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Abstract. Although identity based cryptography o�ers many functional
advantages over conventional public key alternatives, the computational
costs are signi�cantly greater. The core computational task is evaluation
of a bilinear map, or pairing, over elliptic curves. In this paper we pro-
totype and evaluate polynomial and normal basis �eld arithmetic on an
FPGA device and use it to construct a hardware accelerator for pair-
ings over �elds of characteristic three. The performance of our prototype
improves roughly ten-fold on previous known hardware implementations
and orders of magnitude on the fastest known software implementation.
As a result we reason that even on constrained devices one can usefully
evaluate the pairing, a fact that gives credence to the idea that identity
based cryptography is an ideal partner for identity aware smart-cards.
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1 Introduction

The notion of identity based cryptography was �rst proposed by Shamir [25] in
1984. Essentially it allows a user identity, an arbitrary string, to play the role of
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a public key rather than have the key derived from a relationship with private
information as would be the case in traditional schemes such as RSA. This can
vastly reduce the amount of certi�cation infrastructure required and generally
presents a rich set of functional and security characteristics that are diÆcult
or impossible to realise with other solutions. The �rst eÆcient Identity Based
Encryption (IBE) scheme was presented by Boneh and Franklin [8] who followed
the idea of Sakai, Ohgishi and Kasahara [23] in basing their scheme on bilinear
maps, or pairings, over elliptic curves.

Although pairing and identity based cryptography has sparked a wealth of
research into cryptographic schemes [7,11] and proof techniques, it has remained
an ongoing task to reduce the computational cost that underpins such work.
Theorists have generally worked under the gross assumption that a pairing takes
around ten times as long to compute than the major computational task in
elliptic curve cryptography (ECC), the point multiplication. Although in reality
this ratio is signi�cantly lower, the cost of pairing evaluation still constitutes
a major hurdle. This is particularly true in constrained environments such as
smart-cards which, due to their use as identity-aware tokens, seem a natural
partner for identity based cryptography.

Recently, Gemplus announced that it had developed a smart-card hosted IBE
implementation in partnership with the market leaders Voltage Security [27]. Al-
though details are scarce, it seems probable that they use an existing core for Fp
arithmetic to accelerate a software implementation of the BKLS algorithm [4].
This seems the natural decision given the increasing exibility in parameterisa-
tion [3,5,19] and expertise related to implementing arithmetic in Fp accumulated
from building conventional ECC and RSA based systems. However, in the short
term at least it is attractive to consider working over �elds of characteristic three
since when parameterised using suitable supersingular elliptic curves, the result-
ing system boasts a higher security multiplier [12], given by the MOV embed-
ding degree [20]. Additionally, there are some specialised, high-performance algo-
rithms for computing pairings in this context: the Duursma-Lee algorithm [10],
recently improved upon by Kwon [18] and Barreto et al. [2], uses a closed for-
mula for the pairing which is eÆcient as long as the underlying �eld arithmetic
in F3m is also eÆcient. To this end, previous work has considered the possibility
of using polynomial [6, 22] and normal bases [13] to implement said arithmetic.
However, such work has focused mainly on arithmetic performance rather than
placing the designs in context to actually compute IBE related functions, the
exception being Kerins, Popovici and Marnane [17] who quote estimated timings
for FPGA hosted pairing hardware using a BKLS style algorithm.

In this paper, our main aims are three-fold: to evaluate the performance and
cost of constructing hardware polynomial and normal basis arithmetic in F3m ;
to investigate the possibility of construct a hardware accelerator that is small
enough for use in constrained environments; to prove pairings over F3m using
the closed form family of algorithms are a viable alternative to the use of Fp and
BKLS. We prototype our work on an FPGA device and present experimental
results of the performance and cost comparisons with previous work in this area.



Algorithm 1: The Duursma-Lee algorithm [10] for calculating the Tate
pairing in characteristic three.

Input : point P = (x1; y1), point Q = (x2; y2)

Output : fP (�(Q)) 2 F
�

q6 =F
�

q3

f  1
for i = 1 upto m do

x1  x31
y1  y31
� x1 + x2 + b
� �y1y2� � �2

g  �� ��� �2

f  f � g
x2  x

1=3
2

y2  y
1=3
2

return f

We organise our work as follows: in Section 2 we give an overview of pairings
before using Section 3 to present details of arithmetic in F3m . We then discuss
the details of our accelerator architecture and present experimental results in
Section 4 before concluding in Section 5.

2 An Introduction to Pairings

To provide a concrete case for discussion, we use the example of pairings where
the base �eld is of characteristic three, i.e. Fq where q = 3m. To allow inves-
tigation of both polynomial and normal bases we consider cases m = 97 and
m = 89 respectively. Let E be an elliptic curve over a �nite �eld Fq , and let O
denote the identity element of the associated group of rational points E(Fq ). For
a positive integer lj#E(Fq ) coprime to q, let Fqk be the smallest extension �eld

of Fq which contains the l-th roots of unity in Fq . Also, let E(Fq )[l] denote the
subgroup of E(Fq ) of all points of order dividing l, and similarly for the degree
k extension of Fq . Setting k = 6, we parameterise Fq6 as the quadratic extension
Fq6 = Fq3 [�]=(�

2 + 1). Further, we set Fq3 = Fq [�]=(�
3 � � � 1). For eÆcient

arithmetic in these �elds, we to the work of Granger et al. [14].
Our choice of prime values for m is motivated by well known security con-

siderations; both our choices o�er an security level which is roughly equivalent
to 800��900-bit RSA. Using a polynomial basis with m = 97 provides us with
a curve which is well known in the literature and hence a good reference against
which to compare our results. However, one can only construct a type-two nor-
mal basis where 2m+ 1 is also prime: the most eÆcient type-one basis is never
available. This limits our choices signi�cantly. We settled on m = 89 since it is
the closest choice to m = 97 for which a�ords a suitable parameterisation. For
both our choices of m, we use the curve E : Y 2 = X3 � X + 1. In the case



Algorithm 2: The Kwon-BGOS algorithm [18] for calculating the Tate pair-
ing in characteristic three.

Input : point P = (x1; y1), point Q = (x2; y2)

Output : fP (�(Q)) 2 F
�

q6 =F
�

q3

f  1
x2  x32
y2  y32
d mb
for i = 1 upto m do

x1  x91
y1  y91
� x1 + x2 + d
� y1y2� � �2

g  �� ��� �2

f  f3 � g
y2  �y2
d d� b

return f

of m = 89 this has an unattractively large cofactor [13]: this parameterisation
problem alone might be viewed as a reason not to use a normal basis represen-
tation; we stress that our aim in selecting these parameters is performance and
cost comparison only.

The Reduced Tate Pairing For a thorough treatment of the following, we
refer the reader to [4] and also [12], and to [24] for an introduction to divisors.
The reduced Tate pairing of order l is the map

el : E(Fq )[l]�E(Fqk )[l]! F
�

qk =(F
�

qk )
l;

given by el(P;Q) = fP;l(D). Here fP;l is a function on E whose divisor is equiva-
lent to l(P )�l(O),D is a divisor equivalent to (Q)�(O), whose support is disjoint
from the support of fP;l, and fP;l(D) =

Q
i fP;l(Pi)

ai , where D =
P

i aiPi. It
satis�es the following properties:

{ For each P 6= O there exists Q 2 E(Fqk )[l] such that el(P;Q) 6= 1 2
F
�

qk =(F
�

qk )
l (non-degeneracy).

{ For any integer n, el([n]P;Q) = el(P; [n]Q) = el(P;Q)
n for all P 2 E(Fq )[l]

and Q 2 E(Fqk )[l] (bilinearity).

{ Let L = hl. Then el(P;Q)
(qk�1)=l = eL(P;Q)

(qk�1)=L.
{ It is eÆciently computable.

The non-degeneracy condition requires that Q is not a multiple of P , i.e. that Q
is in some order l subgroup of E(Fqk ) disjoint from E(Fq )[l]. When one computes



fP;l(D), the value obtained belongs to the quotient group F
�

qk =(F
�

qk )
l, and not

F
�

qk . In this quotient, for a and b in F
�

qk , a � b if and only if there exists c 2 F
�

qk

such that a = bcl. Clearly, this is equivalent to

a � b if and only if a(q
k
�1)=l = b(q

k
�1)=l;

and hence one ordinarily uses this value as the canonical representative of each
coset. The isomorphism between F

�

qk =(F
�

qk )
l and the elements of order l in F

�

qk

given by this exponentiation makes it possible to compute fP;l(Q) rather than
fP;l(D).

The Modi�ed Tate Pairing Duursma and Lee introduced their algorithm [10]
in the context of pairings on a family of supersingular hyperelliptic curves. The
performance of their method was improved upon by Kwon [18] and Barreto et
al. [2] who also provide similar algorithms for other characteristics.

Let q = 3m and E(Fq ) : Y
2 = X3�X + b, with b = �1, and let P = (x1; y1)

and Q = (x2; y2) be points of order l. Let Fq3 = Fq [�]=(�
3 � � � b), with b =

�1 depending on the curve equation, and let Fq6 = Fq3 [�]=(�
2 + 1). Then the

modi�ed Tate pairing on E is the mapping fP (�(Q)) where � : E(Fq )! E(Fq6 )
is the distortion map �(x2; y2) = (� � x2; �y2). The methods for computing
the Duursma-Lee and Kwon-BGOS algorithms are shown in Algorithm 1 and
Algorithm 2 respectively. Note that the �nal result is powered by q3� 1 to form
a compatible result with the BKLS [4] algorithm.

3 Arithmetic in F3m

The �nite �eld F3m is isomorphic to F3 [X ]=(p) and F3 (�) where p is an irreducible
polynomial of degreem in F3 [X ] and � is a root of p. We will identify these three
�elds, but our notation will be tailored toward F3 (�). In a polynomial basis F3 (�)
is regarded as an m-dimensional vector space over F3 with basis

(�0; �1; : : : ; �m�1) :

For an element â 2 F3 (�) we will simply write the elements in a polynomial, or
standard basis as

â =

m�1X

i=0

âi � �i :

Arithmetic in a polynomial basis is fairly straightforward when based on con-
ventional polynomial arithmetic. When discussing implementation of such arith-
metic, it is often useful to denote elements as a vector of coeÆcients such as

â = (â0; â1; â2; : : : ; âm�1) ;

so that physical operations such as shifting and rotation of coeÆcients is more
naturally expressed. We use the notation â(i) to denote the (left) rotation of the
coeÆcients in such a vector by distance i. That is, we write

â(i) = (âi+0; âi+1; âi+2; : : : ; âi+m�1):



where in all cases, coeÆcient indices are reduced modulo m. Using this notation,

â
(i)
j represents the j-th coeÆcient of the rotated element â(i).
In a normal basis, things are slightly more involved. Given an irreducible

polynomial p of degree m and with root �, the full set of roots of p in F3 (�) is

B = (�; �3; �3
2

; : : : ; �3
m�1

):

If the elements of B are linearly independent then the set of roots forms a basis
of F3 (�) over F3 and this basis, p and � are all called normal. To construct such
as basis, and the matrix M which determines how the multiplication operation
works, we use the techniques of Granger et. al [13] based on work by N�ocker [21].
For an element �a 2 F3 (�) we write

�a =

m�1X

i=0

�ai � �3
i

but again, for brevity, we often denote a normal basis �eld element using the
coeÆcient vector and rotated coeÆcient vector notation as described above.

When using both polynomial and normal basis representations, we hold a
polynomial over F3 of degree m as a 2m length vector of bits. Two sequential
bits are used to hold each coeÆcient so that

a = (aL0 ; a
H
0 ; a

L
1 ; a

H
1 ; : : : ; a

L
m�1; a

H
m�1)

where
aLi = ai mod 2
aHi = ai div 2 :

For concreteness, we set the de�ning polynomial for our polynomial basis to
�97 + �16 + 2 and the normal polynomial p that de�nes M in our normal basis
to �89 +�88 +2�87+�84 +2�83+2�82 +�81 + �72 +�71 +�70 +2�69 +�66 +
2�65+2�64+�63 +2�54+�35+�34+2�33+�30+2�29+2�28+�27+2�18+
2�17 + 2�16 + �15 + 2�12 + �11 + �10 + 2�9 + 1.

3.1 Addition and Subtraction

The most basic operations on �eld elements are addition and subtraction. These
are made reasonably straightforward because they can be performed component-
wise with no interaction with other coeÆcients. Given that our coeÆcients are
held using two bits, we can construct cells for the required arithmetic using
simple logical operations. Following Harrison et al. [15], the addition ri = ai+ bi
of two coeÆcients ai and bi can be speci�ed using

rHi = (aLi _ bLi )� t
rLi = (aHi _ bHi )� t

where
t = (aLi _ bHi )� (aHi _ bLi ):

Subtraction, and hence multiplication by two, are equally eÆcient since the
negation of an element a simply swaps the bits aHi and aLi over and can therefore
be implemented by the same function as addition.



3.2 Cubing and Cube Roots

When working in characteristic three, cubing is an important operation since
curve and pairing arithmetic is often manipulated to utilise cubing rather than
a more costly multiplication. In addition, the cube root operation is important
in the Duursma-Lee algorithm if pre-computation is avoided.

When using a normal basis, the cube and cube root operations are very
eÆcient in characteristic three: both can be achieved by cyclic shifting the coef-
�cients in an elements so that for an element �a

�a3 = (�am�1; �a0; : : : ; �am�3; �am�2);
3
p
�a = (�a1; �a2; : : : ; �am�1; �a0):

Clearly these rotations can be easily implemented in a hardware circuit, where
they reduce to wired permutation of bits with no actual computational overhead.

In a polynomial basis, cubing is a linear operation in the same way squaring
is linear in characteristic two [6, 22]. That is, we have

(âi�
i)3 = â3i�

3i = âi�
3i :

Therefore, we can implement it using by simply thinning the coeÆcients, i.e.
padding them with zeros, before performing a reduction. Cube root is somewhat
more involved but since our chosen �eld is of the right form, we can utilise the
method highlighted by Barreto [1]. Speci�cally, since our de�ning polynomial for
m = 97 is �97+�16+2 we have that 97 = 3u+1 and 16 = 3v+1 so that u = 32
and v = 5. Hence, for an element â = t0 + t1 + t2 where

t0 =
Pu

i=0 â3i�
i

t1 =
Pu�1

i=0 â3i+1�
i

t2 =
Pu�1

i=0 â3i+2�
i

we have that

3
p
â = t0 + t�2u+1

1 � t�u+v+1
1 + t�2v+2

1 � 2t�u+1
2 � 2t�v+1

2

given that for t 2 F3m , t
�n denotes t�n, the value t shifted left by n coeÆcients

and suitable reduced.

3.3 Multiplication

In addition to component-wise addition and subtraction, for normal basis multi-
plication we also require a component-wise multiplication of the form ri = ai �bi.
This can be performed using similarly inexpensive logical operations

rHi = (aLi ^ bHi ) _ (aHi ^ bLi )
rLi = (aLi ^ bLi ) _ (aHi ^ bHi ) :



Armed with a function to perform this operation, we construct a general multi-
plication result of the form �c = �a � �b using

�ck =
m�1X

i=0

�ak+i �
m�1X

j=0

Mi;j � �bk+j

where in all cases, coeÆcient indices are reduced modulo m. The sparse matrix
M in this description is constructed from the normal polynomial p and essentially
dictates how reduction behaves for the �eld. We developed a compiler that takes
M and automatically produces circuitry to implement the three phases of the
above formula: an addition phase to compute the terms Mi;j � �bk+j , keeping
in mind that Mi;j 2 f0; 1; 2g; a multiplication phase to multiply �ak+i by the
summed terms; and accumulation phase sum all the multiplied terms and form
�ck. Such circuitry generates a single coeÆcient and hence requiresm clock cycles
to complete a multiply; we can place several of them working in parallel to
accelerate the multiplication [13].

There has already been plenty of previous work dedicated to hardware poly-
nomial basis multiplication methods in characteristic three [6,17,22]. We follow
the approach of Bertoni et al. [6] in employing a digit-serial approach. In a sim-
ilar way that a normal basis is scalable since we can utilise D parallel coeÆcient
calculation circuits, a digit-serial multiplier allows us to scale the digit-size D in
order to �nd a suitable balance between size and speed.

3.4 Inversion

Inversion is generally the most expensive operation when dealing with �nite
�eld arithmetic, so much so that in systems like ECC every e�ort is made to
construct higher level operations so that inversion is not required. Due to the cost
of constructing dedicated hardware for limited return, we implement inversion
in software using our hardware for other operations in F3m . To avoid the extra
hardware cost described by Kerins et al. [17], we implement inversion using the
relationship

a�1 = a3
m
�2:

using a ternary expansion of the exponent since cubing operations are so inex-
pensive. In a polynomial basis this could be improved upon incrementally by
using a translation of the standard binary Euclidean algorithm [15]. Since we
only require inversion once in the �nal powering, we leave this issue for further
work.

3.5 Exponentiation

Generally, we avoid exponentiation of pairing values by arbitrary exponents since
one can use the bilinearity property to push the operation inside the pairing as a
point multiplication which is more eÆcient, see the work of Granger et al. [14] for
eÆcient methods in this area. However, we do need to consider the �nal powering



PowerPC MicroBlaze

Registers

F3m ALU

USB Ethernet LCD ATA PCMCIA

Fig. 1. A block diagram of our experimental architecture as hosted on a Xil-
inx ML300 prototyping device. Note that FPGA hosted elements are shown in
dashed boxes while dedicated elements are shown in solid boxes.

of the pairing output by q3 � 1 in order to yield a value compatible with BKLS.
To power the pairing output f by the required exponent, we decompose the
operation into

f3
3m � f�1

the �rst term of which is simply three applications of the q-frobenius and the
second is an inversion. Thanks to our �eld arithmetic, the inversion is reasonably
eÆcient essentially because it can be done directly [14] rather than using an
iterative method.

4 Architecture and Results

4.1 Architecture

Our design was realised using VHDL synthesised with a combination of Xilinx
EDK 7.1 and ISE 7.1. Our experimental platform was a Xilinx ML300 prototyp-
ing board which hosts a Virtex-II PRO FPGA (XC2VP4FF672-6) device with
4928 slices. Our philosophy with this design was to treat the F3m arithmetic as
a kind of co-processor, which is controlled by a more general purpose processor
rather than hardwiring logic to directly compute the pairing. By swapping the
co-processor we can provide arithmetic in either polynomial or normal bases; the
FPGA size prevented making both available in one design. Since the instructions
that are issued to the co-processor are executed synchronously, one might view
this as a kind of instruction set extension. With this approach, we can easily im-
plement other higher level operations based on the same �eld arithmetic, such as



F397 in Polynomial Basis

Slices Cycles Instructions Speed
At 16 MHz At 150 MHz

Add 112 3 1 - -
Subtract 112 3 1 - -
Multiply 946 28 1 - -
Cube 128 3 1 - -
Cube Root 115 3 1 - -
Point Doubling - 220 15 13.8�s 1.5�s
Point Tripling - 52 9 3.3�s 0.4�s
Point Addition - 366 22 22.9�s 2.4�s
Pairing
Duursma-Lee - 59946 7857 3746.6�s 399.4�s
Kwon - 64602 9409 4037.6�s 430.7�s
Powering - 4941 397 308.8�s 32.9�s
Total 4481 - - - -

F389 in Normal Basis

Slices Cycles Instructions Speed
At 16 MHz At 85 MHz

Add 102 3 1 - -
Subtract 102 3 1 - -
Multiply 1505 48 1 - -
Cube 0 3 1 - -
Cube Root 0 3 1 - -
Point Doubling - 360 15 22.5�s 4.2�s
Point Tripling - 72 9 4.5�s 0.8�s
Point Addition - 606 22 37.9�s 7.1�s
Pairing
Duursma-Lee - 89046 7857 5563.3�s 1047.6�s
Kwon - 93702 9409 5856.3�s 1102.4�s
Powering - 7941 397 496.3�s 93.4�s
Total 4233 - - - -

Table 1. Cost and performance characteristics of hardware based �eld, point
and pairing arithmetic using polynomial and normal bases, clocked at low and
maximum frequencies.



the ECC point multiplication over E(F3m ) which is also required in most pairing
based schemes.

As such, we combine our arithmetic in F3m with a register �le, backed by
BlockRAM, of 32 registers each able to store an element of F3m which total under
1 kilobyte for our choices ofm. We control this combined data-path with a Xilinx
MicroBlaze soft-core, a 32-bit, 3-stage pipelined RISC processor which interfaces
to the logic using the Fast Simplex Link (FSL) interface. The MicroBlaze code
to control the co-processor was compiled using a re-targeted GCC tool-chain;
we were able to achieve fast development times as a result. In short, the FPGA
of our prototyping board is �lled, as described by Figure 1, with what could be
considered an embedded processor with a co-processor for arithmetic in F3m .
The obvious real-world analogy of this type of architecture is a smart-card with
an associated co-processor.

4.2 Results

Having selected our �elds for polynomial and normal bases so that they were as
close as possible in size, we took the approach of utilising as equal an amount
of the FPGA as possible to make comparison easier. Since our multiplier ar-
chitecture in both cases allows for scalability by altering the digit-size D, we
parameterised the polynomial basis multiplier with D = 4 and the normal basis
multiplier with D = 2, choices that resulted in roughly the same area cost.

Table 1 shows the performance of our arithmetic and higher level functions
at a modest clock speed that could be useful in a constrained environment and
the fastest possible speed resulting from our synthesis results. A given arithmetic
operation essentially requires n+ 2 cycles, 1 cycle for the instruction fetch and
decode, n for the execution and 1 to write-back the result into the register �le.
As well as cycle and wall-clock timings, we quote the number of instructions
issued by the MicroBlaze core to the ALU. The area costs are inclusive of all
system elements bar the instruction memory and register �le which are backed by
BlockRAM. The MicroBlaze core, FSL interface and debugging unit consumes
roughly 1300 slices; the �nite state machine to control the ALU consumes roughly
500 slices; the ALU logic consumes roughly 1700 slices depending on which
elements are included. Note that our upper clock speed was bounded by 150
MHz since this was the maximum permitted by use of the MicroBlaze.

In terms of �eld arithmetic, we �nd that the polynomial basis representation
is generally faster since although the cube and cube root circuits are more com-
plex, the dominant feature was the multiplier. The critical path of the normal
basis multiplier was far longer, forcing a lower clock speed, and the design much
larger, meaning the polynomial multiplier could employ a larger, more eÆcient
digit-size. Using these results and by simply looking at the algorithms, it is clear
that the Duursma-Lee algorithm will be faster than that of Kwon-BGOS since
although the later removes the need for a cube root in Fq , it requires a cubing
in Fqk . Thanks to the single-cycle cube root implementations, the cube in Fqk

will inevitably be slower. Table 1 con�rms this by quoting results for evaluating



the pairing and for the �nal powering: one should view a pairing as being the
combination of these two if the goal is compatibility with other algorithms.

Note that although the Kwon-BGOS algorithm is marginally slower it o�ers
an attractive trade-o� since we can omit the cube root logic from our design and
save the associated slices. Also note that because of the fast cube root method of
Barreto [1], the perceived advantage of a normal basis in being able to perform
fast cube root operations is eliminated: the multiplier is the dominant cost as a
result.

4.3 Analysis

In characteristic three, given our constrained setting, an eÆcient way to perform
point multiplication using minimal pre-computation is to use the generalised
non-adjacent form (GNAF) [9, 26], to construct a signed ternary expansion of
the exponent d (mod l). Such a representation is easy to compute and reduces
the average density of non-zero trits from two thirds to one half. Using A to
denote point addition and T to denote point tripling, the cost of an average
point multiplication is

log(d)

log(3)
T +

log(d)

2 log(3)
A:

The Boneh-Franklin IBE scheme [8] is perhaps the most de�nitive example of
the use of pairings within a concrete scheme. The trust authority or TA has a
public key PTA = s � P for a master secret s. A users public key is calculated
from the string ID using a hash function as PID = H1(ID). The corresponding
secret key is calculated by the TA as SID = s �PID. To encrypt the message M ,
one selects a random r and computes the tuple

C = (U; V ) = (r � P;M �H(e(PID; PTA)
r));

to decrypt C = (U; V ), one computes the result

M = V �H(e(SID; U)):

Considering our faster implementation using polynomial basis and Duursma-
Lee algorithm with a modest clock speed of 16 MHz, we use P to denote the
combination of pairing and �nal powering,M a point multiplication and E a �eld
exponentiation. Using this notation we see that encryption costs 2M+P while
decryption costs P . Although we do not consider it as an option, given some
extra storage the pairing required for encryption can be pre-computed which
results in the cost beingM+E . Using these costs and our timings from Table 1,
we �nd that using our architecture we can perform Boneh-Franklin encryption
in � 7ms and decryption in � 4ms.

This performance is easily enough for practical applications since a given
scheme will typically try to minimise the number of pairings executed. Thus,
one can consider making a trade-o� between performance and cost to reduce
the device size. For example, we can remove the cube root logic as described



above and utilise the Kwon-BGOS algorithm. Additional optimisations in this
direction include: reduction of the digit-size in our multiplication units; sharing
a group of addition cells between the addition and multiplication operations, at
the moment we place individual copies for each; improving the register allocation
strategy or spilling values to the main memory so as to reduce the size of our
register �le containing Fq elements; and further turning of the MicroBlaze to
eliminate the debug and RS232 logic used for development purposes only.

5 Conclusions

We have presented an accelerator for arithmetic in F3m and used it to implement
the Tate pairing, a primitive which is of increasing importance in cryptographic
schemes. Unlike previous work, we investigate both polynomial and normal basis
representations of �eld elements and both the Duursma-Lee and Kwon-BGOS
algorithms to compute the pairing. Our results demonstrate roughly a ten-fold
improvement on the only other known hardware implementation [17] and orders
of magnitude better than the fastest known software implementations.

The issue of size of slightly harder to quantify due to the use of FPGA as
a target. Although our design is clearly still unrealistically large to place on a
smart-card for example, we have demonstrated that our performance margin
is so great, trade-o�s that signi�cantly reduce the area are viable. We leave
the realisation of such optimisations for further work which might also include
other marginal issues: acceleration of inversion in F3m using Euclidean tech-
niques rather than by powering, perhaps by using extra hardware [17]; some
comparison with existing, proprietary smart-card hosted implementations of the
Tate pairing [27].
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