independent of the size of the data stream. Also, using
the results of Boneh, Goh, and Nissim [2], we show how to execute queries that
search for an “AND” of two sets of keywords (i.e., the query searches for docu-

ments that contain at least one word from K1 and at least one word from K2 for
sets of keywords K1,K2), without asymptotically increasing the program size.

Our contributions can be divided into three major areas: Introduction of the
streaming model; having queries simultaneously return multiple results; and the
ability to extend the semantics of queries beyond just matching a single keyword.

COMPARISON WITH PREVIOUS WORK: A superficially related topic is
that of “searching on encrypted data” (e.g., see [3] and the references therein).
We note that this body of work is in fact not directly relevant, as the data (i.e.
input stream) that is being searched is not encrypted in our setting.

The notion of obfuscation was considered by [1], but we stress that our setting
is different, since our notion of public-key obfuscation allows the output to be
encrypted, whereas the definition of [1] demands the output of the obfuscated
code is given in the clear, making the original notion of obfuscation much more
demanding.

Our notion is also superficially related to the notion of “crypto-computing”
[19]. However, in this work we are concerned with programs that contain loops,
and where we cannot afford to expand this program into circuits, as this will
blow-up the program size.

Our work is most closely related to the notion of Single-database Private
Information Retrieval (PIR), that was introduced by Kushilevitz and Ostrovsky
[13] and has received a lot of subsequent attention in the literature [13, 5, 8, 17, 14,
4, 20, 15, 10]. (In the setting of multiple, non-communicating databases, the PIR
notion was introduced in [7].) In particular, the first PIR with poly-logarithmic
overhead was shown by Cachin, Micali and Stadler [5], and their construction
can be executed in the streaming environment. Thus the results of this paper
can be viewed as a generalization of their work as well. The setting of single-
database PIR keyword search was considered in [13, 6, 12] and more recently by
Freedman, Ishai, Pinkas and Reingold [10]. The issue of multiple matches of a
single keyword (in a somewhat different setting) was considered by Kurosawa
and Ogata [12].

There are important differences between previous works and our work on
single-database PIR keyword search: in the streaming model, the program size
must be independent of the size of the stream, as the stream is assumed to be an
arbitrarily polynomially-large source of data and the complier does not need to
know the size of the stream when creating the obfuscated query. In contrast, in
all previous non-trivial PIR protocols, when creating the query, the user of the
PIR protocol must know the upper bound on the database size while creating
the PIR query. Also, as is necessary in the streaming model, the memory needed
for our scheme is bounded by a value proportional to the size of a document as
well as an upper bound on the total number of documents we wish to collect,
but is independent of the size of the stream of documents. Finally, we have
also extended the types of queries that can be performed. In previous work on
keyword PIR, a single keyword was searched for in a database and a single
result returned. If one wanted to query an “OR” of several keywords, this would
require creating several PIR queries, and then sending each to the database.

We however show how to intrinsically extend the types of queries that can be
performed, without loss of efficiency or with multiple queries. In particular, all of
our systems can efficiently perform an “OR” on a set of keywords and its negation
(i.e. a document matches if certain keyword is absent from the document). In
addition, we show how to privately execute a query that searches for an “AND”
of two sets of keywords, meaning that a document will match if and only if it
contains at least one word from each of the keyword sets without the increase
in program (or dictionary) size.

2 Definitions and Preliminaries

2.1 Basic Definitions

For a set V we denote the power set of V by P(V).

Definition 1. Recall that a function g : N → R+ is said to be negligible if for
any c ∈ N there exists Nc ∈ Z such that n ≥ Nc ⇒ g(n) ≤ 1

nc .

Definition 2. Let C be a class of programs, and let f ∈ C. We define a public
key program obfuscator in the weak sense to be an algorithm

Compile(f, r, 1k) 7→ {F (·, ·),Decrypt(·)}

where r is randomness, k is a security parameter, and F and Decrypt are algo-
rithms with the following properties:

– (Correctness) F is a probabilistic function such that

∀x,PrR,R′

[
Decrypt(F (x,R′)) = f(x)

]
≥ 1− neg(k)

– (Compiled Program Conciseness) There exists a constant c such that |f | ≥
|F (·,·)|

(|f |+k)c

– (Output Conciseness) There exists a constant c such that For all x,R

|f(x)| ≥ |F (x,R)|
kc

– (Privacy) Consider the following game between an adversary A and a chal-
lenger C:

1. On input of a security parameter k, A outputs two functions f1, f2 ∈ C.
2. C chooses a b ∈ {0, 1} at random and computes Compile(fb, r, k) =
{F,Decrypt} and sends F back to A.

3. A outputs a guess b′.

We say that the adversary wins if b′ = b, and we define the adversary’s
advantage to be AdvA(k) = |Pr(b = b′)− 1

2 |. Finally we say that the system
is secure if for all A ∈ PPT , AdvA(k) is a negligible function in k.

We also define a stronger notion of this functionality, in which the decryption
algorithm does not give any information about f beyond what can be learned
from the output of the function alone.

Definition 3. Let C be a class of programs, and let f ∈ C. We define a pub-
lic key program obfuscator in the strong sense to be a triple of algorithms
(Key-Gen,Compile,Decrypt) defined as follows:

1. Key-Gen(k): Takes a security parameter k and outputs a public key and a
secret key Apublic, Aprivate.

2. Compile(f, r, Apublic, Aprivate): Takes a program f ∈ C, randomness r and
the public and private keys, and outputs a program F (·, ·) that is subject to
the same Correctness and conciseness properties as in Definition 2.

3. Decrypt(F (x), Aprivate): Takes output of F and the private key and recovers
f(x), just as in the correctness of Definition 2.

Privacy is also defined as in Definition 2, however in the first step the adver-
sary A receives as an additional input Apublic and we also require that Decrypt
reveals no information about f beyond what could be computed from f(x): For-
mally, for all adversaries A ∈ PPT and for all history functions h there exists
a simulating program B ∈ PPT that on input f(x) and h(x) is computationally
indistinguishable from A on input (Decrypt, F (x), h(x)).

Now, we give instantiations of these general definitions to the class of
programs C that we show how to handle: We consider a universe of words
W = {0, 1}∗, and a dictionary D ⊂ W with |D| = α < ∞. We think of a
document just to be an ordered, finite sequence of words in W , however, it will
often be convenient to look at the set of distinct words in a document, and
also to look at some representation of a document as a single string in {0, 1}∗.
So, the term document will often have several meanings, depending on the
context: if M is said to be a document, generally this will mean M is an ordered
sequence in W , but at times, (e.g., when M appears in set theoretic formulas)
document will mean (finite) element of P(W) (or possibly P(D)), and at other
times still, (say when one is talking of bit-wise encrypting a document) we’ll
view M as M ∈ {0, 1}∗. We define a set of keywords to be any subset K ⊂ D.
Finally, we define a stream of documents S just to be any sequence of documents.

We will consider only a few types of queries in this work, however would
like to state our definitions in generality. We think of a query type, Q as a
class of logical expressions in ∧,∨, and ¬. For example, Q could be the class of
expressions using only the operation ∧. Given a query type, one can plug in the
number of variables, call it α for an expression, and possibly other parameters
as well, to select a specific boolean expression, Q in α variables from the class
Q. Then, given this logical expression, one can input K ⊂ D where K = {ki}

α
i=1

and create a function, call it QK : P(D) → {0, 1} that takes documents, and
returns 1 if and only if a document matches the criteria. QK(M) is computed
simply by evaluating Q on inputs of the form (ki ∈M). We will call QK a query
over keywords K.

We note again that our work does not show how to privately execute ar-
bitrary queries, despite the generality of these definitions. In fact, extending the
query semantics is an interesting open problem.

Definition 4. For a query QK on a set of keywords K, and for a document M ,
we say that M matches query QK if and only if QK(M) = 1.

Definition 5. For a fixed query type Q, a private filter generator consists of the
following probabilistic polynomial time algorithms:

1. Key-Gen(k): Takes a security parameter k and generates public key Apublic,
and a private key Aprivate.

2. Filter-Gen(D,QK , Apublic, Aprivate,m, γ): Takes a dictionary D, a query
QK ∈ Q for the set of keywords K, along with the private key and gen-
erates a search program F . F searches any document stream S (processing
one document at a time and updating B) collects up to m documents that
match QK in B, outputting an encrypted buffer B that contains the query
results, where |B| = O(γ) throughout the execution.

3. Filter-Decrypt(B,Aprivate): Decrypts an encrypted buffer B, produced by F
as above, using the private key and produces output B∗, a collection of the
matching documents from S.

Definition 6. (Correctness of a Private Filter Generator)
Let F = Filter-Gen(D,QK , Apublic, Aprivate,m, γ), where D is a dictionary, QK

is a query for keywords K, m, γ ∈ Z+ and (Apublic, Aprivate) = Key-Gen(k). We
say that a private filter generator is correct if the following holds:
Let F run on any document stream S, and set B = F (S).

Let B∗ = Filter-Decrypt(B,Aprivate). Then,

– If |{M ∈ S | QK(M) = 1}| ≤ m then

Pr
[
B∗ = {M ∈ S | QK(M) = 1}

]
> 1− neg(γ)

– If |{M ∈ S | QK(M) = 1}| > m then

Pr
[
(B∗ ⊂ {M ∈ S | QK(M) = 1}) ∨ (B∗ = ⊥)

]
> 1− neg(γ)

where ⊥ is a special symbol denoting buffer overflow, and the probabilities
are taken over all coin-tosses of F , Filter-Gen and of Key-Gen.

Definition 7. (Privacy) Fix a dictionary D. Consider the following game be-
tween an adversary A, and a challenger C. The game consists of the following
steps:

1. C first runs Key-Gen(k) to obtain Apublic, Aprivate, and then sends Apublic to
A.

2. A chooses two queries for two sets of keywords, Q0K0
, Q1K1

, with K0,K1 ⊂
D and sends them to C.

3. C chooses a random bit b ∈ {0, 1} and executes
Filter-Gen(D,QbKb

, Apublic, Aprivate,m, γ) to create Fb, the filtering program
for the query QbKb

, and then sends Fb back to A.

4. A(Fb) can experiment with code of Fb in an arbitrary non-black-box way
finally output b′ ∈ {0, 1}.

The adversary wins the game if b = b′ and loses otherwise. We define the

adversary A’s advantage in this game to be AdvA(k) =
∣∣∣Pr(b = b′) − 1

2

∣∣∣ We
say that a private filter generator is semantically secure if for any adversary
A ∈ PPT we have that AdvA(k) is a negligible function, where the probability is
taken over coin-tosses of the challenger and the adversary.

2.2 Combinatorial Lemmas

We require in our definitions that matching documents are saved with over-
whelming probability in the buffer B (in terms of the size of B), while non-
matching documents are not saved at all (at worst, with negligible probability).
We accomplish this by the following method: If the document is of interest to
us, we throw it at random γ times into the buffer. What we are able to guar-
antee is that if only one document lands in a certain location, and no other
document lands in this location, we will be able to recover it. If there is a colli-
sion of one or more documents, we assume that all documents at this location
are lost (and furthermore, we guarantee that we will detect such collisions with
overwhelming probability). To amplify the probability that matching documents
survive, we throw each γ times, and we make the total buffer size proportional
to 2γm, where m is the upper bound on the number of documents we wish to
save. Thus, we need to analyze the following combinatorial game, where each
document corresponds to a ball of different color.

Color-survival game: Let m, γ ∈ Z+, and suppose we have m different colors,
call them {colori}

m
i=1, and γ balls of each color. We throw the γm balls uniformly

at random into 2γm bins, call them {binj}
2γm
j=1 . We say that a ball “survives” in

binj , if no other ball (of any color) lands in binj . We say that colori “survives”
if at least one ball of color colori survives. We say that the game succeeds if all
m colors survive, otherwise we say that it fails.

Lemma 1. The probability that the color-survival game fails is negligible in γ.

Proof: See full version.
Another issue is how to distinguish valid documents in the buffer from colli-

sions of two or more matching documents in the buffer. (In general it is unlikely
that the sum of two messages in some language will look like another message in
the same language, but we need to guarantee this fact.) This can also be accom-
plished by means of a simple probabilistic construction. We will append to each
document k bits, where exactly k/3 randomly chosen bits from this string are set
to 1. When reading the buffer results, we will consider a document to be good
if exactly k/3 of the appended bits are 1’s. If a buffer collision occurs between
two matching documents, the buffer at this location will store the sum of the

messages, and the sum of 2 or more of the k-bit strings. 3 We need to analyze
the probability that after adding the k-bit strings, the resulting string still has
exactly k/3 bits set to 1, and show that this probability is negligible in k. We will
phrase the problem in terms of “balls in bins” as before: let Bins = {binj}

k
j=1

be distinguishable bins, and let T (Bins) denote the process of selecting k/3 bins
uniformly at random from all

(
k

k/3

)
choices, and putting one ball in each of these

bins. For a fixed randomness, we can formalize T as a map T : Zk → Zk such
that for any v = (v1, ..., vk) ∈ Zk, 0 ≤ (T (v)j − vj) ≤ 1 for all j ∈ {1, ..., k}, and∑k

j=1(T (v)j−vj) = k/3. Let N(binj) be the number of balls in binj . Now, after
independently repeating this experiment with the same bins, which were initially
empty, we will be interested in the probability that for exactly 2k/3 bins, the
number of balls inside is 0 mod n, for n > 1. I.e., after applying B twice, what
is Pr[|{j | N(binj) ≡ 0 mod n}| = 2k/3]?

Lemma 2. Let Bins = {binj}
k
j=1 be distinguishable bins, all of which are

empty. Let Bins = T 2(Bins). Then for all n > 1,

Pr
[
|{j ∈ {1, ..., k} | N(binj) ≡ 0 mod n}| = 2k/3

]

is negligible in k.

Proof See full version.

2.3 Organization of the Rest of this Paper

In what follows, we will give several constructions of private filter generators,
beginning with our most efficient construction using a variant of the Paillier
Cryptosystem [18],[9]. We also show a construction with reduced program size
using the Cachin-Micali-Stadler PIR protocol [5], then we give a construction
based on any group homomorphic semantically secure encryption scheme, and
finally a construction based on the work of Boneh, Goh, and Nissim [2] that
extends the query semantics to include a single “AND” operation without
increasing the program size.

3 Paillier-Based Construction

Definition 8. Let (G1, ·), (G2, ∗) be groups. Let E be the probabilistic encryp-
tion algorithm and D be the decryption algorithm of an encryption scheme with
plaintext set G1 and ciphertext set G2. The encryption scheme is said to be group
homomorphic if the encryption map E : G1 → G2 has the following property:

∀ a, b ∈ G1, D(E(a · b)) = D(E(a) ∗ E(b))

3 If a document does not match, it will be encrypted as the 0 message, as will its
appended string of k bits, so nothing will ever be marked as a collision with a non-
matching document.

Note that since the encryption is probabilistic, we have to phrase the homo-
morphic property using D, instead of simply saying that E is a homomorphism.
Also, as standard notation when working with homomorphic encryption as just
defined, we will use idG1

, idG2
to be the identity elements of G1, G2, respectively.

3.1 Private Filter Generator Construction

We now formally present the Key-Gen, Filter-Gen, and Buffer-Decrypt algorithms.
The class Q of queries that can be executed is the class of all boolean expressions
using only ∨. By doubling the program size, it is easy to handle an ∨ of both
presence and absence of keywords. For simplicity of exposition, we describe how
to detect collisions separately from the main algorithm.

Key-Gen(k) Execute the key generation algorithm for the Paillier cryptosystem to find
an appropriate RSA number, n and its factorization n = pq. We will make one additional
assumption on n = pq: we require that |D| < min{p, q}. (We need to guarantee that any
number ≤ |D| is a unit mod ns.) Save n as Apublic, and save the factorization as Aprivate.

Filter-Gen(D,QK , Apublic, Aprivate,m, γ) This algorithm outputs a search program
F for the query QK ∈ Q. So, QK(M) =

∨
w∈K(w ∈M).

We will use the Damg̊ard-Jurik extension [9] to construct F as follows. Choose an integer
s > 0 based upon the size of documents that you wish to store so that each document
can be represented as a group element in Zns . Then F contains the following data:

– A buffer B consisting of 2γm blocks with each the size of two elements of Z∗
ns+1 (so,

we view each block of B as an ordered pair (v1, v2) ∈ Z∗
ns+1 × Z∗

ns+1). Furthermore,
we will initialize every position to (1, 1), two copies of the identity element.

– An array D̂ = {d̂i}
|D|
i=1 where each d̂i ∈ Z∗

ns+1 such that d̂i is an encryption of 1 ∈ Zns

if di ∈ K and is an encryption of 0 otherwise. (Note: We of course use re-randomized
encryptions of these values for each entry in the array.)

F then proceeds with the following steps upon receiving an input document M from the
stream:

1. Construct a temporary collection M̂ = {d̂i ∈ D̂ | di ∈M}.
2. Compute

v =
∏

d̂i∈M̂

d̂i

3. Compute vM and multiply (v, vM) into γ random locations in the buffer B, just as in
our combinatorial game from section 2.2.

Note that the private key actually is not needed. The public key alone will suffice for

the creation of F .

Buffer-Decrypt(B,Aprivate) First, this algorithm simply decrypts B one block at a

time using the decryption algorithm for the Paillier system. Each decrypted block will

contain the 0 message (i.e., (0, 0)) or a non-zero message, (w1, w2) ∈ Zns × Zns . Blocks

with the 0 message are discarded. A non-zero message (w1, w2) will be of the form

(c, cM ′) if no collisions have occurred at this location, where c is the number of distinct

keywords from K that appear in M ′. So to recover M ′, simply compute w2/w1 and add

this to the array B∗. Finally, output B∗.

In general, the filter generation and buffer decryption algorithms will make use of
Lemma 2, having the filtering software append an extra r bits to each document,
with exactly r/3 bits equal to 1, and then having the buffer decryption algorithm
save documents to the output B∗ if and only if exactly r/3 of the extra bits are
1. In any of our constructions, this can be accomplished by adding r extra blocks
the size of the security parameter to an entry in the buffer to represent the bits.
However, this is undesirable in our Paillier-based construction, as this would
cause an increase (by a factor of r/2) to the size of the buffer.

Lemma 3. With O(k) additional bits added to each block of B, we can detect
all collisions of matching documents with probability > 1− neg(k).

Proof. Since log(|D|) is much smaller than the security parameter k, we can
encode the bits from Lemma 2 using O(k) bits. For further details, see the full
version of this paper.

3.2 Correctness

We need to show that if the number of matching documents is less than m, then

Pr
[
B∗ = {M ∈ S | QK(M) = 1}

]
> 1− neg(γ)

and otherwise, we have that B∗ is a subset of the matching documents (or
contains the overflow symbol, ⊥). Provided that the buffer decryption algorithm
can distinguish collisions in the buffer from valid documents (see above remark)
this equates to showing that non-matching documents are saved with negligible
probability in B and that matching documents are saved with overwhelming
probability in B. These two facts are easy to show.

Theorem 1. Assuming that the Paillier (and Damg̊ard-Jurik) cryptosystems
are semantically secure, then the private filter generator from the preceding con-
struction is semantically secure according to Definition 7.

Proof. Denote by E the encryption algorithm of the Paillier/Damg̊ard-Jurik
cryptosystem. Suppose that there exists an adversary A that can gain a non-
negligible advantage ε in our semantic security game from Definition 7. Then
A could be used to gain an advantage in breaking the semantic security of the
Paillier encryption scheme as follows: Initiate the semantic security game for the
Paillier encryption scheme with some challenger C. C will send us an integer
n for the Paillier challenge. For messages m0,m1, we choose m0 = 0 ∈ Zns

and choose m1 = 1 ∈ Zns . After sending m0,m1 back to C, we will receive
eb = E(mb), an encryption of one of these two values. Next we initiate the pri-
vate filter generator semantic security game with A. A will give us two queries

Q0, Q1 in Q for some sets of keywords K0,K1, respectively. We use the public
key n to compute an encryption of 0, call it e0 = E(0). Now we pick a random
bit q, and construct filtering software for Qq as follows: we proceed as described

above, constructing the array D̂ by using re-randomized encryptions, E(0) of 0
for all words in D\Kq, and for the elements of Kq, we use E(0)eb, which are ran-
domized encryptions of mb. Now we give this program back to A, and A returns
a guess q′. With probability 1/2, eb is an encryption of 0, and hence the program
that we gave A does not search for anything at all, and in this event clearly A’s
guess is independent of q, and hence the probability that q′ = q is 1/2. However,
with probability 1/2, eb = E(1), hence the program we’ve sent A is filtering
software that searches for Qq, constructed exactly as in the Filter-Gen algorithm,
and hence in this case with probability 1/2 + ε, A will guess q correctly, as our
behavior here was indistinguishable from an actual challenger. We determine our
guess b′ as follows: if A guesses q′ = q correctly, then we will set b′ = 1, and
otherwise we will set b′ = 0. Putting it all together, we can now compute the

probability that our guess is correct: Pr(b′ = b) = 1
2

(
1
2

)
+ 1

2

(
1
2 + ε

)
= 1

2 +
ε
2

and hence we have obtained a non-negligible advantage in the semantic security
game for the Paillier system, a contradiction to our assumption. Therefore, our
system is secure according to Definition 7.

4 Reducing Program Size Below Dictionary Size

In our other constructions, the program size is proportional to the size of the
dictionary. By relaxing our definition slightly, we are able to provide a new
construction using Cachin-Micali-Stadler PIR [5] which reduces the program
size. Security of this system depends on the security of [5] which uses the
Φ-Hiding Assumption.4

The basic idea is to have a standard dictionary D agreed upon ahead of
time by all users, and then to replace the array M̂ in the filtering software with
PIR queries that execute on a database consisting of the characteristic function
of M with respect to D to determine if keywords are present or not. The return
of the queries is then used to modify the buffer. This will reduce the size of
the distributed filtering software. However, as mentioned above, we will need to
relax our definition slightly and publish an upper bound U for |K|, the number
of keywords used in a search.

4.1 Private Filter Generation

We now formally present the Key-Gen, Filter-Gen, and Buffer-Decrypt algorithms
of our construction. The class Q of queries that can be executed by this protocol
is again just the set of boolean expressions in only the operator ∨ over presence

4 It is an interesting open question how to reduce the program size under other cryp-
tographic assumptions.

or absence of keywords, as discussed above. Also, an important note: for this
construction, it is necessary to know the set of keywords being used during key
generation, and hence what we achieve here is only weak public key program
obfuscation, as in Definition 2. For consistency of notation, we still present this
as 3 algorithms, even though the key generation could be combined with the filter
generation algorithm. For brevity, we omit the handling of collision detection,
which is handled using Lemma 2.

Key-Gen(k,K,D) The CMS algorithms are run to generate PIR queries, {qj} for the
keywords K, and the resulting factorizations of the corresponding composite numbers
{mj} are saved as the key, Aprivate, while Apublic is set to {mj}.

Filter-Gen(D,QK , Apublic, Aprivate,m, γ) This algorithm constructs and outputs a
private filter F for the query QK , using the PIR queries qj that were generated in the
Key-Gen(k,K,D) algorithm. It operates as follows.
F contains the following data:

– The array of CMS PIR queries, {qj}
U
j=1 from the first algorithm, which are designed to

retrieve a bit from a database having size equal to the number of words in the agreed
upon dictionary, D. Only |K| of these queries will be meaningful. For each w ∈ K,
there will be a meaningful query that retrieves the bit at index corresponding to w’s
index in the dictionary. Let {pj,l}

|D|
l=1 be the primes generated by the information in qj ,

and let mj be composite number part of qj . The leftover U − |K| queries are set to
retrieve random bits.

– An array of buffers {Bj}
U
j=1, each indexed by blocks the size of elements of Z∗

mj
, with

every position initialized to the identity element.

The program then proceeds with the following steps upon receiving an input document M :

1. Construct the complement of the characteristic vector for the words of M relative
to the dictionary D. I.e., create an array of bits D̄ = {d̄i} of size |D|, such that
d̄i = 0⇔ di ∈M . We’ll use this array as our database for the PIR protocols.

Next, for each j ∈ {1, 2, ..., U}, do the following steps:
2. Execute query qj on D̄ and store the result in rj .
3. Bitwise encrypt M , using rj to encrypt a 1 and using the identity of Z∗

mj
to encrypt

a 0.
4. Take the jth encryption from step 3 and position-wise multiply it into a random location
in buffer Bj γ-times, as described in our color-survival game from section 2.

Buffer-Decrypt(B,Aprivate) Simply decrypts each buffer Bj one block at a time by in-

terpreting each group element with pj,ith roots as a 0 and other elements as 1’s, where i

represents the index of the bit that is searched for by query qj . All valid non-zero decryptions

are stored in the output B∗.

4.2 Correctness of Private Filter

Since CMS PIR is not deterministic, it is possible that our queries will have the
wrong answer at times. However, this probability is negligible in the security

parameter. Again, as we’ve seen before, provided that the decryption algorithm
can distinguish valid documents from collisions in buffer, correctness equates to
storing non-matching documents in B with negligible probability and matching
documents with overwhelming probability. These facts are easy to verify.

Theorem 2. Assume the Φ-Assumption holds. Then the Private Filter Genera-
tor from the preceding construction is semantically secure according to Definition
2.

Proof. (Sketch) If an adversary can distinguish any two keyword sets, then the
adversary can also distinguish between two fixed keywords, by a standard hybrid
argument. This is precisely what it means to violate the privacy definition of [5].

5 Eliminating the Probability of Error

In this section, we present ways to eliminate the probability of collisions in the
buffer by using perfect hash functions. Recall the definition of perfect hash
function. For a set S ⊂ {1, ...,m}, if a function h : {1, ...,m} → {1, ..., n} is such
that h|S (the restriction of h to S) is injective, then h is called a perfect hash
function for S. We will be concerned with families of such functions. We say
that H is an (m,n, k)-family of perfect hash functions if ∀S ⊂ {1, ...,m} with
|S| = k, ∃h ∈ H such that h is perfect for S.

We will apply these families in a very straightforward way. Namely, we
define m to be the number of documents in the stream and k to be the
number of documents we expect to save. Then, since there exist polynomial size

(m,n, k)-families of perfect hash functionsH, e.g., |H| ≤
⌈ log(mk)
log(nk)−log(nk−k!(nk))

⌉

[16], then our system could consist of |H| buffers, each of size n documents,
and our protocol would just write each (potential) encryption of a document to
each of the |H| buffers once, using the corresponding hash function from H to
determine the index in the buffer. Then, no matter which of the

(
m
k

)
documents

were of interest, at least one of the functions in H would be injective on that
set of indexes, and hence at least one of our buffers would be free of collisions.

6 Construction Based On Any Homomorphic Encryption

We provide here an abstract construction based upon an arbitrary homomorphic,
semantically secure public key encryption scheme. The class of queries Q that
are considered here is again, all boolean expressions in only the operation ∨,
over presence or absence of keywords, as discussed above. This construction is
similar to the Paillier-based construction, except that since we encrypt bitwise,
we incur an extra multiplicative factor of the security parameter k in the buffer
size. However, both the proof and the construction are somewhat simpler and
can be based on any homomorphic encryption.

6.1 Construction of Abstract Private Filter Generator

Throughout this section, let PKE = {KG(k), E(p),D(c)} be a public key en-
cryption scheme. Here, KG, E ,D are key generation, encryption, and decryption
algorithms, respectively for any group homomorphic, semantically secure en-
cryption scheme, satisfying Definition 8. We describe the Key-Gen, Filter-Gen,
and Buffer-Decrypt algorithms. We will write the group operations of G1 and
G2 multiplicatively. (As usual, G1, G2 come from a distribution of groups in
some class depending on the security parameter, but to avoid confusion and un-
necessary notation, we will always refer to them simply as G1, G2 where it is
understood that they are actually sampled from some distribution based on k.)

Key-Gen(k) Execute KG(k) and save the private key as Aprivate, and save the public
parameters of PKE as Apublic.

Filter-Gen(D,QK , Apublic, Aprivate,m, γ) This algorithm constructs and outputs a
filtering program F for QK , constructed as follows.
F contains the following data:

– A buffer B(γ) of size 2γm, indexed by blocks the size of an element of G2 times the
document size, with every position initialized to idG2 .

– Fix an element g ∈ G1 with g 6= idG1 . The program contains an array D̂ = {d̂i}
|D|
i=1

where each d̂i ∈ G2 such that d̂i is set to E(g) ∈ G1 if di ∈ K and it is set to E(idG1)
otherwise. (Note: we are of course re-applying E to compute each encryption, and not
re-using the same encryption with the same randomness over and over.)

F then proceeds with the following steps upon receiving an input document M :

1. Construct a temporary collection M̂ = {d̂i ∈ D̂ | di ∈M}.

2. Choose a random subset S ⊂ M̂ of size d|M̂ |/2e and compute

v =
∏

s∈S

s

3. Bitwise encrypt M using encryptions of idG1 for 0’s and using v to encrypt 1’s to
create a vector of G2 elements.

4. Choose a random location in B, take the encryption of step 3, and position-wise
multiply these two vectors storing the result back in B at the same location.

5. Repeat steps 2-4
(

c
c−1

)
γ times, where in general, c will be a constant approximately

the size of G1.

Buffer-Decrypt(B,Aprivate) Decrypts B one block at a time using the decryption algorithm

D to decrypt the elements of G2, and then interpreting non-identity elements of G1 as 1’s

and idG1 as 0, storing the non-zero, valid messages in the output B
∗.

7 Construction For a Single AND

7.1 Handling Several AND Operations by Increasing Program Size

We note that there are several simple (and unsatisfactory) modifications that
can be made to our basic system to compute an AND. For example a query

consisting of at most a c AND operations can be performed simply by changing
the dictionary D to a dictionary D′ containing all |D|c c-tuples of words in
D, which of course comes at a polynomial blow-up5 of program size.6 So, only
constant, or logarithmic size keyword sets can be used in order to keep the
program size polynomial.

7.2 Executing a Single AND Without Increasing Program Size

Using the results of Boneh, Goh, and Nissim [2], we can extend the types of
queries that can be privately executed to include queries involving a single AND
of an OR of two sets of keywords without increasing the program size. This
construction is very similar to the abstract construction, and hence several details
that would be redundant will be omitted from this section. The authors of [2]
build an additively homomorphic public key cryptosystem that is semantically
secure under this subgroup decision problem. The plaintext set of the system is
Zq2 , and the ciphertext set can be either G or G1 (which are both isomorphic
to Zn). However, the decryption algorithm requires one to compute discrete
logs. Since there are no known algorithms for efficiently computing discrete logs
in general, this system can only be used to encrypt small messages. Using the
bilinear map e, this system has the following homomorphic property. Let F ∈
Zq2 [X1, ..., Xu] be a multivariate polynomial of total degree 2 and let {ci}

u
i=1 be

encryptions of {xi}
u
i=1, xi ∈ Zq2 . Then, one can compute an encryption cF of

the evaluation F (x1, ..., xu) of F on the xi with only the public key. This is done
simply by using the bilinear map e in place of any multiplications in F , and then
multiplying ciphertexts in the place of additions occurring in F . And once again,
note that decryption is feasible only when the xi are small, so one must restrict
the message space to be a small subset of Zq2 . (In our application, we will always
have xi ∈ {0, 1}.) Using this cryptosystem in our abstract construction, we can
easily extend the types of queries that can be performed.

7.3 Construction of Private Filter Generator

More precisely, we can now perform queries of the following form, where M is a
document and K1,K2 ⊂ D are sets of keywords:

(M ∩K1 6= ∅) ∧ (M ∩K2 6= ∅)

5 Asymptotically, if we treat |D| as a constant, the above observation allows a log-
arithmic number of AND operations with polynomial blow-up of program size. It
is an interesting open problem to handle more than a logarithmic number of AND
operations, keeping the program size polynomial.

6 A naive suggestion that we received for an implementation of “AND” is to keep
track of several buffers, one for each keyword or set of keywords, and then look for
documents that appear in each buffer after the buffers are retrieved, however this
will put many non-matching documents in the buffers, and hence is inappropriate
for the streaming model. Furthermore, it really just amounts to searching for an OR
and doing local processing to filter out the difference.

We describe the Key-Gen, Filter-Gen, and Buffer-Decrypt algorithms below.

Key-Gen(k) Execute the key generation algorithm of the BGN system to produce
Apublic = (n,G,G1, e, g, h) where g is a generator, n = q1q2, and h is a random element
of order q1. The private key, Aprivate is the factorization of n. We make the additional
assumption that |D| < q2.

Filter-Gen(D,QK1,K2 , Apublic, Aprivate,m, γ) This algorithm constructs and out-
puts a private filter F for the query QK1,K2 , constructed as follows, where this query
searches for all documents M such that (M ∩K1 6= ∅) ∧ (M ∩K2 6= ∅).
F contains the following data:

– A buffer B(γ) of size 2γm, indexed by blocks the size of an element of G1 times the
document size, with every position initialized to the identity element of G1.

– Two arrays D̂l = {d̂l
i}

|D|
i=1 where each d̂l

i ∈ G, such that d̂l
i is an encryption of 1 ∈ Zn

if di ∈ Kl and an encryption of 0 otherwise.

F then proceeds with the following steps upon receiving an input document M :

1. Construct temporary collections M̂l = {d̂l
i ∈ D̂l | di ∈M}.

2. For l = 1, 2, compute

vl =
∏

d̂l
i
∈M̂l

d̂l
i

and

v = e(v1, v2) ∈ G1

3. Bitwise encrypt M using encryptions of 0 in G1 for 0’s and using v to encrypt 1’s to
create a vector of G1 elements.

4. Choose γ random locations in B, take the encryption of step 3, and position-wise
multiply these two vectors storing the result back in B at the same location.

Buffer-Decrypt(B,Aprivate) Decrypts B one block at a time using the decryption

algorithm from the BGN system, interpreting non-identity elements of Zq2 as 1’s and 0 as

0, storing the non-zero, valid messages in the output B∗.7

Theorem 3. Assuming that the subgroup decision problem of [2] is hard, then
the Private Filter Generator from the preceding construction is semantically se-
cure according to Definition 7.

References

1. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K.
Yang. On the (im)possibility of software obfuscation. In Crypto 2001, pages 1–18,
2001. LNCS 2139.

2. D. Boneh, E. Goh, K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. TCC
2005: 325-341

7 See footnote 3.

3. D. Boneh, G. Crescenzo, R. Ostrovsky, G. Persiano. Public Key Encryption with
Keyword Search. EUROCRYPT 2004: 506-522

4. Y. C. Chang. Single Database Private Information Retrieval with Logarithmic
Communication. ACISP 2004

5. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In J. Stern, editor, Advances in Cryptology

– EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages
402–414. Springer, 1999.

6. B. Chor, N. Gilboa, M. Naor Private Information Retrieval by Keywords in
Technical Report TR CS0917, Department of Computer Science, Technion, 1998.

7. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Proc. of the 36th Annu. IEEE Symp. on Foundations of Computer Science, pages
41–51, 1995. Journal version: J. of the ACM, 45:965–981, 1998.

8. G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single-database private information
retrieval implies oblivious transfer. In Advances in Cryptology - EUROCRYPT

2000, 2000.
9. I. Damg̊ard, M. Jurik. A Generalisation, a Simplification and some Applications
of Paillier’s Probabilistic Public-Key System. In Public Key Cryptography (PKC
2001)

10. M. Freedman, Y. Ishai, B. Pinkas and O. Reingold. Keyword Search and Oblivious
Pseudorandom Functions. To appear in 2nd Theory of Cryptography Conference
(TCC ’05) Cambridge, MA, Feb 2005.

11. S. Goldwasser and S. Micali. Probabilistic encryption. In J. Comp. Sys. Sci,
28(1):270–299, 1984.

12. K. Kurosawa, W. Ogata. Oblivious Keyword Search. Journal of Complexity,
Volume 20 , Issue 2-3 April/June 2004 Special issue on coding and cryptography
Pages: 356 - 371

13. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Proc. of the 38th Annu. IEEE

Symp. on Foundations of Computer Science, pages 364–373, 1997.
14. E. Kushilevitz and R. Ostrovsky. One-way Trapdoor Permutations are Sufficient

for Non-Trivial Single-Database Computationally-Private Information Retrieval.
In Proc. of EUROCRYPT ’00, 2000.

15. H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication.
IACR ePrint Cryptology Archive 2004/063

16. K. Mehlhorn. On the Program Size of Perfect and Universal Hash Functions. In
Proc. 23rd annual IEEE Symposium on Foundations of Computer Science, 1982,
pp. 170-175.

17. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. Proc. 31st

STOC, pp. 245–254, 1999.
18. P. Paillier. Public Key Cryptosystems based on Composite Degree Residue Classes.

Advances in Cryptology - EUROCRYPT ’99, LNCS volume 1592, pp. 223-238.
Springer Verlag, 1999.

19. T. Sander, A. Young, M.Yung. Non-Interactive CryptoComputing For NC1 FOCS
1999: 554-567

20. J.P. Stern, A New and Efficient All or Nothing Disclosure of Secrets Protocol
Asiacrypt 1998 Proceedings, Springer Verlag.

