
Comparison of Bit and Word Level Algorithms
for Evaluating Unstructured Functions over

Finite Rings

B. Sunar1? and D. Cyganski1

Department of Electrical & Computer Engineering,
Worcester Polytechnic Institute,

Worcester, Massachusetts 01609, USA,
sunar, cyganski@wpi.edu

Abstract. We study the problem of implementing multivariate func-
tions defined over finite rings or fields as parallel circuits. Such functions
are essential for building cryptographic substitution boxes and hash func-
tions. We present a modification to Horner’s algorithm for evaluating
arbitrary n-variate functions defined over finite rings and fields. Our
modification is based on eliminating redundancies in the multivariate
version of Horner’s algorithm which occur when the evaluation takes
place over a small finite mathematical structure and may be considered
as a generalization of Shannon’s lower bound and Muller’s algorithm to
word level circuits. If the domain is a finite field GF (p) the complexity
of multivariate Horner polynomial evaluation is improved from O(pn) to
O(pn

2n
). We prove the optimality of the presented algorithm. Our com-

parison of the bit level approach to the optimized word level approach
yields an interesting result. The bit level algorithm is more efficient in
both area consumption and time delay. This suggests that unstructured
functions over finite rings or fields should be implemented using the bit-
level approach and not the commonly used word level implementation
style.

Key Words: Horner’s method, polynomial evaluation, multivariate poly-
nomials, word level, finite fields.

1 Introduction

Essentially all secret and public key schemes are based on arbitrary looking and
highly nonlinear logic function families which are indexed by a fixed length key.
In fact, it is expected that a proper cryptographic function is practically indis-
tinguishable from a function that is randomly picked from the set of all functions
of certain degree. This arbitrariness requires cryptographers to propose highly
complex and structureless functions. A few examples are round subfunctions of

? Berk Sunar is funded by National Science Foundation research grants CAREER
award ITR-ANI-0133297 and ITR-ANI-0112889.

hash algorithms (e.g. SHA-1 [6], MD5 [11] etc.), and substitution boxes in block
and stream ciphers (e.g. DES [7], AES [8] etc.), or public-key schemes defined
over polynomial rings or finite fields. Earlier constructions were given in terms
of lookup tables which were built by experimentation and extensive statistical
testing. A good example is DES where the substitution boxes have no publicly
known structure. Therefore, one is left with a choice of either using costly lookup
tables or a direct logic implementation. Although less regular and more difficult
to design, the latter choice tends to be much more efficient. Recently proposed
algorithms (e.g. AES, and the 3GPP Standard’s Kasumi block cipher [13]) have
substitution boxes that may be expressed as algebraic functions (e.g. as inversion
in a binary finite field). This makes it possible to use the algebraic structure (e.g.
use composite or tower field representation) to have more efficient substitution
computations. Another good example is algebra on elliptic curves defined over
optimal extension fields (e.g. GF (pk) where typically p fits into a word and is
of pseudo-Mersenne form). Such arithmetic is commonly implemented in two
levels: polynomial arithmetic to implement the operations in the field extension,
and then GF (p) arithmetic to support the coefficient operations.

In this context we pose the following question: Assume we are given a mul-
tivariate function (or polynomial) f of fixed degree defined over a finite ring Zn

(or field GF (p)) randomly picked1 from the set of all such functions. What is
the best choice for a parallel circuit implementation of f :

1. a binary logic realization of the function f (bit-level approach), or
2. a realization of f over Zn (or GF (p)) (word-level approach)?

Intuitively, the later (word level) approach is attractive since it allows one to
use the present mathematical structure in the implementation. However, since
any circuit contructed from optimal binary logic implementations of word level
function blocks can be re-optimized at the binary operator level as a whole, the
potential of significant size advantage of the latter may overwhelm the design
convenience of the former. In this paper we will obtain a measure of the rel-
ative merits of optimal binary versus optimal word level implementations for
unstructured functions defined over a finite field or ring.

The remainder of this paper is as follows. We present a brief background on
multivariate function (or polynomial) evaluation in the next section and intro-
duce related notation and the multivariate formulation of Horner’s algorithm.
Then a generalization of Horner’s algorithm to higher characteristic fields and
rings is developed. We also present specialized optimization techniques based on
the field/ring structure. The paper concludes by comparing the bit-level algo-
rithm with the word-level approach in terms of bit-complexities.

1 It is important to note that, the functions we use in cryptography are not always
random and thus may permit more efficient computation. The work in this paper
focuses on arbitrarily chosen functions and hence may be more suitable for the
implementation of substitution boxes defined over finite rings or fields.

2 Background

The problem of function (or polynomial) evaluation has a rich history. The
prominent polynomial evaluation algorithm attributed to Horner [3] has found
its way into many applications due to its simplicity and efficiency. The univari-
ate Horner’s algorithm was shown by Ostrowski [9] to be optimal in the number
of additions in the straight line algorithm in 1954. More than a decade later in
1966 Pan [10] proved its optimality in the number of multiplications as well. Fur-
thermore, in [1] Borodin proved the uniqueness of Horner’s algorithm, i.e. that
all algorithms of similar complexity reduce to Horner’s algorithm, as initially
conjectured by Ostrowski.

Although Horner’s algorithm is optimal for evaluating polynomials with arbi-
trary coefficients there are more efficient algorithms for evaluating polynomials
by allowing precomputation on the coefficients. For example, the polynomial
p(x) = xn can be computed by using only log2 n multiplications and no addi-
tions. Similar algorithms can be derived for polynomials with less structure. In
fact, when precomputation is allowed the evaluation can be achieved using only
about n

2 multiplications [4].
Using the multivariate version of Horner’s method it is possible to efficiently

implement boolean functions. In an early result Shannon proved [12] a lower
bound as O(2n

n) on the size of circuits implementing arbitrary boolean func-
tions of n variables. Optimally solving this problem, Muller gave an explicit
construction based on a modification on Horner’s method which satisfies the
lower bound[5].

3 Preliminaries

We consider the problem of evaluating multivariate polynomials over Zm using
Horner’s method. In the univariate case a polynomial of degree r− 1 over Zm is
represented as

u(x) = u0 + u1x + u2x
2 + . . . + ur−1x

r−1 , ui ∈ Zm .

The most general polynomial one need consider is such that r = order(Zm) as
any other polynomial may be reduced to this. A naive evaluation of u(x) would
require r − 1 additions and 2r − 3 multiplications in Zm. By the application of
Horner’s method, however, the following paranthesization is obtained.

u(x) = u0 + x(u1 + x(u2 + x(u3 + . . . + x(ur−2 + xur−1)) . . .)

Now the polynomial can be evaluated by computing only r−1 additions and r−1
multiplications without using any temporary storage. A parallel implementation
introduces a delay of

T = (r − 1)TA + (r − 1)TM

where TA and TM denote the delay of two input addition and multiplication
operations in Zm.

4 The Multivariate Case

A multivariate polynomial of n variables may be represented in sum of products
representation as follows

u(x1, x2, . . . , xn) =
rn∑
i=1

ui

n∏
j=1

x
ij−1
j

where ij denotes the j-th digit in the base r representation of i. Here again,
the most general such polynomial involves each literal, xj up to only the power
r−1 as any other polynomial is reducible to this case. It is for this reason that a
natural description of the “degree” of such polynomials is the maximum degree
of any literal versus the commonly used measure of a polynomial’s total degree.
We set u(1)(x1, x2, . . . , xn) = u(x1, x2, . . . , xn) and expand it in powers of x1 as
follows

u(1)(x1, x2, . . . , xn) =
r−1∑
i=0

u(2)(x2, . . . , xn)xi
1 .

With the expansion we can now treat the summation as an (r − 1)-st degree
univariate polynomial of an indeterminate x1. This enables us to use Horner’s
method as introduced earlier to evaluate the polynomial using r − 1 additions
and r − 1 multiplications assuming the values of the coefficients are available.
Note that the coefficients are still polynomials, however, the x1 indeterminate
is eliminated. The same expansion can now be applied on the r coefficients
u(2)(x2, . . . , xn) with x2 as the indeterminate. We repeatedly expand the co-
efficients in the same fashion until polynomials in only xn are obtained. The
expansion will be repeated n times and in each step a level is obtained with one
less variable in which the number of coefficients will grow by a factor of r as
shown in Table 1. The process is recursively iterated as follows.

u(k)(xk, . . . , xn) =
r−1∑
i=0

u(k+1)(xk+1, . . . , xn)xi
k , k = 1, 2, . . . , n .

The total number of additions or multiplications is found as

Level #Coefficient #Mult
Polynomials or #Add

1 r (r − 1)
2 r2 (r − 1)r
3 r3 (r − 1)r2

...
...

...
n rn (r − 1)rn−1

Table 1. Number of coefficient polynomials introduced in each level

C =
n∑

i=1

(r − 1)ri−1 = rn − 1 .

We summarize this result in the following theorem.

Theorem 1 (Multivariate Horner). The evaluation of an n-variate polyno-
mial over Zm of maximum degree (r− 1) in all variables requires at most rn− 1
additions and rn − 1 multiplications in Zm.

A parallel implementation of n levels creates a total delay of

T = n(r − 1)TA + n(r − 1)TM .

5 Our Contribution

We follow the same strategy as in Horner’s algorithm, however, we make a key
observation. In the last level in Table 1 the number of coefficients is given as
rn. These coefficients are univariate polynomials in xn with maximum degree of
r− 1. However, the number of unique polynomials of this degree in Zm is mr. If
rn > mr then many of the coefficients which we counted as distinct are redun-
dant. In the worst case the number of distinct coefficients for level n is therefore
mr. The same argument can be made for level n−1. In this level, the coefficients
are polynomials in xn−1 with r coefficients that are polynomials in xn. The num-
ber of unique polynomials in this level is therefore m2r. The number of unique
polynomials for each level is shown in Table 2. In the table we observe that the
number of coefficient polynomials increases while the number of unique poly-
nomials decreases with increasing levels. This suggests an optimization strategy
which would compute the recursion using Horner’s method until the number
of coefficient polynomials exceeds the number of unique polynomials. Then for
the remaining levels we compute all unique polynomials. Before continuing our
analysis we find it instructive to illustrate our optimization strategy on a simple
example:

Example 1. Let Zm = Z2 and f = f(x1, x2, x3, x4) represent a multivariate
polynomial f : (Z2)4 7→ Z2 explicitly given as

f = x1x2x3x4 + x1x2x3 + x1x2x4 + x2x3x4 + x1x3 + x3x4

+ x2x4 + x3x4 + x3 + x2 + x1 + 1 .

Applying Horner’s algorithm we convert the polynomial into the following rep-
resentation2

f = 1x1 [1x2{1x3(1x4 + 1) + (1x4 + 0)}+ {1x3(0x4 + 1) + (1x4 + 1)}]
+ [1x2{1x3(1x4 + 0) + (1x4 + 1)}+ {1x3(1x4 + 1) + (0x4 + 1)}]

2 We use different kinds of parantheses to hint the computations that take place in
each level

We make out point by simply focusing on the last level of computation. Now
note that in the last level we have 8 polynomial evaluations of the form ax4 + b
where a, b ∈ Z2. However, there can be only 22 such polynomials. Hence, a blind
implementation of Horner’s algorithm will be redundant. Since our algorithm is
generic (and therefore should not depend on the particular choice of polynomial
coefficients) in the last level we compute all possible polynomials in x4, and
simply wire the outputs to as many locations as required in the last level of the
circuit evaluating f .

To compute all unique polynomials in level n, in which all polynomials are
univariate over xn, we use r−1 multiplications and r−1 additions per polynomial
evaluation and (r − 1)mr in total. Similarly in level n − 1, all polynomials are
now (since all polynomials over xn are already computed) univariate over xn−1.
There are r coefficients with mr choices for each coefficient. Hence there are
(mr)r = mr2

polynomials requiring (r − 1)mr2
additions and multiplications.

This process is repeated until the first level is reached. The resulting complexities
for each level are shown in Table 2.

To find the level k in which the number of coefficients exceeds the number
of unique polynomials we need to find the smallest value of k satisfying the
following inequality

rk ≥ mrn−k+1
. (1)

By taking the logarithm of both sides the following inequality is obtained

krk ≥ rn+1 logr m . (2)

Let the right-hand-side be called c. Taking the logarithm of both sides with
respect to base r and solving for equality we obtain

k = logr c− logr k .

Now we may substitute the value of k in the logarithm on the right-hand-side.

k = logr c− logr(logr c− logr k) .

Level #Coefficient #Mult #Unique #Mult
Polynomials or #Add Polynomials or #Add

1 r (r − 1) mnr (r − 1)mrn

2 r2 (r − 1)r m(n−1)r (r − 1)mrn−1

3 r3 (r − 1)r2 m(n−2)r (r − 1)mrn−2

...
...

...
...

...

n− 2 rn−2 (r − 1)rn−3 m3r (r − 1)mr3

n− 1 rn−1 (r − 1)rn−2 m2r (r − 1)mr2

n rn (r − 1)rn−1 mr (r − 1)mr

Table 2. Number of coefficient polnomials and unique polynomials at each level

We may continue in the same fashion substituting infinitely many times.

k = logr c− logr(logr c− logr k(logr c− logr k(logr c− logr(. . .) . . .) .

Note that by each new term the value of k becomes more precise. At the same
time the contribution of these terms shrink logarithmically. Since we are inter-
ested in only integer values of k it suffices to approximate k by neglecting the
terms after only two levels of substitution.

k ≈ logr c− logr(logr c) . (3)

The exact solution of (2) is defined in terms of the Lambert-W function [2]

k ≥ W (log r
rn+1

logm r
)/ log r (4)

where W (x) is defined as the inverse of the map x → xex.
Now we can compute the total number of operations by simply summing the

entries in the third column from the first level through level k and the entries in
the last column from level k + 1 through level n in Table 2.

C =
k∑

i=1

(r − 1)ri−1 +
n−k∑
i=1

(r − 1)mri

(5)

= (rk − 1) + (r − 1)(mr + mr2
+ mr3

+ . . . + mrn−k

).

Ignoring the smaller order terms in the super-exponential summation the com-
plexity may be approximated as follows

C ≈ rk + rmrn−k

.

Using (3) and rn−k directly obtained from (2) the complexity is further simplified
as

C =
c

logr c
+ rm

n logm r
r

=
rn+1 logr m

(n + 1) + logr(logr m)
+ r

n
r +1 (6)

Hence, both the addition and multiplication complexities grow by O(rn

n).

Theorem 2 (Modified Horner). Given rn > mr the evaluation of an n-
variate polynomial over Zm of maximum degree n(r− 1) requires at most O(rn

n)
additions and multiplications in Zm.

In the improved algorithm a parallel implementation of n levels creates a total
delay of

T = k(r − 1)(TA + TM) + (n− k)(r − 1)(TA,const + TM,const) .

Here TA,const and TM,const denote delays of constant addition and multiplication
in Zm, respectively.

The structure that results is depicted in Figure 1. The product and the
summation symbols indicate blocks implementing multiplication and addition
in Zm, respectively. Note that, in each level up to the k − 1 level the fan-out of
the polynomial implementing arithmetic blocks is unity while for higher levels
(i.e. k, k + 1, . . . , n) the fan-out may be greater than one.

Fig. 1. Block diagram of a generic circuit implementing the modified Horner algorithm

6 Polynomials over Prime Fields

For polynomials over prime fields GF (p) the polynomial degree is bounded by
p−1 as any polynomial of higher degree may be reduced using Fermat’s Theorem:
xp−1 = 1 mod p. Substituting m = p and r = p in (6) we obtain the total number

of additions and multiplications as 3

C ≈ pn+1

n + 1
(7)

Hence, both the addition and multiplication complexities grow by O(pn

n). On the
other hand, using k = (n+1)− logp(n+1) derived from (3) the time complexity
simplifies as follows

T = ((n+1)−logp(n+1))(p−1)(TA+TM)+(logp(n+1)−1)(p−1)(TA,const+TM,const) .

Theorem 3 (Modified Horner over GF (p)). Given n > p the evaluation
of an n-variate polynomial over GF (p) requires at most O(pn

n) additions and
multiplications in GF (p) with a delay of O((p− 1)(n− logp n)).

7 Optimality

Consider a parallel implementation of a function in GF (p) of size s which denotes
the total number of addition and multiplication components used in the circuit.
The total number of circuits that can be built using s components is

(((s + p + n)2)s)

since each of the s components can have either the output of another component
(s choices) a constant (p choices) or a literal (n choices) connected as input. To
build an arbitary function, the number of circuits must exceed the number of
n-variate functions over GF (p). This leads to the following inequality.

((s + p + n)2)s ≥ ppn

Substituting s = pn

2n we see that (although close) the inequality is still not
satisfied

(
pn

2n
+ p + n)

pn

2n ≈ ppn

2n
6≥ ppn

Hence we found a lower bound on the circuit complexity any circuit must satisfy
to evaluate an arbitrary n-variate function over GF (p).

Theorem 4 (Lower Bound on Circuit Size). Any circuit evaluating an ar-
bitrary n-variate polynomial over GF (p) requires at least Ω(pn

2n) adders and mul-
tipliers in GF (p).

The bound can be made tighter by more careful analysis but if suffices for our
purposes. With Theorems 3 and 4 it directly follows that the presented modifi-
cation to Horner’s algorithm for multivariate polynomials over GF (p) is asymp-
totically optimal.
3 In the p = 2 case, the multiplications in the second summation disappear since they

are constant multiplications by either 0 or 1.

8 Comparison to Muller’s Algorithm

The Muller construction [5] gives a method for evaluating arbitrary n-variate
polynomials over GF (2) with O(2n+1

n+1) complexity (see (7)). We may consider the
task of evaluating an n-variate polynomial over GF (p) as equivalent to evaluating
(log2 p) polynomials of (n log2 p)-variables over GF (2). In this case the bit-level
algorithm implementing a polynomial evaluation over GF (p) has bit-complexity

CB = O

(
(log2 p)

2n log2 p+1

n log2 p + 1

)
= O

(
2pn

n

)
.

On the other hand the complexity equation (7) derived in this paper may be
expressed in bit operations rather than operations in GF (p). Then assuming a
GF (p) multiplication operation takes (log2 p)2 bit operations we obtain the bit
complexity as follows

CW = O

(
pn+1

n + 1
(log2 p)2

)
.

Interestingly, the bit-level algorithm seems to be a constant p
2 (log2 p)2 times

more area efficient1. Note that in the GF (p) case we are limiting our algorithms
to operate on groups of log2 p bits whereas Muller’s algorithm operates on in-
dividual bits. Due to the fine grained approach Muller’s algorithm has more
opportunity for optimization.

We see a similar picture in the time complexities. We may assume both the
GF (p) multiplication and the addition circuits compute the result in O(log2 log2 p)
two-input gate delays where p > 2 using a fast addition circuit. Thus ignoring
the constant operations the overall computation takes

TW = O((p− 1)(log2 log2 p)(n− logp n)).

gate delays in the word-level approach. The bit-level approach yields a time
complexity of

TB = O(n log2 p− log2(n log2 p)).

gate delays. The bit-level algorithm seems to be roughly (p−1)(log2 log2 p)
log2 p times

faster than the GF (p) algorithm.

9 Further Optimizations

Up until now we have not used any special properties of the ring structure. One
strategy that comes to mind is to use Euler’s Theorem to reduce the polynomial
degree r. For relatively prime integers a and m Euler’s Theorem is simply stated
as aφ(m) = 1 (mod m). When the degree r of u(x) is larger than φ(m), then
by restricting x1, x2, . . . , xn to integers that are relatively prime to m we obtain
the following strategy:
1 This figure may be reduced by employing fast (FFT based) methods to realize GF (p)

multiplications.

– First compute

u′(x1, x2, . . . , xn) = u(x1, x2, . . . , xn) mod (xφ(m)
1 , x

φ(m)
2 , . . . , xφ(m)

n)

offline.
– Evaluate u(x1, x2, . . . , xn) by evaluating u′(x1, x2, . . . , xn).

With this strategy the direct application of the modified Horner’s algorithm has
complexity O(φ(m)n

n).
It is possible to obtain further improvements by using the factorization of the

modulus m to use efficient residue arithmetic. For instance, if m is factorized into
distinct prime powers as m = pe1

1 pe2
2 · · · pet

t , then we may achieve the evaluation
in two steps:

– Evaluate u(x) with respect to moduli pe1
1 , pe2

2 , . . . , pet
t .

– Use the Chinese Remainder Theorem (CRT) to assemble the result w.r.t.
modulus m.

Note that this evaluation procedure may provide more than the standard speedup
obtained by the CRT. If we know that x1, x2, . . . , xn are not divisible by any
prime factor of m then the t polynomial evaluations may be performed by eval-
uating u′(x) = u(x) mod xφ(p

ei
i

) for i = 1, 2, . . . , t. Then the total complexity
becomes

C =
1
n

∑
i=1..t

φ(pei
i)n =

1
n

∑
i=1..t

(pei
i − pei−1

i)n

To gain more insight we assume roughly equal sized partitions, i.e. pei
i ≈ m/t

and simplify the complexity further to

C ≈ 1
n

∑
i=1..t

(m/t)n =
mn

ntn−1

Note that this complexity figure gives the number of addition and multiplication
operations carried out in rings roughly of size m/t which is much smaller in size
than Zm. Hence there is additional improvement in the bit-complexities. Never-
theless, we observe that the complexity O(mn

ntn−1) is exponentially improved by
growing t. The complexity of residue computations and the CRT re-construction
are not included in this partial result. The complexity of these additional oper-
ations is a strong function of the prime power decomposition of the modulus.
However, for a large modulus the result, i.e. C, is expected to dominate the
overall complexity.

10 Conclusion

We presented a means of improving the parallel implementation complexity of
evaluating unstructed n-variate polynomials over finite rings and fields. Our
modification is based on eliminating redundancies in the multivariate version

of Horner’s algorithm which occur when the evaluation takes place over a small
finite mathematical structure and may be considered as a generalization of Shan-
non’s lower bound and Muller’s algorithm to word level circuits.

We presented two strategies for further improving the multivariate version of
Horner’s algorithm which utilize the ring structure by employing residue arith-
metic via the Chinese Remainder Theorem. It turns out that by restricting the
inputs to integers relatively prime to m, exponential improvement can be ob-
tained. Of course, this statement is based on the assumption that m is highly
composite.

If the domain is a finite field GF (p) the complexity of multivariate Horner
polynomial evaluation is improved from O(pn) to O(pn

2n). We prove the optimality
of the presented algorithm and show that the bit-level algorithm provides a
constant times better time and space complexities than the word-level approach.
The lesson taught by this exercise is that the currently popular implementation
style which favors the word-level approach diverges from optimality as the order
of the finite field increases. We have shown that the bit-level approach provides
significant time and area savings provided that the function is chosen arbitrarily,
which is the case for substitution boxes in cryptographic applications. We should
point out that our result will not apply to highly structured specialized functions
since there is significantly more opportunity for optimization by using the special
structure of the function.

References

1. A. Borodin. Horners Rule is Uniquely Optimal. In Z. Kohavi and A. Paz, edi-
tors, Proceedings of an International Symposium on the Theory of Machines and
Computations, pages 45–57. Academic Press, 1971.

2. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On
the Lambert W Function. Advances in Computational Mathematics, 5:329–359,
1996.

3. W. G. Horner. A new method of solving numerical equations of all orders by
continuous approximation. Philos. Trans. Roy. Soc. London, 109:308–335, 1819.

4. D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Al-
gorithms. Addison-Wesley, Reading, Massachusetts, USA, 2nd edition, 1981.

5. D. E. Muller. Complexity in Electronic Switching Circuits. IRE Transactions on
Electronic Circuits, (5):15–19, 1956.

6. NIST FIPS PUB 180-1. Secure Hash Standard. Federal Information Processing
Standards, National Bureau of Standards, U.S. Department of Commerce, April
1995.

7. NIST FIPS PUB 46-3. Data Encryption Standard. Federal Information Processing
Standards, National Bureau of Standards, U.S. Department of Commerce, 1977.

8. U.S. Department of Commerce/National Institute of Standard and Technology.
Advanced Encryption Standard (AES), November 2001.

9. A. M. Ostrowski. On two problems in abstract algebra connected with Horner’s
rule. pages 40–48. Academic Press, 1954. presented to Richard von Mises.

10. V. Ya. Pan. Methods for Computing Values of Polynomials. Russian Mathematical
Surveys, 21(1):105–136, 1966.

11. R.L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Corporation for
National Research Initiatives, Internet Engineering Task Force, Network Working
Group, April 1992.

12. C. E. Shannon. The Synthesis of Two-terminal Switching Circuits. Bell System
Technical Journal, 28(1):59–98, 1949.

13. ETSI/SAGE Specification. Specification of the 3GPP confidentiality and integrity
algorithms; part 2: KASUMI specification. 3GPP TS 35.202, European Telecom-
munications Standards Institute, Sophia-Antipolis Cedex, France, November 1999.
Draft.

