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Abstract. We show how to turn three-move proofs of knowledge into
non-interactive ones in the random oracle model. Unlike the classical
Fiat-Shamir transformation our solution supports an online extractor
which outputs the witness from such a non-interactive proof instanta-
neously, without having to rewind or fork. Additionally, the communi-
cation complexity of our solution is significantly lower than for previous
proofs with online extractors. We furthermore give a superlogarithmic
lower bound on the number of hash function evaluations for such online
extractable proofs, matching the number in our construction, and we also
show how to enhance security of the group signature scheme suggested
recently by Boneh, Boyen and Shacham with our construction.

1 Introduction

The Fiat-Shamir transformation [17] is a well-known technique to remove in-
teraction from proofs of knowledge and to derive signature schemes from such
proofs. The starting point is a three-move proof between a prover, holding a wit-
ness w to a public value x, and a verifier. The prover sends a commitment com,
then receives a random challenge ch from the verifier and finally replies with
resp. For the non-interactive version the prover computes the challenge himself
by applying a hash function H to the commitment. The security of this trans-
formation has later been analyzed under the idealized assumption that the hash
function behaves as a random oracle [8, 27], and has led to security proofs for
related signature schemes.

Limitations. In the interactive case, all common knowledge extractors work by
repeatedly rewinding the prover to the step after having sent com and completing
the executions with independent random challenges. This eventually yields two
valid executions (com, ch, resp), (com, ch′, resp′) for different challenges ch 6= ch′

from which the extractor can compute the witness w. The same technique is
reflected in the security proofs of the non-interactive version: The extractor
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continuously rewinds to the point where the prover has asked the random oracle
H about com and completes the executions with independent hash values to find
two valid executions (called “forking” in [27]).
The notable fact above is that, although the proof is non-interactive, the

extractor still works by rewinding. As pointed out by [29] for example, this causes
problems for some cryptographic schemes. Consider for example the ElGamal
encryption (R,C) = (gr, pkr · m) for messages m. One attempt to make this
scheme secure against chosen-ciphertext attacks is to append a non-interactive
proof of knowledge for r = logR to the ciphertext. The idea is that, giving such
a proof, any party generating a ciphertext would already “know” r and therefore
m = C · pk−r. In other words, decryption queries in a chosen-ciphertext attack
should be simulatable with the help of the knowledge extractor. However, this
intuition cannot be turned into a proof, at least not with the rewinding extractor.
Consider for example an adversary which sequentially puts n hash queries for the
proofs of knowledge and then asks a decryption oracle for ciphertexts involving
these hash queries in reverse order. Then, to answer each decryption query the
extractor would have to rewind to the corresponding hash query. By this, it
destroys all previously simulated decryption queries and must redo them from
scratch, and the overall running time would become exponential in n.
We remark that the rewinding strategy also causes a loose security reduction.

The results in [27] show that, if the adversary makes Q queries to the random or-
acle and forges, say, Schnorr signatures in time T with probability ε, then we can
compute discrete logarithms in expected time QT/ε with constant probability.
Hence, the number of hash queries enters multiplicatively in the time/success ra-
tio. In contrast, for RSA-PSS and similar schemes [11, 12, 21] tight reductions are
known. For other schemes like discrete-logarithm signatures different approaches
relying on potentially stronger assumptions have been taken to get tight security
results [18].

Constructing Online Extractors. The solution to the problems above is to use
extractors which output the witness immediately, i.e., without having to rewind.
Following the terminology of [29], where this problem was discussed but circum-
vented differently, we call them online extractors.1 Informally, such an extractor
is given the value x, a valid proof π produced by a prover and all hash queries
and answers the prover made for generating this proof (i.e., even queries which
are later ignored in the proof). The extractor then computes the witness w with-
out further communication with the prover. Note that here we use the fact that
we work in the random oracle model, where the extractor sees the hash queries.
One known possibility to build such online extractors is to use cut-and-choose

techniques combined with hash trees [26, 22]. That is, one limits the challenge
space to logarithmically many bits and repeats the following atomic protocol
sufficiently often in parallel. The prover computes the initial commitment com

of the interactive protocols and computes the answers for all possible challenges.
Since there are only polynomially many challenges and answers, the prover can

1 Sometimes such extractors are also called straight-line extractors in the literature.



build a binary hash tree with all answers at the leaves. Then he computes the
actual challenge as the hash value over com and the root of the tree, and opens
only the corresponding answer and all siblings on the path up to the root as a
proof of correctness. For reasonable parameters these revealed hash values easily
add about 10, 000 to 25, 000 bits to the non-interactive proof for all executions
together, and thus cause a significant communication overhead.
Here we propose a different approach to build online extractors, producing

much shorter proofs than the tree-based solution while having comparable ex-
traction error and running time characteristics. In this introduction we provide a
simplified description of our solution, omitting some necessary modifications. We
also start with a polynomially bounded challenge space and a non-constant num-
ber of parallel executions. For each execution i the prover first computes comi

but now tries all polynomially many challenges chi = 0, 1, 2, . . . and answers
respi = respi(chi) till it finds one for which a predetermined (at most logarith-
mic) number of least significant bits of H(x,

⇀
com, i, chi, respi) are all zero. The

prover outputs the vector (
⇀

com,
⇀

ch,
⇀

resp), no further hash values need to be in-
cluded, and the verifier now also checks in all executions that the lower bits of
the hash values are zero.
The honest prover is able to find a convincing proof after a polynomial num-

ber of trials for each execution (except with negligible probability which can be
adapted through parameters). It is also clear that any prover who probes at most
one valid challenge-response pair for each execution most likely does not find a
hash value with zero-bits.2 If, on the other hand, the prover tries at least two
samples, then the knowledge extractor can find them in the list of hash queries
and compute the witness. It follows that the (online) extraction probability is
negligibly close to the verifier’s acceptance probability.
Our construction, outlined above, still requires a non-constant number of

parallel repetitions in order to decrease the soundness error from polynomial
to negligible. However, for proofs which are already based on small challenges,
such as RSA with small exponents or “more quantum-resistant” alternatives
like the recently proposed lattice-based proofs with bit challenges [24], several
repetitions have to be carried out anyway, and our construction only yields an
insignificant overhead in such cases. For other scenarios, like proofs of knowledge
for discrete logarithms, the repetitions may still be acceptable, e.g., if the proof is
only executed occasionally as for key registration. Alternatively, for the discrete
logarithm for example, the prover can precompute the commitments comi = gri

offline and the verifier is able to use batch verification techniques [6] to reduce
the computational cost.

A Lower Bound. Both the hash-tree construction and our solution here require
a non-constant number of repetitions of the atomic protocol. An interesting
question is if one can reduce this number. As a step towards disproving this

2 We presume that it is infeasible to find distinct responses to a single challenge.
Indeed, this requirement is not necessary for the Fiat-Shamir transformation, yet all
proofs we know of have this additional property.



we show that the number of hash function evaluations for the prover must be
superlogarithmic in order to have an online extractor (unless finding witnesses is
trivial, of course).3 While this superlogarithmic bound would be straightforward
if we restrict the hash function’s output size to a few bits, our result holds
independently of the length of hash values.
The proof of our lower bound requires that the knowledge extractor does

not have the ability to choose the hash values. If we would allow the extractor
to program the random oracle then we could apply the hash function to gen-
erate a common random string and run a non-interactive zero-knowledge proof
of knowledge in the standard model (based on additional assumptions, though)
[16]. For unrestricted (but polynomial) output length a single hash function eval-
uation for both the prover and verifier would then suffice. For non-programming
extractors the number of hash function evaluations in our construction and the
hash-tree solution are optimal with respect to general protocols.

A Word About Random Oracles. Our solution is given in the random oracle
model, and a sequence of works [10, 20, 23, 4] has shown that constructions in
this model may not yield a secure scheme in the real world when the oracle is
instantiated by some function. It is therefore worthwhile to take a look at the
way we utilize the random oracle. In our transformation we essentially use the
random oracle as a predicate with the following properties: The only way to
evaluate this predicate is by computing it explicitly (thus “knowing” the input),
that predicate outcomes are well distributed (i.e., random), the predicate values
for related inputs are uncorrelated.
In comparison to the Fiat-Shamir transformation our construction somewhat

“decouples” the hash function from the protocol flow. Indeed, the dependency
of the answer and the hash function in the Fiat-Shamir transformation is ex-
ploited by Goldwasser and Tauman [20] to prove insecurity of the random oracle
approach for the transformation. Because of the aforementioned separation of
the protocol flow and the hash function in our solution, the counterexample in
[20] does not seem to carry over (yet, similar results may hold here as well). The
point is that our solution is provided as an alternative to the Fiat-Shamir trans-
formation, given one accepts the random oracle model as a viable way to design
efficient non-interactive proofs. Finding truly efficient non-interactive proofs of
knowledge without random oracles is still open.

Applications. Clearly, proofs of knowledge with online extractors are especially
suitable for settings with concurrent executions such as key registration steps.
As another, more specific example, we show that our method can be used to
enhance security of the Boneh et al. group signature scheme [5]. Roughly, a group
signature scheme allows a set of users to sign messages such that a signature does

3 To be more precise, we give a slightly stronger result relating the number of hash
queries of the verifier and the prover. This stronger result shows for example that
hard relations cannot have efficient provers if the verifier only makes a constant
number of hash function queries to verify proofs.



not reveal the actual signer, yet a group manager holding a secret information
can revoke this anonymity and identify the true signer. A stringent formalization
of these two properties, called full anonymity and full traceability, has been put
forth by Bellare et al. [7].

Although achieving strong traceability guarantees the protocol by Boneh et
al. only realizes a slightly weaker anonymity notion. In the original definition
[7] anonymity of a signer of a message should hold even if an adversary can
request the group manager to open identities for other signatures (thus resem-
bling chosen-ciphertext attacks on encryption schemes). In the weaker model
such open queries are not allowed, and this property is consequently called CPA-
full-anonymity in [5].

Without going into technical details we remark that the weaker anonymity
property in [5] originates from the underlying (variation of the) ElGamal encryp-
tion scheme and its CPA-security. A promising step towards fully anonymous
group signature is therefore to turn the ElGamal encryption into a CCA-secure
scheme. As explained before, standard Fiat-Shamir proofs of knowledge for the
randomness used to generate ciphertexts do not work because of the rewinding
problems. And although there is a very efficient method to secure basic ElGa-
mal against chosen-ciphertexts in the random oracle model [1], this technique
inherently destroys the homomorphic properties of the ciphertexts. But this ho-
momorphic property is crucial to the design of the group signature scheme as it
allows to efficiently prove relations about the encrypted message.

Proofs of knowledge with online extractors provide a general solution. How-
ever, since one of the initial motivations of [5] was to design a scheme with
short signatures of a couple of hundred bits only, the aforementioned hash-tree
based constructions with their significant communication overhead, for exam-
ple, are prohibitively expensive. We show that with our protocol we obtain a
fully-anonymous scheme and for reasonable parameters the length of signatures
increases from 1, 500 to about 5, 000 bits. In comparison, the RSA-based group
signature scheme in [2], presumably one of the most outstanding group signa-
ture schemes, still requires more than 10, 000 bits. Based on implementation
results about elliptic curves [15], and the fact that the signer in the scheme by
Ataniese et al. [2] cannot apply Chinese-Remainder techniques to compute the
exponentiations with 1, 000 and more bits, we estimate that our variation of
the Boneh group signature is still more efficient, despite the repetitions for the
proof of knowledge. This is especially true for the verifier who can apply batch
verification techniques on top.

Organization. In Section 2 we give the basic definitions of three-move Fiat-
Shamir proofs of knowledge and non-interactive ones with online extractors in
the random oracle model. The main part of the paper, Section 3, presents our
construction and the lower bound. Some of the proofs and the construction of
secure signature schemes from our solution have been omitted due to lack of
space. Section 4 finally presents our enhancement of the Boneh et al. group
signature scheme.



2 Definitions

A security parameter k in our setting is an arbitrary string describing general
parameters. In the most simple case k = 1κ describes the length κ of the cryp-
tographic primitives in unary. More generally, k can for example consist of the
description of a group G of prime order q and generator g of that group, i.e.,
k = (G, q, g). The security parameter also describes a sequence of efficiently
verifiable relations W = (Wk)k.
A (possibly negative) function f(k) is called negligible if f(k) ≤ 1/p(k) for

any polynomial p(k) and all sufficiently large k’s. A function which is not negli-
gible is called noticeable. For two functions f, g we denote by f >

∼ g the fact that
g − f is negligible. Accordingly, f ≈ g stands for f >

∼ g and g >
∼ f . A function f

with f >
∼ 1 is called overwhelming.

We usually work in the random oracle model where parties have access to a
random function H with some domain and range depending on k. We note that
we do not let the relation W depend on the random oracle H in order to avoid
“self-referencing” problems. We occasionally let an algorithm “output a random
oracle”, H ← A, meaning that A generates a description of a (pseudo)random
function H.
We require some additional properties of the underlying Fiat-Shamir proof

to make our transformation work. First, we need that the prover’s initial com-
mitment com has nontrivial entropy. This can be achieved easily by appending
a superlogarithmic number of public random bits to com if necessary. Second,
we need that the verifier sends a uniform bit string as the challenge ch; all com-
mon proofs have this property. Third, we require that the prover’s response is
quasi unique, i.e., it should be infeasible to find another valid response resp′

to a proof (com, ch, resp), even if one knows the witness. This holds for ex-
ample if resp is uniquely determined by x, com, ch, e.g., as for the protocols
by Guillou-Quisquater [19] and Schnorr [28], but also for Okamoto’s witness-
indistinguishable variations these protocols [25] (if the parameter k contains the
system parameters like the RSA modulus N with unknown factorization).

Definition 1. A Fiat-Shamir proof of knowledge (with `(k)-bit challenges) for
relation W is a pair (P, V ) of probabilistic polynomial-time algorithms P =
(P0, P1), V = (V0, V1) with the following properties.

[Completeness.] For any parameter k, any (x,w) ∈ Wk, any (com, ch, resp) ←
(P (x,w), V0(x)) it holds V1(x, com, ch, resp) = 1.

[Commitment Entropy.] For parameter k, for any (x,w) ∈Wk, the min-entropy
of com← P0(x,w) is superlogarithmic in k.

[Public Coin.] For any k, any (x,w) ∈ Wk any com ← P0(x,w) the challenge
ch← V0(x, com) is uniform on {0, 1}

`(k).
[Unique Responses.] For any probabilistic polynomial-time algorithm A, for pa-
rameter k and (x, com, ch, resp, resp′)← A(k) we have, as a function of k,

Prob[V1(x, com, ch, resp) = V1(x, com, ch, resp) = 1 ∧ resp 6= resp′] ≈ 0.



[Special Soundness.] There exists a probabilistic polynomial-time algorithm K,
the knowledge extractor, such that for any k, any (x,w) ∈ Wk, any pairs
(com, ch, resp), (com, ch′, resp′) with V1(x, com, ch, resp) = V1(x, com, ch

′, resp′)
= 1 and ch 6= ch′, for w′ ← K(x, com, ch, resp, ch′, resp′) it holds (x,w′) ∈
Wk.

[Honest-Verifier Zero-Knowledge.] There exists a probabilistic polynomial-time
algorithm Z, the zero-knowledge simulator, such that for any pair of proba-
bilistic polynomial-time algorithms D = (D0, D1) the following distributions
are computationally indistinguishable4:
– Let (x,w, δ)← D0(k), and (com, ch, resp)← (P (x,w), V0(x)) if (x,w) ∈
Wk, and (com, ch, resp)← ⊥ otherwise. Output D1(com, ch, resp, δ).

– Let (x,w, δ) ← D0(k), and (com, ch, resp) ← Z(x,yes) if (x,w) ∈ Wk,
and (com ch, resp)← Z(x,no) otherwise. Output D1(com, ch, resp, δ).

Below we sometimes use a stronger kind of zero-knowledge property which
basically says that the simulator is able to generate proofs for a specific challenge,
as long as this challenge is given in advance. To formalize this let V ch

0 be a verifier
which on input x, ch merely outputs ch. Then a Fiat-Shamir proof of knowledge
(with `(k)-bit challenges) is special zero-knowledge if the following holds:

[Special Zero-Knowledge.] There exists a probabilistic polynomial-time algorithm
Z, the special zero-knowledge simulator, such that for any pair of probabilis-
tic polynomial-time algorithms D = (D0, D1) the following distributions are
computationally indistinguishable:
– Let (x,w, ch, δ) ← D0(k), and (com, ch, resp) ← (P (x,w), V ch

0 (x, ch)) if
(x,w) ∈Wk, and (com, ch, resp)← ⊥ else. Output D1(com, ch, resp, δ).

– Let (x,w, ch, δ)← D0(k), and (com, ch, resp)← Z(x, ch,yes) if (x,w) ∈
Wk, and (com, ch, resp)← Z(x, ch,no) else. Output D1(com, ch, resp, δ).

We note that all common protocols obey this special zero-knowledge property.
In fact, it is easy to see that any Fiat-Shamir proof of knowledge is special zero-
knowledge if the challenge size `(k) = O(log k) is logarithmic (which holds for
our transformation in the next section). The idea is to simply run many copies of
the (regular) zero-knowledge simulator to find a transcript including a matching
challenge.
We next define non-interactive proofs of knowledge with online extractors.

We note that, in the random oracle model, it is easy to see that the verifier can
be assumed wlog. to be deterministic.

Definition 2. A pair (P, V ) of probabilistic polynomial-time algorithms is called
a non-interactive zero-knowledge proof of knowledge for relation W with an on-
line extractor (in the random oracle model) if the following holds.

[Completeness.] For any oracle H, any (x,w) ∈Wk and any π ← PH(x,w) we
have Prob

[

V H(x, π) = 1
]

>
∼ 1.

4 Meaning that the probability that D1 outputs 1 is the same in both experiments,
up to a negligible difference.



[Zero-Knowledge.] There exist a pair of probabilistic polynomial-time algorithms
Z = (Z0, Z1), the zero-knowledge simulator, such that for any pair of proba-
bilistic polynomial-time algorithms D = (D0, D1) the following distributions
are computationally indistinguishable:
– Let H be a random oracle, (x,w, δ) ← DH

0 (k), and π ← PH(x,w) if
(x,w) ∈Wk, and π ← ⊥ otherwise. Output D

H
1 (π, δ).

– Let (H0, σ) ← Z0(k), (x,w, δ) ← DH0

0 (k), and (H1, π) ← Z1(σ, x,yes)
if (x,w) ∈Wk, and (H1, π)← Z1(σ, x,no) otherwise. Output DH1

1 (π, δ).
[Online Extractor.] There exist a probabilistic polynomial-time algorithm K, the
online extractor, such that the following holds for any algorithm A. Let H
be a random oracle, (x, π) ← AH(k) and QH(A) be the sequence of queries
of A to H and H’s answers. Let w ← K(x, π,QH(A)). Then, as a function
of k,

Prob
[

(x,w) /∈Wk ∧ V
H(x, π) = 1

]

≈ 0.

Note that we allow the zero-knowledge simulator to program the random
oracle, but only in two stages. Namely, Z0 generates H0 for D0 and then Z1

selects H1 for the find-stage of D1. Since the adversary D0 in the first stage
can pass on all interactions with H0 to D1 through the state information δ, the
simulator Z1 must guarantee that H1 is consistent with H0. However, Z1 now
has the opportunity to adapt oracle H1 with respect to the adversarial chosen
theorem x. Simulator Z1 also gets the information whether x is in the language
or not (in which case the simulator can simply set π ← ⊥).

3 Constructions

Our starting point are interactive Fiat-Shamir proofs with logarithmic challenge
length `. Note that such proofs can be easily constructed from proofs with smaller
challenge length l by combining d`/le parallel executions. It is easy to verify
that all required properties are preserved by these parallel executions, including
unique responses and honest-verifier zero-knowledge. Analogously, we can go the
other direction and limit the challenge size to at most ` bits while conserving
the properties.

3.1 Generic Construction

Recall the idea of our construction explained in the introduction. In each of the
r repetitions we let the prover search through challenges and responses to find a
tuple (com, ch, resp) whose b least significant bits of the hash are 0b for a small
b. From now on we assume for simplicity that H only has b output bits; this can
always be achieved by cutting off the leading bits.
Instead of demanding that all r hash values equal 0b we give the honest prover

more flexibility and let the verifier accept also proofs (comi, chi, respi)i=1,2,...,r

such that the sum of the r hash values H(x,
⇀

com, i, chi, respi) (viewed as natu-
ral numbers) does not exceed some parameter S. With this we can bound the



prover’s number of trials in each execution by 2t for another parameter t, slightly
larger than b, and guarantee that the prover terminates in strict polynomial time.

For sake of concreteness the reader may think of b = 9 (output length of the
hash function), t = 12 (challenge size), r = 10 (number of repetitions) and S =
10 = r (maximum sum). For these values the probability of the honest prover
failing to find a valid proof is about 2−60, and the knowledge extractor will obtain
the witness whenever the proof is valid, except with probability approximately
Q · 2−70 where Q denotes the number of hash queries the prover makes.

Construction 1. Let (PFS, VFS) be an interactive Fiat-Shamir proof of knowl-
edge with challenges of ` = `(k) = O(log(k)) bits for relation W . Define the
parameters b, r, S, t (as functions of k) for the number of test bits, repetitions,
maximum sum and trial bits such that br = ω(log k), 2t−b = ω(log k), b, r, t =
O(log k), S = O(r) and b ≤ t ≤ `. Define the following non-interactive proof
system for relation W in the random oracle model, where the random oracle
maps to b bits.

[Prover.] The prover PH on input (x,w) first runs the prover PFS(x,w) in r in-
dependent repetitions to obtain r commitments com1, . . . , comr. Let

⇀
com=

(com1, . . . , comr). Then PH does the following, either sequentially or in
parallel for each repetition i. For each chi = 0, 1, 2, . . . , 2

t − 1 (viewed as
t-bit strings) it lets PFS compute the final responses respi = respi(chi) by
rewinding, until it finds the first one such that H(x,

⇀
com, i, chi, respi) = 0

b;
if no such tuple is found then PH picks the first one for which the hash
value is minimal among all 2t hash values. The prover finally outputs π =
(comi, chi, respi)i=1,2,...,r.

[Verifier.] The verifier V H on input x and π = (comi, chi, respi)i=1,2,...,r accepts
if and only if V1,FS(x, comi, chi, respi) = 1 for each i = 1, 2, . . . , r, and if
∑r

i=1H(x,
⇀

com, i, chi, respi) ≤ S.

Note that for common iterated hash functions like SHA-1 the prover and the
verifier can store the intermediate hash value of the prefix (x,

⇀
com) and need not

compute it from scratch for each of the r repetitions.

Our protocol has a small completeness error. For deterministic verifiers this
error can be removed in principle by standard techniques, namely, by letting the
prover check on behalf of the verifier that the proof is valid before outputting it;
if not the prover simply sends the witness to the verifier. In practice, in case of
this very unlikely event, the prover may just compute a proof from scratch.

Theorem 2. Let (PFS, VFS) be an interactive Fiat-Shamir proof of knowledge
for relation W . Then the scheme (P, V ) in Construction 1 is a non-interactive
zero-knowledge proof of knowledge for relation W (in the random oracle model)
with an online extractor.

Proof. (Sketch) We show that completeness, zero-knowledge and online extrac-
tion according to the definition are satisfied.



Completeness. For the completeness we show that the prover fails to convince
the verifier with negligible probability only. For this let si be the random value
H(x,

⇀
com, i, chi, respi) associated to the output of the i-th execution. Then,

Prob[∃i : si > S] ≤ r ·
(

1− (S + 1)2−b
)2t

≤ r · e−(S+1)2t−b

because in each of the at most 2t tries the prover gets a random hash value of at
most S with probability at least (S + 1)2−b, and all hash values are independent.
The probability of having a value larger than S in one execution is thus negligible
as r is logarithmic and 2t−b is superlogarithmic. Hence, the sum of all r values
exceeds rS with negligible probability only, and we from now on we can condition
on the event that the sum of all si is at most rS. We also presume r ≥ 2 in the
sequel, else the claim already follows.
In order for the honest prover to fail the sum T of the r values s1, . . . , sr ≥ 0

must be larger than S. For any such T = S + 1, S + 2, . . . , rS there are at most
(

T+r−1
r−1

)

ways to split the sum T into r non-negative integers s1, . . . , sr. This is
upper bounded by

(

T + r − 1

r − 1

)

≤

(

e(rS + r − 1)

r − 1

)r−1

≤ (e(2S + 1))
r−1
≤ er ln(e(2S+1))

On the other hand, the probability of obtaining such a sum for a given partition,
s1 = s1, . . . , sr = sr, is at most

r
∏

i=1

Prob[ si = si] ≤

r
∏

i=1

Prob[ si ≥ si] ≤

r
∏

i=1

(

1− si2
−b
)2t

≤

r
∏

i=1

e−si2
t−b

= e−(
∑

si)2
t−b

= e−T2t−b

≤ e−(S+1)2t−b

By choice of the parameters the probability of getting a sum T with S < T ≤ rS
is therefore limited by exp(r ln(e(2S+1))−(S+1)2t−b). Since ln(2S+1) ≤ S+1,
r = O(log k) and 2t−b = ω(log k) this is negligible.

Zero-Knowledge. The zero-knowledge simulator Z = (Z0, Z1) in the first stage
simply lets H0 be a (pseudo)random oracle. For the second stage, Z1 defines H1

to be consistent withH0 on previous queries. For any other query toH1 simulator
Z1, on input x (and yes, the case no is trivial), first samples 2t random b-bit
strings for each i and assigns them to the t-bit challenges chi ∈ {0, 1}

t. Let
τi : {0, 1}

t → {0, 1}b describe this assignment. Let chi be the first one (in
lexicographic order) obtaining the minimum over all these 2t values. Z1 next
runs the (wlog.) special zero-knowledge simulator ZFS of the underlying Fiat-
Shamir proof r times on x and each chi to obtain r tuples (comi, chi, respi).
It then defines the hash function H1 for any query (x,

⇀
com, i, ch∗i , resp

∗
i ) with

V1,FS(x, comi, ch
∗
i , resp

∗
i ) = 1 to be the value τi(ch

∗
i ). All other values of H1 are

chosen (pseudo)randomly. The simulator outputs π = (comi, chi, respi)i=1,2,...,r

as the proof. Zero-knowledge of the simulator above follows from the special
zero-knowledge property of the Fiat-Shamir protocol (together with a hybrid
argument).



Online Extraction. We present a knowledge extractor K(x, π,QH(A)) that, ex-
cept with negligible probability over the choice of H, is able to output a wit-
ness w to x for an accepted proof π = (comi, chi, respi)i=1,2,...,r. Algorithm K
browses through the list of queries and answers QH(A) and searches for a query
(x,

⇀
com, i, chi, respi) as well another query (x,

⇀
com, i, ch′i, resp

′
i) for a different

challenge chi 6= ch′i but such that VFS(x, comi, ch
′
i, resp

′
i) = 1. If it finds two such

queries it runs the knowledge extractor KFS of the Fiat-Shamir proof on these
values and copies its output; if there are no such queries then K outputs ⊥. It
is clear that K succeeds every time it finds two valid queries for the same prefix
(x,

⇀
com, i). On the other hand, by the choice of parameters the probability of

making the verifier accept while probing at most one challenge-response pair is
negligible. ut

We remark that the upper bounds derived on the number of representations
of T with r integers, for completeness and extraction, have not been optimized.
Moreover, we providently note that our knowledge extractor only needs the hash
queries in QH(A) with prefix (x,

⇀
com) to extract the witness for theorem x; all

other queries are irrelevant to K.

Comparison to Hash-Tree Construction. We compare our construction with on-
line extractors based on hash tress. Recall that, for the hash tree construction, in
each of the r repetitions the prover computes the commitment com and all possi-
ble responses resp(ch) for challenges ch ∈ {0, 1}b. Hash values of all 2b responses
are placed as leaves in a hash tree, and a binary tree of depth b is computed. This
requires altogether 2b + 2b − 1 ≈ 2b+1 hash function evaluations. The challenge
is computed as the hash value over all commitments and tree roots, and in each
tree the corresponding leaf is opened together with the siblings on the path.
To compare the efficiency of the two approaches, we set b = 9, t = 12,

r = 10 and S = 10 for our construction and b′ = 8 and r′ = 10 for the hash-
tree construction. Then the total number of hash function evaluations is roughly
r · 29 in both cases, and the number of executions of the underlying protocol are
identical. In favor of the hash tree construction it must be said that our solution
requires twice as many response computations on the average, though.
We have already remarked that the communication complexity of the hash-

tree construction is significantly larger than for our construction, i.e., the partly
disclosed hash trees add br = 90 hash values (typically of 160 or more bits) to
the proof, while our solution does not add any communication overhead. As for
the extraction error, the exact analysis for our construction with the given pa-
rameters shows that the extractor fails with probability at most Q·2−72 where Q
is the maximal number of hash queries (assuming that finding distinct responses
is beyond feasibility). The extraction for the hash-tree construction basically
fails only if one manages to guess all r challenges in advance and to put only
one correct answer in each tree. This happens with probability approximately
Q/2br = Q · 2−80 and is only slightly smaller than for our construction. Yet,
extraction in the hash-tree construction also requires that no collisions for the
hash function are found. Finally, we note that the honest prover always man-



ages to convince the honest verifier for the hash-tree construction whereas our
protocol has a small completeness error.

Properties. Concerning the type of zero-knowledge, if there is a unique response
for each x, com, ch, then our transformation converts an honest-verifier perfect
zero-knowledge protocol into a statistical zero-knowledge one (against malicious
verifiers). The small error is due to the negligible collision probability of com-
mitments and applies to the standard Fiat-Shamir transformation as well.
As for proving logical combinations, given two interactive Fiat-Shamir proto-

cols for two relations W 0,W 1 it is known [13, 9, 14] how to construct three-move
proofs showing that one knows at least one of the witnesses to x0, x1 (i.e., prove
OR), or one can also show that one knows both witnesses (i.e., prove AND). Since
the derived protocols in both cases preserve the zero-knowledge and extraction
property, and therefore constitute themselves Fiat-Shamir proofs of knowledge,
our conversion can also be carried out for proving such logical statements.

Simulation Soundness and Secure Signatures. Our proof system even achieves
the stronger notion of simulation soundness, i.e., even if the zero-knowledge sim-
ulator has simulated several proofs for adversarial chosen theorems, the online
extractor can still extract the witness from the adversarial proof for a valid
theorem (as long as either the theorem or the proof is new). It is then straight-
forward to construct a secure signature scheme from this simulation sound proof
of knowledge, with a tight security reduction. The formal description is omitted.

3.2 Lower Bound for Hash Queries of Online Extractors

In this section we show our superlogarithmic lower bound on the number of
hash function evaluations for non-programming online extractors. For notational
convenience we let f(k) = OK(log k) or f(k) = polyK(k) refer to a function f(k)
which grows only logarithmically or polynomially, restricted to all k ∈ K, i.e.,
there is a constant c such that f(k) ≤ c log k or f(k) ≤ kc for all k ∈ K. For any
k /∈ K the function f might exceed these bounds.
For our result we assume that the underlying relation W of the proof of

knowledge is accompanied by an efficiently samplable, yet hard to invert pro-
cedure generating (x,w). For example, for the discrete-logarithm problem and
parameter k = (G, q, g) this procedure picks w ← Zq and computes x ← gw.
More formally, we say that the relation W has a one-way instance generator
I if for any parameter k algorithm I returns in probabilistic polynomial-time
(x,w) ∈ Wk, but such that for any probabilistic polynomial-time algorithm I,
for (x,w)← I(k) and w′ ← I(x) the probability Prob[ (x,w′) ∈Wk] is negligible
(as a function of k).

Proposition 1. Let (P, V ) be a non-interactive zero-knowledge proof of knowl-
edge for relation W with an online extractor K in the random oracle model.
Let ρ = ρ(k) and ν = ν(k) be the maximum number of hash oracle queries the
prover P resp. the verifier V makes to generate and to check a proof π. Then



maxv=0,1,...,ν

(

ρ
v

)

= polyK(k) for an infinite set K implies that W does not have
a one-way instance generator I.

Clearly,
(

ρ
v

)

obtains its maximum at
(

ρ
dρ/2c

)

, where dρ/2c is the rounded-

off integer of ρ/2, and if ρ = OK(log k) for an infinite set K, then
(

ρ
dρ/2c

)

≤

(2e)dρ/2c = polyK(k) for the same set K, and the requirements of the proposition
are satisfied. This implies that ρ = ω(log k) must grow superlogarithmically
for a one-way instance generator. Similarly, if the verifier only makes a constant
number of hash function queries then the prover must perform a superpolynomial
number of hash function evaluations, or else the instance generator cannot be
one-way.

Proof. (Sketch) The high level idea of the proof is that, under the assumption
that maxv

(

ρ
v

)

= polyK(k) is polynomial, we can imagine that the prover tries
to guess in advance the verifier’s queries (among the ρ queries) and only makes
those queries. This strategy will succeed with sufficiently large probability by as-
sumption. Then, replacing the hash queries QH(P ) the prover makes to generate
the proof π by the queries QH(V ) the verifier makes to verify the proof suffices
to extract the witness. Specifically, we prove that K(x, π,QH(V )) then returns
a witness w with noticeable probability. Replacing the original proof by an in-
distinguishable one from the zero-knowledge simulator Z(x) (without access to
w) and running K(x, π,QH(V )) on this proof implies that we can compute the
witness w with noticeable probability from x alone. ut

Optimality of the Bound. Our lower bounds make essential use of the fact that
the extractor cannot program the random oracle. In fact, if K was allowed to
choose oracle values, then the oracle H (with unrestricted output length) could
be defined to generate a sufficiently large common reference string and to run a
non-interactive zero-knowledge proof of knowledge with online extractor in the
standard model [16]. A single hash function evaluation would then suffice.
Also, the superlogarithmic bound cannot be improved for non-programming

extractors. Namely, if we run the hash-tree construction or an easy modifica-
tion of our solution for binary challenges and superlogarithmic r, then we get a
negligible extraction error and make only O(r) hash function queries.

4 Application to Group Signatures

In this section we show how to lift the CPA-anonymous group signature scheme
by Boneh et al. [5] to a fully anonymous one. As explained in the introduction,
the idea is to append a non-interactive proof of knowledge with online extractor
for an ElGamal-like encryption. Although we give a brief introduction to group
signatures we refer the reader to the work by Bellare et al. [7] for a comprehensive
overview about (the security of) group signatures. Recall from the introduction
that the two important security properties are full anonymity, the impossibility
of identifying the author of a signature, and full traceability, the impossibility
of generating a signature which cannot be traced to the right origin.



Very roughly, a group signature scheme consists of a (fixed) set of users, each
user receiving a secret through an initial key generation phase carried out by a
trusted third party. In addition, a public group key is established in this phase.
Each user can run the sign protocol to generate a signature on behalf of the
group. This signature is verifiable through the group’s public key, yet outsiders
remain oblivious about the actual signer. Only the group manager can revoke
this anonymity and open the signature through an additional secret key.
The original scheme by Boneh works over bilinear group pairs (G1, G2)

where deciding the Diffie-Hellman problem is easy. That is, for groups G1, G2 of
prime order q generated by g1, g2 there is an efficiently computable isomorphism
ψ : G2 → G1 with ψ(g2) = g1, and an efficiently computable non-degenerated
bilinear mapping e with e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Zq.
For the security of the scheme it is assumed that the q-strong Diffie-Hellman

problem —given (g1, g2, g
γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 find (gγ+x

1 , x) for any x ∈ Z∗q— is
intractable. See [3] for more details. It is also presumed that the decision lin-
ear assumption in G1 holds, namely that it is infeasible to distinguish tuples
(u, v, h, ua, vb, ha+b) and (u, v, h, ua, vb, hc) for u, v, h← G1 and a, b, c ∈ Zq. This
assumption implies that ElGamal-like encryptions (ua, vb, ha+b ·m) of messages
m under public key (u, v, h) are semantically secure.
In the original scheme of Boneh et al. [5] the group’s public key contains

a value w = gγ2 and each user receives a pair (Ai, xi) with Ai = g
1/(γ+xi)
1

as the secret key. In addition, the group manager’s public key consists of a
public encryption key (u, v, h) such that uξ1 = vξ2 = h for secret key ξ1, ξ2.
To sign a message m the user encrypts Ai with the manager’s public key as
T1 ← ua, T2 ← vb and T3 ← Aih

a+b for random a, b ← Zq. In addition, the
signer also computes a non-interactive proof τ (in the random oracle model)
that (T1, T2, T3) encrypts such an Ai with e(Ai, wg

xi

2 ) = e(g1, g2). The details
of this zero-knowledge proof are irrelevant for our discussion here, we merely
remark that the message m enters in this proof and that an independent random
oracle is needed for this part. To verify a signature one verifies this proof τ . To
revoke anonymity the group manager verifies the signatures and then decrypts
Ai = T3/T

ξ1
1 T ξ2

2 and recovers the user’s identity through Ai.
We now augment the original scheme by our proof of knowledge for the

ElGamal encryption:

Construction 3. Define the following group signature scheme:

[Key Generation.] Compute the public key as before by picking a bilinear group
pair G = (G1, G2) and generators g1, g2, h. Sample ξ1, ξ2, γ ← Z∗q and let
uξ1 = vξ2 = h and w = gγ2 . The public key gpk consists of (G, g1, g2, h, u, v, w).

Each of the n users obtains some xi ← Z∗q and Ai = g
1/(γ+xi)
1 as the secret

key. The group manager receives (ξ1, ξ2, A1, . . . , An) as the secret key.
[Signing.] To sign a message m ∈ {0, 1}∗ under a secret key (Ai, xi) the user
takes the group key gpk = (G, g1, g2, h, u, v, w) and does the following:
– As in the original scheme pick a, b← Zq and encrypt Ai under the group
manager’s public key, T1 ← ua, T2 ← vb and T3 ← Aih

a+b.



– Compute as before a non-interactive proof τ that Ai = g
1/(γ+xi)
1 is en-

crypted in (T1, T2, T3) for some xi ∈ Zq, involving the message m.

– Additionally, compute a non-interactive zero-knowledge proof of knowl-
edge π for α, β, i.e., run PH on (gpk, T1, T2, T3, τ,m, α, β) for relation
Wk =

{

((gpk, T1, T2, T3, τ,m), (α, β))
∣

∣ uα = T1, v
β = T2

}

to obtain π.

– Output (T1, T2, T3, π, τ) as the signature to m.

[Verification.] To verify a signature (T1, T2, T3, π, τ) for a message m run the
original verifier of the signature scheme and also run the verifier V H of
the non-interactive proof of knowledge on (gpk, (T1, T2, T3, τ,m), π). Accept
if both verifications succeed.

[Open.] To reveal the identity of a signer for a signature (T1, T2, T3, τ, π) the
group manager first verifies the validity of the signature (including the proof
π). If correct, then the manager decrypts as in the original scheme to recover

some A = T3/(T
ξ1
1 T ξ2

2 ) and compares this value to the list of Ai’s to find the
user index i.

For system parameters suggested in [5], namely, |q| = 170 bits and |G1| = 171
bits, the original signature length is 1, 533 bits. If we use the same values
b = 9, r = S = 10, t = 12 as in the previous section for our proof system,
then our scheme adds about 2r · 170+ rt = 3, 520 bits to signatures through the
r repetitions of the atomic protocol for proving the AND of the two discrete log-
arithms. This proof requires 2r answers in Zq (as usual in the discrete logarithm
case, the commitments are not included in the proof π) and r challenges of t
bits. Although the communication complexity of this new scheme is significantly
larger, it is still superior to RSA-based group signatures where signatures easily
exceed 10, 000 bits [2].

Interestingly, we still expect our version of the group signature scheme to be
more efficient than the RSA-based scheme in [2], where half a dozen exponenti-
ations with large exponents of more than thousand bits have to be carried out
without Chinese Remainder. According to implementation results in [15] a single
exponentiation for elliptic curves is estimated to be about ten times faster than
such RSA exponentiations; the exact figures of course depend on implementation
details. The proof of the following proposition is omitted for space reasons.

Proposition 2. Under the Decision Linear Diffie-Hellman and the q-strong
Diffie-Hellman assumption the group signature scheme in Construction 3 is a
fully anonymous and fully traceable group signature scheme in the random ora-
cle model.
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