
A Formal Treatment of Onion Routing

Jan Camenisch

IBM Research
Zurich Research Laboratory

CH–8803 Rüschlikon
jca@zurich.ibm.com

Anna Lysyanskaya

Computer Science Department
Brown University

Providence, RI 02912 USA
anna@cs.brown.edu

Abstract. Anonymous channels are necessary for a multitude of
privacy-protecting protocols. Onion routing is probably the best known
way to achieve anonymity in practice. However, the cryptographic as-
pects of onion routing have not been sufficiently explored: no satisfactory
definitions of security have been given, and existing constructions have
only had ad-hoc security analysis for the most part.
We provide a formal definition of onion-routing in the universally com-
posable framework, and also discover a simpler definition (similar to
CCA2 security for encryption) that implies security in the UC frame-
work. We then exhibit an efficient and easy to implement construction
of an onion routing scheme satisfying this definition.

1 Introduction

The ability to communicate anonymously is requisite for most privacy-preserving
interactions. Many cryptographic protocols, and in particular, all the work on
group signatures, blind signatures, electronic cash, anonymous credentials, etc.,
assume anonymous channels as a starting point.

One means to achieve anonymous communication are mix-networks [6]. Here,
messages are wrapped in several layers of encryption and then routed through in-
termediate nodes each of which peels off a layer of encryption and then forwards
them in random order to the next node. This process is repeated until all layers
are removed. The way messages are wrapped (which determines their path
through the network) can either be fixed or can be chosen by each sender for
each message.

The former case is usually preferred in applications such as e-voting where
one additionally want to ensure that no message is dropped in transit. In that
case, each router is required to prove that it behaved correctly: that the messages
it outputs are a permutation of the decryption of the messages it has received.
The communication model suitable for such a protocol would have a broadcast
channel or a public bulletin board; this is not considered efficient in a standard
point-to-point network.

In the latter case, where the path is chosen on a message-by-message basis,
one often calls the wrapped messages onions and speaks of onion routing [12,
10]. An onion router is simply responsible for removing a layer of encryption
and sending the result to the next onion router. Although this means that onion
routing cannot provide robustness (a router may drop an onion and no one will
notice), the simplicity of this protocol makes it very attractive in practice. In fact,

there are several implementations of onion routing available (see Dingledine et
al. [10] and references therein). Unfortunately, these implementations use ad-hoc
cryptography instead of provably secure schemes.

The only prior attempt to formalize and construct a provably secure onion
routing scheme is due to Möller [16]. Contrary to his claimed goals, it is not hard
to see that his definition of security does not guarantee that the onion’s distance
to destination is hidden from a malicious router. Additionally, his definition does
not consider adaptive attacks aimed to break the anonymity properties of onion
routing. Thus, although his work represents a first step in the right direction, it
falls short of giving a satisfactory definition. His construction does not seem to
meet our definition, but has some similarity to our construction.

Alternative means of achieving anonymous communications include Chaum’s
dining cryptographer networks [7, 8] and Crowds [18].

Onion routing: definitional issues. The state of the literature on anonymous
channels today is comparable to that on secure encryption many years ago.
While there is a good intuitive understanding of what functionality and security
properties an anonymous channel must provide, and a multitude of constructions
that seek to meet this intuition, there is a lack of satisfactory definitions and, as
a result, of provably secure constructions. Indeed, realizing anonymous channels
— and constructions aside, simply reasoning about the degree of anonymity a
given routing algorithm in a network can provide — remains a question still
largely open to rigorous study.

This paper does not actually give a definition of an anonymous channel.
We do not know how to define it in such a way that it is, on the one hand,
realizable, and, on the other hand, meets our intuitive understanding of what
an anonymous channel must accomplish. The stumbling block is that, to re-
alize anonymous channels, one must make non-cryptographic assumptions on
the network model. The fact that a solution is proven secure under one set of
assumptions on the network does not necessarily imply that it is secure under
another set of assumptions.

For example, if one is trying to obtain anonymous channels by constructing
a mix network [6], one must make the assumption that (1) there is a dedicated
mix network where at least one server is honest; and, more severely, (2) everyone
sends and receives about equal amount of traffic and so one cannot match senders
to receivers by analyzing the amount of traffic sent and received. In fact, that
second assumption on the network was experimentally shown to be crucial — it
is known how to break security of mix networks using statistics on network usage
where the amount of traffic sent and received by each party is not prescribed to
be equal, but rather there is a continuous flow of traffic [14, 9, 23].

In cryptography, however, this is a classical situation. For example, seman-
tic security [13] was introduced to capture what the adversary already knows
about the plaintext (before the ciphertext is even formed) by requiring that a
cryptosystem be secure for all a-priori distributions on the plaintext, even those
chosen by the adversary. Thus, the cryptographic issue of secure encryption,

was separated from the non-cryptographic modelling of the adversary’s a-priori
information. We take a similar approach here.

An onion routing scheme can provide some amount of anonymity when a
message is sent through a sufficient number of honest onion routers and there is
enough traffic on the network overall. However, nothing can really be inferred
about how much anonymity an onion routing algorithm provides without a
model that captures network traffic appropriately. As a result, security must be
defined with the view of ensuring that the cryptographic aspects of a solution
remain secure even in the worst-case network scenario.

Our results. Armed with the definitional approach outlined above, we give a
definition of security of an onion routing scheme in the universally composable
framework [4]. We chose this approach not because we want onion routing to
be universally composable with other protocols (we do, but that’s a bonus side
effect), but simply because we do not know how to do it in any other way!
The beauty and versatility of the UC framework (as well as the related reac-
tive security framework [17, 1]) is that it guarantees that the network issues are
orthogonal to the cryptographic ones — i.e., the cryptographic aspects remain
secure under the worst-case assumptions on the network behavior. (Similarly to
us, Wikström [22] gives a definition of security in the UC framework for general
mix networks.)

Definitions based on the UC-framework, however, can be hard to work with.
Thus we also give a cryptographic definition, similar to CCA2-security for en-
cryption [11]. We show that in order to satisfy our UC-based definition, it is
sufficient to give an onion routing scheme satisfying our cryptographic defini-
tion.

Finally, we give a construction that satisfies our cryptographic definition.

Overview of our definition and solution. Our ideal functionality does not
reveal to an adversarial router any information about onions apart from the
prior and the next routers; in particular, the router does not learn how far a
given message is from its destination. This property makes traffic analysis a lot
harder to carry out, because now any message sent between two onion routers
looks the same, even if one of the routers is controlled by the adversary, no
matter how close it is to destination [2]. It is actually easy to see where this
property comes in. Suppose that it were possible to tell by examining an onion,
how far it is from destination. In order to ensure mixing, an onion router that
receives an onion O that is h hops away from destination must buffer up several
other onions that are also h hops away from destination before sending O to
the next router. Overall, if onions can be up to N hops away from destination,
each router will be buffering Θ(N) onions, a few for all possible values of h. This
makes onion routing slow and expensive. In contrast, if an onion routing scheme
hides distance to destination, then a router may just buffer a constant number
of onions before sending them off.

However, achieving this in a cryptographic implementation seems challeng-
ing; let us explain why. In onion routing, each onion router Pi, upon receipt of
an onion Oi, decrypts it (“peels off” a layer of encryption) to obtain the values

Pi+1 and Oi+1, where Pi+1 is the identity of the next router in the chain, and
Oi+1 is the data that needs to be sent to Pi+1.

Suppose that the outgoing onion Oi+1 is just the decryption of the incoming
onion Oi. Semantic security under the CCA2 attack suggests that, even under
active attack from the adversary, if Pi is honest, then the only thing that the
incoming onion Oi reveals about the corresponding outgoing onion Oi+1 is its
length.

In the context of encryption, the fact that the length is revealed is a necessary
evil that cannot be helped. In this case, however, the problem is not just that
the length is revealed, but that, in a secure (i.e., probabilistic) cryptosystem, the
length of a plaintext is always smaller than the length of a ciphertext.

One attempt to fix this problem is to require that Pi not only decrypt the
onion, but also pad it so |Oi| = |Oi+1|. It is clear that just padding will not work:
|Oi+1| should be formed in such a way that even Pi+1 (who can be malicious),
upon decrypting Oi+1 and obtaining the identity of Pi+2 and the data Oi+2, still
cannot tell that the onion Oi+1 was padded, i.e., router Pi+1 cannot tell that he
is not the first router in the chain. At first glance, being able to pad the onion
seems to contradict non-malleability: if you can pad it, then, it seems, you can
form different onions with the same content and make the scheme vulnerable to
adaptive attacks.

Our solution is to use CCA2 encryption with tags (or labels) [21, 19, 3], in
combination with a pseudorandom permutation (block cipher). We make router
Pi pad the onion is such a way that the next router Pi+1 cannot tell that it was
padded; and yet the fact this is possible does not contradict the non-malleability
of the scheme because this padding is deterministic. The onion will only be
processed correctly by Pi+1 when the tag that Pi+1 receives is correct, and the
only way to make the tag correct is if Pi applied the appropriate deterministic
padding. To see how it all fits together, see Section 4.1.

2 Onion Routing in the UC Framework

Setting. Let us assume that there is a network with J players P1, . . . , PJ . For
simplicity, we do not distinguish players as senders, routers, and receivers; each
player can assume any of these roles. In fact, making such a distinction would
not affect our protocol at all and needs to be considered in its application only.
We define onion routing in the public key model (i.e., in the hybrid model where
a public-key infrastructure is already in place) where each player has an appro-
priately chosen identity Pi, a registered public key PKi corresponding to this
identity, and these values are known to each player.

In each instance of a message that should be sent, for some (s, r), we have a
sender Ps (s stands for “sender”) sending a message m of length `m (the length
`m is a fixed parameter, all messages sent must be the same length) to recipient
Pr (r stands for “recipient”) through n < N additional routers Po1 , . . . , Pon

(o
stands for “onion router”), where the system parameter N−1 is an upper bound
on the number of routers that the sender can choose. How each sender selects

his onion routers Po1 , . . . , Pon
is a non-cryptographic problem independent of

the current exposition. The input to the onion sending procedure consists of the
message m that Ps wishes to send to Pr, a list of onion routers Po1 , . . . , Pon

,
and the necessary public keys and parameters. The input to the onion routing
procedure consists of an onion O, the routing party’s secret key SK, and the
necessary public keys and parameters. In case the routing party is in fact the
recipient, the routing procedure will output the message m.

Definition of security. The honest players are modelled by imagining that they
obtain inputs (i.e., the data m they want to send, the identity of the recipient
Pr, and the identities of the onion routers Po1 , . . . , Pon

) from the environment
Z, and then follow the protocol (either the ideal or the cryptographic one).
Similarly, the honest players’ outputs are passed to the environment.

Following the standard universal composability approach (but dropping most
of the formalism and subtleties to keep presentation compact), we say that an
onion routing protocol is secure if there exists a simulator (ideal-world adversary)
S such that no polynomial-time in λ (the security parameter) environment Z
controlling the inputs and outputs of the honest players, and the behavior of
malicious players, can distinguish between interacting with the honest parties
in the ideal model through S, or interacting with the honest parties using the
protocol.

We note that the solution we present is secure in the public-key model, i.e.,
in the model where players publish the keys associated with their identities in
some reliable manner. In the proof of security, we will allow the simulator S to
generate the keys of all the honest players.

The ideal process. Let us define the ideal onion routing process. Let us assume
that the adversary is static, i.e., each player is either honest or corrupted from
the beginning, and the trusted party implementing the ideal process knows which
parties are honest and which ones are corrupted.

Ideal Onion Routing Functionality: Internal Data Structure.

– The set Bad of parties controlled by the adversary.

– An onion O is stored in the form of (sid , Ps, Pr,m, n,P, i) where: sid is the
identifier, Ps is the sender, Pr is the recipient, m is the message sent through
the onion routers, n < N is the length of the onion path, P = (Po1 , . . . , Pon

) is
the path over which the message is sent (by convention, Po0 = Ps, and Pon+1

=
Pr), i indicates how much of the path the message has already traversed
(initially, i = 0). An onion has reached its destination when i = n+ 1.

– A list L of onions that are being processed by the adversarial routers.
Each entry of the list consists of (temp, O, j), where temp is the tem-
porary id that the adversary needs to know to process the onion, while
O = (sid , Ps, Pr,m, n,P, i) is the onion itself, and j is the entry in P where
the onion should be sent next (the adversary does not get to see O and j).
Remark: Note that entries are never removed from L. This models the replay
attack: the ideal adversary is allowed to resend an onion.

– For each honest party Pi, a buffer Bi of onions that are currently be-
ing held by Pi. Each entry consists of (temp ′, O), where temp ′ is the tem-
porary id that an honest party needs to know to process the onion and
O = (sid , Ps, Pr,m, n,P, i) is the onion itself (the honest party does not get
to see O). Entries from this buffer are removed if an honest party tells the
functionality that she wants to send an onion to the next party.

Ideal Onion Routing Functionality: Instructions. The ideal process is activated
by a message from router P , from the adversary S, or from itself. There are four
types of messages, as follows:

(Process New Onion, Pr,m, n,P). Upon receiving such a message from Ps, where
m ∈ {0, 1}`m ∪ {⊥}, do:
1. If |P| ≥ N , reject.

2. Otherwise, create a new session id sid , and let O = (sid , P, Pr,m, n,P, 0).
Send itself message (Process Next Step, O).

(Process Next Step, O). This is the core of the ideal protocol. Suppose O =
(sid , Ps, Pr,m, n,P, i). The ideal functionality looks at the next part of the path.
The router Poi

just processed1 the onion and now it is being passed to Poi+1
.

Corresponding to which routers are honest, and which ones are adversarial, there
are two possibilities for the next part of the path:
I) Honest next. Suppose that the next node, Poi+1

, is honest. Here, the ideal
functionality makes up a random temporary id temp for this onion and sends to
S (recall that S controls the network so it decides which messages get delivered):
“Onion temp from Poi

to Poi+1
.” It adds the entry (temp, O, i+1) to list L. (See

(Deliver Message, temp) for what happens next.)
II) Adversary next. Suppose that Poi+1

is adversarial. Then there are two
cases:
– There is an honest router remaining on the path to the recipient. Let Poj

be the
next honest router. (I.e., j > i is the smallest integer such that Poj

is honest.)
In this case, the ideal functionality creates a random temporary id temp for
this onion, and sends the message “Onion temp from Poi

, routed through
(Poi+1

, . . . , Poj−1
) to Poj

” to the ideal adversary S, and stores (temp, O, j) on
the list L.

– Poi
is the last honest router on the path; in particular, this means that Pr

is adversarial as well. In that case, the ideal functionality sends the message
“Onion from Poi

with message m for Pr routed through (Poi+1
, . . . , Pon

)” to
the adversary S. (Note that if Poi+1 = Pr, the list (Poi+1

, . . . , Pon
) will be

empty.)

(Deliver Message, temp). This is a message that S sends to the ideal process
to notify it that it agrees that the onion with temporary id temp should be
delivered to its current destination. To process this message, the functionality
checks if the temporary identifier temp corresponds to any onion O on the list

1 In case i = 0, processed means having originated the onion and submitted it to the
ideal process.

L. If it does, it retrieves the corresponding record (temp, O, j) and update the
onion: if O = (sid , Ps, Pr,m, n,P, i), it replaces i with j to indicate that we have
reached the j’th router on the path of this onion. If j < n + 1, it generates
a temporary identifier temp ′, sends “Onion temp ′ received” to party Poj

, and
stores the resulting pair (temp ′, O = (sid , Ps, Pr,m, n,P, j)) in the buffer Boj

of party Poj
. Otherwise, j = n + 1, so the onion has reached its destination: if

m 6= ⊥ it sends “Message m received” to router Pr; otherwise it does not deliver
anything2.

(Forward Onion, temp ′). This is a message from an honest ideal router Pi notify-
ing the ideal process that it is ready to send the onion with id temp ′ to the next
hop. In response, the ideal functionality

– Checks if the temporary identifier temp ′ corresponds to any entry in Bi. If it
does, it retrieves the corresponding record (temp ′, O).

– Sends itself the message (Process Next Step, O).

– Removes (temp ′, O) from Bi.

This concludes the description of the ideal functionality. We must now explain
how the ideal honest routers work. When an honest router receives a message of
the form “Onion temp ′ received” from the ideal functionality, it notifies environ-
ment Z about it and awaits instructions for when to forward the onion temp ′ to
its next destination. When instructed by Z, it sends the message “Forward Onion

temp′” to the ideal functionality.

It’s not hard to see that Z learns nothing else than pieces of paths of onions
formed by honest senders (i.e., does not learn a sub-path’s position or relations
among different sub-paths). Moreover, if the sender and the receiver are both
honest, the adversary does not learn the message.

2.1 Remarks and Extensions

Mixing strategy. It may seem that, as defined in our ideal functionality, the
adversary is too powerful because, for example, it is allowed to route just one
onion at a time, and so can trace its entire route. In an onion routing imple-
mentation however, the instructions for which onion to send on will not come
directly from the adversary, but rather from an honest player’s mixing strategy.
That is, each (honest) router is notified that an onion has arrived and is given
a handle temp to that onion. Whenever the router decides (under her mixing
strategy) that the onion temp should be sent on, she can notify the ideal func-
tionality of this using the handle temp. A good mixing strategy will limit the
power of the adversary to trace onions in the ideal world, which will translate
into limited capability in the real world as well. What mixing strategy is a good
one depends on the network. Additionally, there is a trade-off between providing
more anonymity and minimizing latency of the network. We do not consider any

2 This is needed to account for the fact that the adversary inserts onions into the
network that at some point do not decrypt correctly.

of these issues in this paper but only point out that our scheme guarantees the
maximum degree of security that any mixing strategy can inherently provide.

Replay attacks. The definition as is allows replay attacks by the adversary.
The adversary controls the network and can replay any message it wishes. In
particular, it can take an onion that party Pi wants to send to Pj and deliver it
to Pj as many times as it wishes. However, it is straightforward to modify our
security definition and our scheme so as to prevent replay attacks. For instance,
we could require that the sender inserts time stamps into all onions. I.e., a router
Pi, in addition to the identity of the next router Pi+1, will also be given a time
time and a random identifier oidi (different for each onion and router). An onion
router will drop the incoming onion when either the time time+ t∆ (where t∆
is a parameter) has passed or it finds oidi in its database. If an onion is not
dropped, the router will store oidi until time time + t∆ has passed. It is not
difficult to adapt our scheme and model to reflect this. We omit details to keep
this exposition focused.

Forward security. Forward secrecy is a desirable property in general, and
in this context in particular [5, 10]. Our scheme can be constructed from any
CCA2-secure cryptosystem, and in particular, from a forward-secure one.

The response option. Another desirable property of an onion routing
scheme is being able to respond to a message received anonymously. We ad-
dress this after presenting our construction.

3 A Cryptographic Definition of Onion Routing

Here we give a cryptographic definition of an onion routing scheme and show
why a scheme satisfying this definition is sufficient to realize the onion routing
functionality described in the previous section.

Definition 1 (Onion routing scheme I/O). A set of algorithms (G,
FormOnion, ProcOnion) satisfies the I/O spec for an onion routing scheme for
message space M(1λ) and set of router names Q if:

– G is a key generation algorithm, possibly taking as input some public param-
eters p, and a router name P : (PK,SK)← G(1λ, p, P).

– FormOnion is a probabilistic algorithm that on input a message m ∈ M(1λ),
an upper bound on the number of layers N , a set of router names (P1, . . . ,
Pn+1) (each Pi ∈ Q, n ≤ N), and a set of public keys corresponding to these
routers (PK1, . . . ,PKn+1), outputs a set of onion layers (O1, . . . , On+1). (As
N is typically a system-wide parameter, we usually omit to give it as input to
this algorithm.)

– ProcOnion is a deterministic algorithm that, on input an onion O, identity P ,
and a secret key SK, peels off a layer of the onion to obtain a new onion O′

and a destination P ′ for where to send it: (O′, P ′)← ProcOnion(SK,O,P).

Definition 2 (Onion evolution, path, and layering). Let (G, FormOnion,
ProcOnion) satisfy the onion routing I/O spec. Let p be the public parame-

ters. Suppose that we have a set Q, ⊥ /∈ Q, consisting of a polynomial num-
ber of (honest) router names. Suppose that we have a public-key infrastruc-
ture on Q, i.e., corresponding to each name P ∈ Q there exists a key pair
(PK(P),SK(P)), generated by running G(1λ, p, P). Let O be an onion received
by router P ∈ Q. Let E(O,P) = {(Oi, Pi) : i ≥ 1} be the maximal or-
dered list of pairs such that P1 = P , O1 = O, and for all i > 1, Pi ∈ Q,
and (Oi, Pi) = ProcOnion(SK(Pi−1), Oi−1, Pi−1). Then E(O,P) is the evolution
of onion O starting at P . Moreover, if E(O,P) = {(Oi, Pi)} is the evolution of
an onion, then P(O,P) = {Pi} is the path of the onion, while L(O,P) = {Oi}
is the layering of the onion.

Onion-correctness is the simple condition that if an onion is formed correctly
and then the correct routers process it in the correct order, then the correct
message is received by the last router Pn+1.

Definition 3 (Onion-correctness). Let (G, FormOnion, ProcOnion) satisfy
the I/O spec for an onion routing scheme. Then for all settings of the public
parameters p, for all n < N , and for all Q with a public-key infrastructure
as in Definition 2, for any path P = (P1, . . . , Pn+1),P ⊆ Q, for all messages
m ∈M(1λ), and for all onions O1 formed as

(O1, . . . , On+1)← FormOnion(m,N, (P1, . . . , Pn+1), (PK(P1), . . . ,PK(Pn+1)))

the following is true: (1) correct path: P(O1, P1) = (P1, . . . , Pn+1); (2) cor-
rect layering: L(O1, P1) = (O1, . . . , On+1); (3) correct decryption: (m,⊥) =
ProcOnion(SK(Pn+1), On+1, Pn+1).

Onion-integrity requires that even for an onion created by an adversary, the
path is going to be of length at most N .

Definition 4 (Onion-integrity). (Sketch) An onion routing scheme satisfies
onion-integrity if for all probabilistic polynomial-time adversaries, the probability
(taken over the choice of the public parameters p, the set of honest router names
Q and the corresponding PKI as in Definition 2) that an adversary with adaptive
access to ProcOnion(SK(P), ·, P) procedures for all P ∈ Q, can produce and send
to a router P1 ∈ Q an onion O1 such that |P(O1, P1)| > N , is negligible.

Our definition of onion security is somewhat less intuitive. Here, an adver-
sary is launching an adaptive attack against an onion router P . It gets to send
onions to this router, and see how the router reacts, i.e., obtain the output of
ProcOnion(SK(P), ·, P). The adversary’s goal is to distinguish whether a given
challenge onion corresponds to a particular message and route, or a random mes-
sage and null route. The unintuitive part is that the adversary can also succeed
by re-wrapping an onion, i.e., by adding a layer to its challenge onion.

Definition 5 (Onion-security). (Sketch) Consider an adversary interacting
with an onion routing challenger as follows:

1. The adversary receives as input a challenge public key PK, chosen by the
challenger by letting (PK,SK)← G(1λ, p), and the router name P .

2. The adversary may submit any number of onions Oi of his choice to the
challenger, and obtain the output of ProcOnion(SK,Oi, P).

3. The adversary submits n, a message m, a set of names (P1, . . . , Pn+1), and
index j, and n key pairs 1 ≤ i ≤ n + 1, i 6= j, (PK i,SKi). The challenger
checks that the router names are valid 3, that the public keys correspond to the
secret keys, and if so, sets PKj = PK, sets bit b at random, and does the
following:
– If b = 0, let

(O1, . . . , Oj , . . . , On+1)← FormOnion(m, (P1, . . . , Pn+1), (PK1, . . . ,PKn+1))

– Otherwise, choose r ←M(1λ), and let

(O1, . . . , Oj)← FormOnion(r, (P1, . . . , Pj), (PK1, . . . ,PKj))

4. Now the adversary is allowed get responses for two types of queries:
– Submit any onion Oi 6= Oj of his choice and obtain ProcOnion(SK,Oi, P).

– Submit a secret key SK ′, an identity P ′ 6= Pj−1, and an onion O′ such
that Oj = ProcOnion(SK ′, O′, P ′); if P ′ is valid, and (SK ′, O′, P ′) satisfy
this condition, then the challenger responds by revealing the bit b.

5. The adversary then produces a guess b′.

We say that a scheme with onion routing I/O satisfies onion security if for all
probabilistic polynomial time adversaries A of the form described above, there is
a negligible function ν such that the adversary’s probability of outputting b′ = b
is at most 1/2 + ν(λ).

This definition of security is simple enough, much simpler than the UC-based
definition described in the previous section. Yet, it turns out to be sufficient. Let
us give an intuitive explanation why. A simulator that translates between a real-
life adversary and an ideal functionality is responsible for two things: (1) creating
some fake traffic in the real world that accounts for everything that happens in
the ideal world; and (2) translating the adversary’s actions in the real world into
instructions for the ideal functionality.

In particular, in its capacity (1), the simulator will sometimes receive a
message from the ideal functionality telling it that an onion temp for hon-
est router Pj is routed through adversarial routers (P1, . . . , Pj−1). The sim-
ulator is going to need to make up an onion O1 to send to the adversar-
ial party P1. But the simulator is not going to know the message contained
in the onion, or the rest of the route. So the simulator will instead make
up a random message r and compute the onion so that it decrypts to r
when it reaches the honest (real) router Pj . I.e, it will form O1 by obtaining

3 In our construction, router names are formed in a special way, hence this step is
necessary for our construction to satisfy this definition.

(O1, . . . , Oj)← FormOnion(r, (P1, . . . , Pj), (PK1, . . . ,PKj)). When the onion Oj

arrives at Pj from the adversary, the simulator knows that it is time to tell the
ideal functionality to deliver message temp to honest ideal Pj .

Now, there is a danger that this may cause errors in the simulation as far as
capacity (2) is concerned: the adversary may manage to form another onion Õ,
and send it to an honest router P̃ , such that (Oj , P) ∈ E(Õ, P̃). The simulator
will be unable to handle this situation correctly, as the simulator relies on its
ability to correctly decrypt and route all real-world onions, while in this case,
the simulator does not know how to decrypt and route this “fake” onion past
honest router Pj . A scheme satisfying the definition above would prevent this
from happening: the adversary will not be able to form an onion O′ 6= Oj−1 sent
to an honest player P ′ such that (Pj , Oj) = ProcOnion(SK(P ′), O′, P ′).

In the full version of this paper, we give a formal proof of the following
theorem:

Theorem 1. An onion routing scheme (G,FormOnion,ProcOnion) satisfying
onion-correctness, integrity and security, when combined with secure point-to-
point channels, yields a UC-secure onion routing scheme.

4 Onion Routing Scheme Construction

Tagged encryption. The main tool in our construction is a CCA2-secure cryp-
tosystem (Gen,E ,D) that supports tags. Tags were introduced by Shoup and
Gennaro [21]. The meaning of a tagged ciphertext is that the tag provides the
context within which the ciphertext is to be decrypted. The point is that an
adversary cannot attack the system by making the honest party under attack
decrypt this ciphertext out of context. The input to E is (PK,m, T), where T
is a tag, such that D(SK, c, T ′) should fail if c ← E (PK,m, T) and T ′ 6= T .
In the definition of CCA2-security for tagged encryption, the adversary is, as
usual, given adaptive access to the decryption oracle D throughout its attack; it
chooses two messages (m0,m1) and a tag T and is given a challenge ciphertext
c← E (PK,mb, T) for a random bit b. The adversary is allowed to issue further
queries (c′, T ′) 6= (c, T) to D . The definition of security stipulates that the ad-
versary cannot guess b with probability non-negligibly higher than 1/2. We omit
the formal definition of CCA2-security with tags, and refer the reader to prior
work.

Pseudorandom permutations. We also use pseudorandom permutations
(PRPs). Recall [15] that a polynomial-time algorithm p(·)(·) defines a pseudo-

random permutation family if for every key K ∈ {0, 1}∗, pK : {0, 1}`(|K|) 7→
{0, 1}`(|K|) (where the function `(·) is upper-bounded by a polynomial, and is
called the “block length” of p) is a permutation and is indistinguishable from a
random permutation by any probabilistic poly-time adversary A with adaptive
access to both pK and p−1

K . We have the same keyK define a set of simultaneously
pseudorandom permutations {piK : 1 ≤ i ≤ `(|K|)}, where i is the block length
for a permutation piK . (This can be obtained from any standard pseudorandom

permutation family by standard techniques. For example, let Ki = FK(i), where
F is a pseudorandom function, and let piK = piKi

.)

Notation. In the sequel, we will denote piK by pK because the block length

is always clear from the context. Let {m}K denote p
|m|
K (m). Let {m}K−1 denote

(p−1)
|m|
K (m). By ‘◦’ we denote concatenation.

Parameters. Let λ be the security parameter. It guides the choice of `K
which is the length of a PRP key, and of `C , which is the upper bound on the
length of a ciphertext formed using the CCA2 secure cryptosystem (Gen,E ,D)
when the security parameter is λ. Let `m be the length of a message being sent.
Let `H = `K + `C .

Non-standard assumption on the PRP. We assume that, if P1 and P2

are two strings of length 2`K chosen uniformly at random, then it is hard to find
N keys K1, . . . ,KN and a string C of length `C such that

{{. . . {P1 ◦ 0
`C}K−1

1
. . .}K−1

N−1
}K−1

N
∈ {P1 ◦ C,P2 ◦ C}

In the random-oracle model, it is easy to construct a PRP with this property:
if p is a PRP, define p′ as p′K = pH(K) where H is a random oracle. If this
assumption can hold in the standard model, then our construction is secure in
the plain model as well.

4.1 Construction of Onions

We begin with intuition for our construction. Suppose that the sender Ps would
like to route a message m to recipient Pr = Pn+1 through intermediate routers
(P1, . . . , Pn). For a moment, imagine that the sender Ps has already established
a common one-time secret key Ki with each router Pi, 1 ≤ i ≤ n + 1. In that
setting, the following construction would work and guarantee some (although
not the appropriate amount of) security:

Intuition: Construction 1. For simplicity, let N = 4, n = 3, so the sender
is sending message m to P4 via intermediate routers P1, P2 and P3. Send to P1

the onion O1 formed as follows:

O1 = ({{{{m}K4
}K3
}K2
}K1

, {{{P4}K3
}K2
}K1

, {{P3}K2
}K1

, {P2}K1
)

Upon receipt of this O1 = (M (1), H
(1)
3 , H

(1)
2 , H

(1)
1), P1 will remove a layer of

encryption using key K1, and obtain

({M (1)}K−1
1

, {H
(1)
3 }K−1

1
, {H

(1)
2 }K−1

1
, {H

(1)
1 }K−1

1
) =

({{{m}K4
}K3
}K2

, {{P4}K3
}K2

, {P3}K2
}, P2)

Now P1 knows that P2 is the next router. It could, therefore, send to P2 the set

of values ({M (1)}K−1
1

, {H
(1)
3 }K−1

1
, {H

(1)
2 }K−1

1
). But then the resulting onion O2

will be shorter than O1, which in this case would make it obvious to P2 that he
is only two hops from the recipient; while we want P2 to think that he could

be up to N − 1 hops away from the recipient. Thus, P1 needs to pad the onion
somehow. For example, P1 picks a random string R1 of length |P1| and sets:

(O2, P2) = ProcOnion(K1, O1, P1)

= (({M (1)}K−1
1

, R1, {H
(1)
3 }K−1

1
, {H

(1)
2 }K−1

1
), {H

(1)
1 }K−1

1
)

= (({{{m}K4
}K3
}K2

, R1, {{P4}K3
}K2

, {P3}K2
}), P2)

Upon receipt of this O2 = (M (2), H
(2)
3 , H

(2)
2 , H

(2)
1), P2 will execute the same

procedure as P1, but using his key K2, and will obtain onion O3 and the identity
of router P3. Upon receipt of O3, P3 will also apply the same procedure and
obtain O4 and the identity of the router P4. Finally, P4 will obtain:

(O5, P5) = ProcOnion(K4, O4, P4)

= (({M (4)}K−1
4

, R4, {H
(4)
3 }K−1

4
, {H

(4)
2 }K−1

4
), {H

(4)
1 }K−1

4
)

= ((m,R4, {R3}K−1
4

, {{R2}K−1
3
}K−1

4
), {{{R1}K−1

2
}K−1

3
}K−1

4
)

How does P4 know that he is the recipient? The probability over the choice of
K4 that P5 obtained this way corresponds to a legal router name is negligible.
Alternatively, P4 may be able to tell if, by convention, a legal message m must
begin with k 0’s, where k is a security parameter.

Intuition: Construction 2. Let us now adapt Construction 1 to the public-
key setting. It is clear that the symmetric keys Ki, 1 ≤ i ≤ n + 1, need to be
communicated to routers Pi using public-key encryption. In Construction 1, the

only header information H
(i)
1 for router Pi was the identity of the next router,

Pi+1. Now, the header information for router Pi must also include a public-
key ciphertext Ci+1 = E (PKi+1,Ki+1, Ti+1), which will allow router Pi+1 to
obtain his symmetric key Ki+1. We need to explain how these ciphertexts are
formed. Let us first consider C1. Tag T1 is used to provide the context within
which router P1 should decrypt C1. C1 exists in the context of the message part
and the header of the onion, and therefore the intuitive thing to do is to set
T1 = H(M (1), H(1)), where H is a collision-resistant hash function. Similarly,
Ti = H(M (i), H(i)), because router Pi uses the same ProcOnion procedure as
router P1. Therefore, to compute C1, the sender first needs to generate the keys
(K1, . . . ,Kn+1), then compute (C2, . . . , Cn+1). Then the sender will have enough
information to obtain the tag T1 and to compute C1.

So, let us figure out how to compute O2. Consider how P1 will process O1

(adapting Construction 1):

(O2, P2) = ProcOnion(SK(P1), O1, P1)

= (M (2), H(2), C2, P2)

= ({M (1)}K−1
1

, (R1, {H
(1)
3 }K−1

1
, {H

(1)
2 }K−1

1
), {H

(1)
1 }K−1

1
)

= ({{{m}K4
}K3
}K2

, (R1, {{C4, P4}K3
}K2

, {C3, P3}K2
}), C2, P2)

We need to address how the valueR1 is formed. On the one hand, we have already
established (in Construction 1) that it needs to be random-looking, as we need to

make sure that P2 does not realize that R1 is a padding, rather than a meaningful
header. On the other hand, consider the ciphertext C2 ← E (PK(P2),K2, T2),
where, as we have established T2 = H(M (2), H(2)). So, as part of the header
H(2), the value R1 needs to be known to the sender at FormOnion time, to
ensure that the ciphertext C2 is formed using the correct tag T2. Thus, let us
set R1 pseudorandomly, as follows: R1 = {P1 ◦ 0

`C}K−1
1

, where recall that `C
is the number of bits required to represent the ciphertext C1. Similarly, Ri =
{Pi ◦ 0

`C}K−1

i
. (Why include the value Pi into the pad? This is something we

need to make the proof of security go through. Perhaps it is possible to get rid
of it somehow.)

Now we can explain how FormOnion works (still using N = 4, n = 3): pick
symmetric keys (K1,K2,K3,K4). Let Ri = {Pi ◦ 0

`C}K−1

i
for 1 ≤ i ≤ 4. First,

form the innermost onion O4, as follows:

O4 = ({m}K4
, (R3, {R2}K−1

3
, {{R1}K−1

3
}K−1

2
), C4 ← E (PK(P4),K4, T4))

where recall that T4 = H(M (4), H(4)). Now, for 1 < i ≤ 4, to obtain Oi−1 from

Oi = (M (i), (H
(i)
3 , H

(i)
2 , H

(i)
1), Ci), let

M (i−1) = {M (i)}Ki−1
H

(i−1)
3 = {H

(i)
2 }Ki−1

H
(i−1)
2 = {H

(i)
1 }Ki−1

H
(i−1)
1 = {Ci, Pi}Ki−1

Ti−1 = H(M (i−1), H(i−1)) Ci−1 ← E (PK(Pi−1),Ki−1, Ti−1)

It is easy to verify that the onions (O1, O2, O3, O4) formed this way will satisfy
the correctness property (Definition 3).

We are now ready to describe our construction more formally. Note that
without the intuition above, the more formal description of our construction
may appear somewhat terse.

Setup. The key generation/setup algorithm G for a router is as follows: run
Gen(1k) to obtain (PK,SK). Router name P must be a string of length 2`K ,
chosen uniformly at random by a trusted source of randomness; this needs to
be done so that even for a PK chosen by an adversary, the name P of the
corresponding router is still a random string. (In the random oracle model, this
can be obtained by querying the random-oracle-like hash function on input PK.)
Register (P,PK) with the PKI.

Forming an onion. On input message m ∈ {0, 1}`m , a set of router names
(P1, . . . , Pn+1), and a set of corresponding public keys (PK1, . . . ,PKn+1), the
algorithm FormOnion does:

1. (Normalize the input). If n + 1 < N , let Pi = Pn+1, and let PKi = PKn+1

for all n+ 1 < i ≤ N .

2. (Form inner layer). To obtain the inner onion ON , choose symmetric keys
Ki ← {0, 1}`K , for 1 ≤ i ≤ N . Let Ri = {Pi ◦ 0

`C}K−1

i
. Let M (N) =

{m}KN
. As for the header, H

(N)
N−1 = RN−1, H

(N)
N−2 = {RN−2}K−1

N−1
, and,

in general, H
(N)
i = {. . . {Ri}K−1

i+1
. . .}K−1

N−1
for 1 ≤ i < N − 1. Let

TN = H(M (N), H
(N)
N−1, . . . , H

(N)
1). Finally, let CN ← E (PKN ,KN , TN). Let

ON = (M (N), H
(N)
N−1, . . . , H

(N)
1 , CN).

3. (Adding a layer). Once Oi = (M (i), H
(i)
N−1, . . . , H

(i)
1 , Ci) is computed for any

1 < i ≤ N , compute Oi−1 as follows: M (i−1) = {M (i)}Ki−1
; H

(i−1)
j =

{H
(i)
j−1}Ki−1

for 1 < j ≤ N ; H
(i−1)
1 = {Pi, Ci}Ki−1

. Let Ti−1 = H(M (i−1),

H
(i−1)
N−1 , . . . , H

(i−1)
1). Finally, let Ci−1 ← E (PKi−1,Ki−1, Ti−1). The resulting

onion is Oi−1 = (M (i−1), H
(i−1)
N−1 , . . . , H

(i−1)
1 , Ci−1).

Processing an onion.On input a secret key SK, an onion O = (M,HN , . . . ,
H1, C), and the router name P , do: (1) compute tag T = H(M,HN , . . . , H1); (2)
let K = D(SK,C, T); if K = ⊥, reject; otherwise (3) let (P ′, C ′) = {H1}K−1 ;
(4) if P ′ does not correspond to a valid router name, output ({M}K−1 ,⊥) (that
means that P is the recipient of the message m = {M}K−1); otherwise (5) send
to P ′ the onion O′ = ({M}K−1 , {P ◦ 0`C}K−1 , {HN}K−1 , . . . , {H2}K−1 , C ′)

Theorem 2. The construction described above is correct, achieves integrity, and
is onion-secure in the PKI model where each router’s name is chosen as a uni-
formly random string of length 2`K , and assuming that (1) (Gen,E ,D) is a
CCA-2 secure encryption with tags; (2) p is a PRP simultaneously secure for
block lengths `M and `H for which the non-standard assumption holds, and (3)
hash function H is collision-resistant.

Proof. (Sketch) Correctness follows by inspection. Integrity is the consequence
of our non-standard assumption: Suppose that our goal is to break the non-
standard assumption. So we are given as input two strings P ′

1 and P ′
2. We set

up the the set of honest players Q, together with their key pairs, as in Defini-
tion 2, giving each player a name chosen at random and assigning the strings
P ′

1 and P ′
2 as names for two randomly chosen routers. Note that as our reduc-

tion was the one to set up all the keys for the honest routers, it is able to
successfully answer all ProcOnion queries on their behalf, as required by Defini-
tion 4. Suppose the adversary is capable of producing an onion whose path is
longer than N . With probability 1/|Q|, this onion O1 is sent to router P1 = P ′

1.
Let {(P1, O1,K1), . . . , (Pi, Oi,Ki), . . .} be the evolution of this onion augmented
by the symmetric keys (K1, . . . ,Ki, . . .) that router Pi obtains while running
ProcOnion(SK(Pi), Oi, Pi). According to our ProcOnion construction, the value
(if any) that router PN obtains as a candidate for (PN+1 ◦ CN+1) is the string

{H
(N)
1 }K−1

N
= {{. . . {P1 ◦ 0

`C}K−1
1

. . .}K−1

N−1
}K−1

N
= P ◦C. For this to be a valid

onion ON+1, P must be a valid router name. If P = P1, then we have broken
our assumption. Otherwise P 6= P1, but then with probability at least 1/|Q|,
P = P ′

2 and so we also break the non-standard assumption.
It remains to show onion-security. First, we use a counting argument to show

that, with probability 1 − 2−`K+Θ(log |Q|) over the choice of router names, the
adversary cannot re-wrap the challenge onion.

Suppose that the challenger produces the onion layers (O1, . . . , Oj). Consider

the header H
(j)
N−1 of the onion Oj . By construction, H

(j)
N−1 = R(j−1) = {Pj−1 ◦

0`C}K−1

j−1
. Also by construction, any SK, O′ = (M ′, H ′, C ′) and P ′ such that

Oj = ProcOnion(SK,O′, P ′) must satisfy {P ′ ◦ 0`C}(K′)−1 = H
(j)
N−1, where K ′ is

the decryption of C ′ under key SK. Thus, to re-wrap the onion, the adversary
must choose Pj−1, P

′ and K ′ such that {Pj−1 ◦ 0
`C}K−1

j−1
= {P ′ ◦ 0`C}(K′)−1 .

Let P be a router name, and let K be a key for the PRP p. Let

Bad(P,K) = {P ′ : ∃K ′ such that P ′ 6= P ∧ {P ◦0`C}K−1 = {P ′◦0`C}(K′)−1} .

As there are at most 2`K choices for K ′, and p is a permutation, for all
(P,K), |Bad(P,K)| ≤ 2`K . Let Bad(Q,K) = {P ′ : ∃P ∈ Q such that P ′ ∈
Bad(P,K)}. Then |Bad(Q,K)| ≤ |Q|maxP |Bad(P,K)| ≤ |Q|2`K .

Assume without loss of generality that the key Kj−1 is fixed.
Thus, for this onion to be “re-wrappable,” it must be the case
that there exists some P ′ ∈ Bad(Q,Kj−1) that corresponds to a
valid router name, i.e. Q ∩ Bad(Q,Kj−1) 6= ∅. As any P ′ ∈ Q
is chosen uniformly out of a set of size 22`K , while |Bad(Q,Kj−1)|
≤ 2`K+log |Q|, it is easy to see that the probability over the choice of Kj−1

and the router names for the set Q that the onion is “re-wrappable,” is only
2−`K+Θ(log |Q|).

It remains to show that no adversary can guess the challenger’s bit b, pro-
vided (as we have shown) that it cannot re-wrap the onion. This proof follows the
standard “sequence of games” [20] argument. Suppose that we set up the follow-
ing experiments. In experiment (1), the challenger interacts with the adversary
as in Definition 5 when b = 0, using FormOnion. In experiment (2), the challenger
departs from the first experiment in that it deviates from the usual FormOnion

algorithm in forming the ciphertext Cj as Cj ← E (PK,K ′, Tj), where K ′ 6= Kj

is an independently chosen key. It is easy to see that distinguishing experiments
(1) and (2) is equivalent to breaking either the CCA2 security of the underlying
cryptosystem, or the collision-resistance property of H.

In experiment (3), the challenger forms Oj as follows: Choose keys
K1, . . . Kj−1, and K ′. Let Ri = {Pi ◦ 0

`C}K−1

i
for 1 ≤ i < j. M (j) ← {0, 1}`m ,

H
(j)
i = {. . . {Ri}K−1

i+1
. . .}K−1

j−1
for 1 ≤ i < j, H

(j)
i ← {0, 1}`H for j ≤ i ≤ N − 1.

Finally, Cj ← E (PK,K ′, Tj). The other onions, Oj−1 through O1, are formed
using the “adding a layer” part of the FormOnion construction. It can be shown
(omitted here for lack of space) that an adversary who can distinguish experi-
ments (2) and (3) can distinguish pKj

from a random permutation. The intuition
here is that in experiment (3), everything that’s supposed to be the output of
pKj

or p−1
Kj

is random.

In experiment (4), the onion is formed by running FormOnion(r, (P1, . . . , Pj),
(PK1, . . . ,PKj)), except that Cj is formed as Cj ← E (PK,K ′, Tj). Telling (3)
and (4) apart is also equivalent to distinguishing p from a random permutation.
The intuition here is that in experiment (4) the first j− 1 parts of the header of

onion Oj are formed as in experiment (3), while the rest are formed differently,
and permuted using key Kj .

Finally, experiment (5) does what the challenger would do when b = 1. It
is easy to see that distinguishing between (4) and (5) is equivalent to breaking
CCA2 security of the cryptosystem or collision-resistant of H.

4.2 Response Option

Suppose that Ps wants to send an anonymous message m to Pr and wants Pr
to be able to respond. Our construction allows for that possibility (however we
omit the definition and proof of security).

The sender chooses a path (P ′
1, . . . , P

′
n) for the return onion, (so P ′

0 = Pr,
and P ′

n+1 = Ps). Next, the sender forms (O′
1, . . . , O

′
n+1) = FormOnion(ε, (P ′

1, . . . ,
P ′
n+1), (PK(P ′

1), . . . ,PK(P ′
n+1))). It then chooses a symmetric authentication

and encryption key a and remembers all the keys (K ′
1, . . . ,K

′
n+1) used during

FormOnion. Finally, it forms its message as m′ = m ◦ a ◦ O′
1 ◦ P

′
1, and forms its

actual onion in the usual way, i.e., chooses intermediate routers (P1, . . . , Pn) and
sets (O1, . . . , On+1) ← FormOnion(m′, (P1, . . . , Pn, Pr), (PK(P1), . . . ,PK(Pn),
PK(Pr))).

Upon receipt of m′ = (m, a,O′
1, P

′
1), Ps responds as follows. Suppose his

response is M . He encrypts and authenticates M using a, forming a ciphertext
c1. He then sends (c1, O

′
1) to P ′

1, with the annotation that this is a response
onion. A router P receiving a message (c,O′) with the annotation that this is
a response onion, applies ProcOnion to onion O′ only, ignoring c. Recall that
as a result of this, P ′ obtains (O′′, P ′′) (what to send to the next router and
who the next router is) and the key K ′. It then sends the values ({c}K′ , O

′′)
to P ′′, also with the annotation that this is a response onion. Eventually, if all
goes well, the tuple ({. . . {c1}K′1 . . .}K

′
n, O

′
n+1) reaches Ps, who, upon processing

O′
n+1 recognizes that he is the recipient of this return onion, and is then able

to obtain c1 using the keys K ′
1, . . . ,Kn it stored, and to validate and decrypt c1

using the key a. Note that, due to the symmetric authentication step using the
key a, if Pr is honest, then no polynomial-time adversary can make Ps accept
an invalid response.

5 Acknowledgments

We thank Ron Rivest for pointing out that our cryptographic definition must
guarantee onion-integrity in addition to correctness and security. We are grate-
ful to Leo Reyzin for valuable discussions. We thank the anonymous referees
for their thoughtful comments. Jan Camenisch is supported by the IST NoE
ECRYPT and by the IST Project PRIME, which receive research funding from
the European Community’s Sixth Framework Programme and the Swiss Fed-
eral Office for Education and Science. Anna Lysyanskaya is supported by NSF
CAREER Grant CNS-0374661.

References

1. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for
secure reactive systems. In TCC 2004, vol. 2951 of LNCS, pp. 336–354.

2. O. Berthold, A. Pfitzmann, and R. Standtke. The disadvantages of free MIX
routes and how to overcome them. In Proceedings of Designing Privacy Enhancing
Technologies, vol. 2009 of LNCS, pp. 30–45. Springer-Verlag, July 2000.

3. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology — CRYPTO 2003, LNCS, 2003.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 136–145, 2001.

5. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT 2003, vol. 2656 of LNCS, pp. 255–271. Springer Verlag, 2003.

6. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–88, Feb. 1981.

7. D. Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, Oct. 1985.

8. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1:65–75, 1988.

9. G. Danezis. The traffic analysis of continuous-time mixes. In Privacy Enhancing
Technologies (PET), 2004.

10. R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-generation
onion router. In USENIX Security Symposium, pp. 303–320. USENIX, 2004.

11. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal
on Computing, 2000.

12. D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion routing for anonymous
and private internet connections. Comm. of the ACM, 42(2):84–88, Feb. 1999.

13. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2):270–299, Apr. 1984.

14. D. Kesdogan, D. Agrawal, and S. Penz. Limits of anonymity in open environments.
In Information Hiding 2003, vol. 2578 of LNCS, pp. 53–69. Springer, 2003.

15. M. Luby and C. Rackoff. How to construct pseudorandom permutations and pseu-
dorandom functions. SIAM J. Computing, 17(2):373–386, Apr. 1988.

16. B. Möller. Provably secure public-key encryption for length-preserving Chaumian
mixes. In Cryptographer’s Track — RSA 2003, pp. 244–262. Springer, 2003.

17. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In IEEE Symposium on Research in
Security and Privacy, pp. 184–200. IEEE Computer Society Press, 2001.

18. M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions. ACM
Transactions on Information and System Security (TISSEC), 1(1):66–92, 1998.

19. V. Shoup. A proposal for an ISO standard for public key encryption.
http://eprint.iacr.org/2001/112, 2001.

20. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
http://eprint.iacr.org/2004/332, 2004.

21. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ci-
phertext attack. In EUROCRYPT ’98, vol. 1403 of LNCS. Springer, 1998.

22. D. Wikström. A universally composable mix-net. In Theory of Cryptography
Conference, vol. 2951 of LNCS, pp. 317–335. Springer, 2004.

23. Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On flow correlation attacks
and countermeasures in mix networks. In PET, 2004.

