
Resistance of Randomized Projective
Coordinates Against Power Analysis

William Dupuy and Sébastien Kunz-Jacques

DCSSI Crypto Lab
51, bd de Latour-Maubourg, 75700 PARIS 07 SP
william.dupuy@laposte.net, kunzjacq@yahoo.fr

Abstract. Embedded devices implementing cryptographic services are
the result of a trade-off between cost, performance and security. Aside
from flaws in the protocols and the algorithms used, one of the most
serious threats against secret data stored in such devices is Side Channel
Analysis.
Implementing Public Key Cryptography in low-profile devices such as
smart cards is particularly challenging given the computational complex-
ity of the operations involved. In the area of elliptic curve cryptography,
some choices of curves and coefficient fields are known to speed up com-
putations, like scalar multiplication. From a theoretical standpoint, the
use of optimized structures does not seem to weaken the cryptosystems
which use them. Therefore several standardization bodies, such as the
NIST, recommend such choices of parameters. However, the study of
their impact on practical security of implementations may have been
underestimated.
In this paper, we present a new chosen-ciphertext Side-Channel Attack
on scalar multiplication that applies when optimized parameters, like
NIST curves, are used together with some classical anti-SPA and anti-
DPA techniques. For a typical exponent size, the attack allows to recover
a secret exponent by performing only a few hundred adaptive power
measurements.

1 Introduction

The use of elliptic curves for cryptographic purposes was proposed by Miller [10]
in 1985 and Koblitz [8] in 1987. Since then, it became an essential part of public
key cryptography. In particular, many cryptosystems rely on the intractability
of the discrete logarithm problem (DLP) on elliptic curves. The main advantage
of this problem is that it is believed to be harder to solve than other number-
theoretic problems. As a consequence, for a similar security level, it is possible
to use smaller objects than with integer factorization for example. This property
is especially attractive for embedded systems, where storage requirements and
computation times are critical.

Cryptosystems relying on DLP on elliptic curves use the scalar multiplication
operation in some large elliptic curve group (G, +)

P ∈ G → kP (1)

where k is a secret data. Because of DLP hardness, it is believed to be infeasible
to compute k from the knowledge of one or several pairs (P, kP).

In a situation where no reasonable attack on a cryptographic algorithm is
known, Kocher first observed in 1996 [9] that the measurement of the algorithm
computation time could still reveal secret information. This paved the way to
Side Channel Attacks that take advantage of the measurement of physical signals
emitted by a cryptographic device during a computation to gain access to secret
data.

Since then, several examples of Side Channel Attacks led to various coun-
termeasures being developed. Concerning scalar multiplication in EC groups,
the use of scalar multiplication algorithms with a regular computation flow like
double-and-add always or Montgomery Ladder is an answer to Simple Power
Analysis (SPA), while randomized projective coordinates, first proposed by [4],
are used to counter Differential Power Analysis (DPA).

In this paper, we present a new side-channel attack against scalar multipli-
cation implementing these countermeasures, when the EC group used is chosen
among the NIST [12], ANSI [1] or SEC [13] recommended curves. It is a Goubin-
style attack [6] that uses distinguished points whose presence can be detected
along the computation by an observation of power traces despite the random-
ization countermeasure. It leverages the particular shape of the underlying coef-
ficient fields.

The paper is organized as follows. We first briefly review some facts about
elliptic curves in section 2. Then section 3 presents some classical Side Channel
Attacks and common countermeasures to prevent them. Finally, sections 4 and
5 present the details of our attack.

2 Elliptic Curves

2.1 Elliptic Curve Equation

Let K be a finite field of characteristic p. Over this field, we set the equation (E)

y2 + a1xy = x3 + a2x
2 + a4x + a6

The elliptic curve (C) associated to (E) is the set of all points of K2 satisfying
(E), together with a particular pointO called point at infinity. K is the coefficient
field of the curve.

Up to an affine change of variables, if p = 2, we can set a1 = 1 and a4 = 0.
The equation can then be rewritten y2 + xy = x3 + a2x

2 + a6. If p ≥ 3, we can
set a1 = a2 = 0 and then (E) becomes y2 = x3 + a4x + a6.

Together with an addition law, this set forms a commutative group. We do
not describe the group law here since it does not play any role in the attack we
present.

2.2 Affine and projective representation

A point on a curve of equation (E) is a solution of (E). Therefore the simplest
representation of a point on a curve of equation (E) is the corresponding solution
of (E) in K2. This is the affine representation.

Nevertheless, other representations can be preferred. We are mainly inter-
ested in projective coordinates. Given P = (x, y) in affine coordinates, its repre-
sentation in projective coordinates is P = (xZ, yZ, Z) for any Z ∈ K∗. If a finite
solution of (E) is represented by (α, β, γ), then γ 6= 0. The point at infinity O is
represented by (0, β, 0) for any β 6= 0.

The projective representation is not unique. In fact, for some finite solution
(x, y) of (E) with x 6= 0 and y 6= 0, any of the three projective coordinates can
take an arbitrary value in K∗. This observation is the basis of the randomized
projective coordinates countermeasure, which we will describe in section 3.2.
Projective representation is also used to increase the efficiency of point addition
computations since for example, it allows to compute the group law without
having to perform modular inversion in the coefficient field.

2.3 Recommended Coefficient Fields for NIST Elliptic Curves

Curves recommended by standardization bodies such as NIST, ANSI, or SEC
are usually defined over Fp, or F2[x]/(P) where P a primitive polynomial. We
focus on NIST recommended curves from now on. Other standardized curves
present similar properties as the ones of the NIST.

Curves defined on Binary Fields The coefficient field is here of the form
F2[x]/(P). The primitive polynomials standardized by the NIST are:

P233(x) = x233 + x74 + 1

P283(x) = x283 + x12 + x7 + x5 + 1

P409(x) = x409 + x87 + 1

P571(x) = x571 + x10 + x5 + x2 + 1

We can notice that these polynomials are very sparse. This has to do with
hardware efficiency.

Curves Defined on Prime Order Fields For these curves, the coefficient
field is Fp, with p among

p192 = 2192 − 264 − 1

p224 = 2224 − 296 + 1

p256 = 2256 − 2224 + 2192 + 296 − 1

p384 = 2384 − 2128 − 296 + 232 − 1

p521 = 2521 − 1
As in the binary case, the sparse form of these primes simplifies and speeds

up operations in the coefficient field.

2.4 Scalar Multiplication

As already mentioned, cryptosystems relying on discrete logarithm on elliptic
curves make a consistent use of scalar multiplication. Given a public point P on
the elliptic curve, and a secret scalar k, this operation consists in computing kP .

Let us write k =
n−1∑
i=0

ki2i. The most basic algorithm that computes kP given

P and a ”black-box” implementation of the group law is the following:

[double-and-add from MSB to LSB]
INPUT: P in C
R=0
for i from n-1 to 0

R <- 2R
if k_i=1

R <- R+P
end for;
RETURN R

3 Side Channel Attack and Common Countermeasures

3.1 Classes of Attacks

SPA Simple Power Analysis applies when the sequence of operations performed
during some computation depends on a secret value. When the operations used
are sufficiently complex, they can be easily detected by physical measures and
the sequence of operations performed can be retrieved.

For instance, in a double-and-add algorithm, an addition is performed only if
the corresponding bit of k is set to 1. Assuming that doubling and adding have
noticeably different power consumption signatures, one observation of a power
consumption curve can be enough to extract the secret exponent value.

DPA: Differential Power Analysis was introduced by [3] on DES implementa-
tions, but it applies to public-key cryptography as well.

For DPA to work, some intermediate value v manipulated by a cryptographic
device must depend on known input and output values and on a few secret bits.
The power consumption of some operation manipulating v is measured for several
input values. To each value k of the secret bits involved corresponds a partition
of the input and output messages into subsets leading to the same value for v. A
guess for k can be checked as follows: if the value of k is correct, averaging the
power consumption inside these subsets should yield noticeably different results
among subsets. If it is wrong, results should be roughly identical no matter the
subset chosen.

Goubin-style attacks L. Goubin [6] first noticed that some properties of in-
termediate values may be invariant under randomization. For example, if a co-
ordinate of some projective point representation is zero, it remains equal to
zero whatever the randomization applied. If such a remarkable property can be
detected, an attack can be built as follows: input values are chosen so that a
remarkable value appears during the computation only if some hypothesis about
a secret is correct. The measure then allows the attacker to test his hypothesis.

The attack we present follows this framework.

3.2 Countermeasures

Many countermeasures have been developed to make the attacks presented in
section 3.1 impractical. Most widely used ones are presented here.

Regularization of the instructions flow For an algorithm to be protected
against SPA, its instruction flow must not depend on secret values. Double-and-
add always, or Montgomery ladder [11] are examples of such algorithms:

[Double-and-add always from MSB to LSB]
INPUT: P in C
R[0]=0
for i from n-1 to 0

R[0]<- 2R[0]
R[1]<- R[0]+P
R[0]<- R[k_i]

end for;
RETURN R[0]

[Montgomery ladder]
INPUT: P in C
R[0]=0;R[1]=P
for i from n-1 to 0

R[1-k_i]<- R[k_i]+R[1-k_i]
R[k_i]<- 2R[k_i]

end for;
RETURN R[0]

Randomization of data representation is targeted at DPA. If the represen-
tation of temporary values is randomized, an intermediate value does not depend
only on inputs and key bits, but also on some random data out of control of the
attacker. Consequently, aggregating measures is no longer possible.

In the case of scalar multiplication, expressing a point in randomized projec-
tive (or Jacobian) form, as suggested by Coron [4], is a common instantiation of
this countermeasure.

Randomization of the computation flow In order to prevent Goubin-style
attacks, randomness can be introduced in the sequence of operations performed.
Here are two examples of techniques applied to the scalar multiplication P → kP :

– Point blinding The hardware computes k(P + R) and kR, for some
random point R, separately [4] or together using a trick due to Shamir [7].

– Random exponent If q is the order of the underlying group, then qP = 0.
Therefore if (k + rq)P is computed instead of kP for some random value r,
the final result is unchanged, but the binary representation of the secret key
is scrambled by the addition of rq all along the computation.

4 The Attack: Theory

4.1 Assumptions on the Target Device

We aim at retrieving the n-bit secret scalar k stored in a cryptographic device
performing scalar multiplication P → kP for any point P of our choice, on an
elliptic curve whose coefficient field is defined by a sparse polynomial for the
binary field case or a ”sparse” prime for the prime field case (see 2.3).

An element e in the coefficient field can always be written e =
n−1∑
i=0

eiu
i with

u = 2 if K = Fp, and u = x if K = F2n = F2[x]. Since we will observe Hamming
weights during the attack, we assume that our target crypto device represents e
in the standard way by the binary string {ei}.

The secret scalar, on the other hand, is an object of Z/qZ where q is the
number of elements of the chosen elliptic curve group. We will write

k =
n−1∑
i=0

ki2i

The attack we propose applies to implementations having the following prop-
erties:

– Points are represented with randomized projective coordinates.
– No randomization of the computation flow is performed.

We focus on double-and-add always from the MSB to the LSB or on the
Montgomery ladder. However, the particular choice of the scalar multiplication
algorithm used is irrelevant, and we target more generally algorithms that per-
form one computation step per exponent bit. We suppose that in step j the point
KjP is manipulated, with

Kj =
n−1∑

i=n−1−j

ki2i−(n−1−j)

On the measurement side, we assume we have access to the Hamming weights
of the values manipulated, up to some noise.

4.2 Overview of the Attack

Suppose that some special point P0 can be distinguished from a random point,
for example by power analysis. Since we assumed in section 4.1 that on input P
and during step j, the multiplication algorithm manipulates

Kj .P =

 n−1∑
i=n−1−j

ki2i−(n−1−j)

P

asking for the computation of k.(1/KjP0) makes P0 appear at the j-th step of
computation. Because Kj = 2Kj−1+kn−1−j , assuming Kj−1 is known, the value
of the next unknown bit kn−1−j can be recovered as follows:

Assume that kn−1−j = 0 and that conse-
quently Kj = 2Kj−1. Observe the computation of
k (1/Kj)P0. If P0 is detected at step j, the hypothe-
sis on bit kn−1−j was correct. Otherwise, kn−1−j = 1
and Kj = 2Kj−1 + 1.

The above applies for j = 0 as well with K−1 = 0.
For each bit, several computations might be performed to improve the relia-

bility of the guess of kn−j . Then, by iterating this algorithm, the whole secret k
can be extracted.

4.3 Using Hamming Weights to Build a Distinguishable Point

We choose a point of the form

P0 = (uλ, y)

in affine coordinates, with λ as small as possible. Its representation in projective
form is P0 : (X = uλZ, Y = yZ,Z) for some random Z ∈ K∗.

For each value of λ we can expect that there is a point with abscissa uλ with
probability 1/2 : in Fp, this is the case if and only if 23λ+a2λ+b is a square, while
in F2n , it depends on whether the polynomial p(y) = y2 + xλy + x3λ + ax2λ + b
has roots. For all NIST curves, λ can be chosen ≤ 5.

Detecting the Distinguishable Point Because of the form of common co-
efficient fields such as NIST fields, we show in sections 4.4 and 4.5 that for a
random Z, X = uλZ is close to Z rotated by λ bits on the left (Z <<< λ),
therefore

U = Ham(X)− Ham(Z)

is small. At the opposite, for a random point where coordinates are uncorrelated,
U has mean 0 and variance V(U) = 2(n/4) = n/2. Therefore,

We measure U to discriminate P0 from a random
point.

As usual, increasing the number of experiments decreases the error probabil-
ity; several scalar multiplications lead to as many observations of U as necessary.
Statistical tests can then be performed as described in section 5.1 to make a de-
cision according to the observations.

Now, let us estimate the Hamming distance between uλZ and (Z <<< λ)
on both fields types.

4.4 Binary Fields

Let P (x) = 1+xn+
∑I

i=1 xmi with 1 ≤ mi < mi+1 < n be a primitive polynomial
over Z2[X] of degree n. Let e = n−deg(P (x)−xn) = mI . We assume that e > λ;
this is true for NIST curves which satisfy e > n/2. More generally, multiplication
optimization in F2n = F2[x]/(P) commands to choose e large.

Let Z ∈ F2n . Remember that elements of F2n are represented in the usual
polynomial base. For λ < e, set Z = Z1 + xn−λZ2 with deg(Z1) < n − λ and
deg(Z2) < λ : (Z <<< λ) = xλZ1 + Z2.

xλZ and (Z <<< λ) mod P are related by:

xλZ ≡ xλZ1 ⊕ xnZ2

≡ xλZ1 ⊕ (xn − P)Z2

≡ (Z <<< λ)⊕ Z2 ⊕ (xn − P)Z2

≡ (Z <<< λ)⊕
I∑

i=1

xmi Z2

Since λ < e, the above result is the reduced expression of the difference mod
P . Each term xmiZ2 is a λ-bit pattern that can affect at most a λ-bit window
of the difference. Therefore at most Iλ bits differ from Z and xλQ.

Under the assumption that the λ-bit windows do not overlap, the exact com-
putation of the probability law of Ham(xλQ)−Ham(Q) can be carried out; this
is useful to improve the attack (see section 5.1, Neyman-Pearson). The computa-
tion is performed in appendix A.1. The non-overlapping assumption is satisfied
for the NIST curves P233 and P409.

4.5 Prime Fields

We work here in Fp with p is prime. This case is more complex than the binary
case because of the carry propagations that occur while adding values mod p.

Let e be the the greatest integer such that 2n − 1− p < 2n−e. For all NIST
curves, e ≥ 32. Distinguished points for curves on prime fields satisfy λ ≤ 3:
thus we always have e− λ ≥ 29.

Let Z ∈ Fp, Z = Z1 + 2n−λZ2, with Z1 < 2n−λ and Z2 < 2λ.

(Z <<< λ) = 2λZ1 + Z2 and

2λZ ≡ 2λZ1 + 2nZ2 [p]
≡ 2λZ1 + (2n − p)Z2 [p]
≡ (Z <<< λ) + ∆ [p] with ∆ = (2n − 1− p)Z2

Since Z2 < 2λ and 2n − 1 − p ≤ 2n−e, ∆ < 2n−(e−λ). Since p ≥ 2n − 2n−e,
with probability around 1 − 2e−λ ≥ 1 − 2−29, (Z <<< λ) + ∆, viewed as an
integer, is reduced mod p (i.e. it lies in the interval [0, p−1]). We can thus forget
reduction mod p and study the effect of adding ∆ to (Z <<< λ) in Z.

Sparse primes like NIST primes satisfy relations of the form 2n − 1 − p =∑I
i=1 εi 2mi , with I small and εi = ±1 (see section 2.3; in the NIST case, I ≤ 3).

Therefore ∆ =
∑I

i=1 εi 2mi Z2. ∆ is composed of I λ-bit blocks; we now assume
as in the binary case that these blocks do not overlap, and this hypothesis is
fulfilled for all NIST curves mod p.

On average, carries beyond λ-bit blocks of multiples of Z2 (“block carries”)
do not change U = Ham(Z <<< λ)−Ham(2λZ), and have a small influence on
V(U) as shown in appendix A.2. Since inside each block the Hamming weight
is not changed on average, E(U) = 0 as in the binary case. Excluding the block
carries, at most Iλ bits differ between 2λZ and Z.

5 The attack: Practice

5.1 Statistical Tests

During the course of the attack, we target some specific bit kn−j manipulated
during step j + 1. We compute m times k.(1/(2Kj)P0) and collect m measures
Ui, 1 ≤ i ≤ m, of U . We must then choose a guess for kn−j depending on
S = (U1, . . . , Um). Let Dh be the law of U if kn−j = h, PD0(U = k) = pk,0 and
PD1(U = k) = pk,1.

Neyman-Pearson test It is well known from the Neyman-Pearson lemma that
the test that has the smallest error probability if both hypothesis on kn−j are
equally likely, consists in computing the probability of the sample S observed
according to both hypotheses, and to select the hypothesis kn−j = h for which
the probability of the sample is the highest; this is the hypothesis that explains
best the observed value. Knowing the pk,h, one can compute the probability of
S under hypothesis h through

PDh
(S) = Ph = pU1,hpU2,h . . . pUm,h (2)

Test based on a Variance Estimator While the Neyman-Pearson test on
S is optimal, it requires the exact knowledge of D0 and D1. A slightly less
efficient, but simpler test consists in estimating the variance of S. If kn−j = 0,
V(U) = V0 = (Iλ)/2 (binary case) or (I(λ + 1))/2 (prime case), whereas if
kn−j = 1, V(U) = V1 = n/2.

After m experiments, V(U) is estimated by V = 1
m

∑m
i=1 U2

i . The probability
Ph that V takes some specific value under Dh is then computed by approximating
both laws D0 and D1 by normal laws1: the law of V under Dh is approximated
by Vh/m times a χ2 with m degrees of freedom. The Neyman-Pearson decision
rule is then used on V : kn−j = 0 is decided if and only if P0 > P1.

Necessary Number of Experiments The error probability of the Neyman-
Pearson decision rule on some function f of the observation S for one experiment
depends on the statistical distance between f(D0) and f(D1)∑

k

|PD0(f(S) = k)− PD1(f(S) = k)|

and similarly, on several experiments, the distance between f(D0) × . . . f(D0)
and f(D1) × . . . × f(D1) could be computed. However, this is not practical.
Some approximations exist, like the Kullback-Leibler distance, or the Square
Euclidean Imbalance (see [2] or [5]). Very roughly, they state that for a con-
stant error rate the number of experiments depends on the distributions like(∑

k[PD0(f(S) = k)− PD1(f(S) = k)]2
)−1.

Practically, we prefer adaptive strategies that estimate on the fly the error
probability.

Adaptive Strategies If m measures are performed, resulting in some obser-
vation S of probability Ph under Dh, the probability that hypothesis h actually
holds is

P(h = 0|S) =
P0

P0 + P1
and P(h = 1|S) =

P1

P0 + P1

During a series of m experiments, m being a fixed value, the probability ratio
P(h = 0|S)/P(h = 1|S) = P0/P1 indicates the confidence in the decision made.
In the experiments we perform, some threshold δ > 1 is set. We perform more
experiments as long as 1/δ < P0/P1 < δ. If P0 > δP1 we decide h = 0, and
if P1 > δP0 we decide h = 1. Since the number of experiments is computed
adaptively, experiments are no longer independent and for example (2) is not
strictly true anymore. However we assume that the confidence estimation P0/P1

is still meaningful.

1 this is justified by the central limit theorem for D1; for D0, this can be considered
as an heuristic hypothesis.

Recovering the Whole Key Even if the error probability for each bit guess is
small, since we are dealing with large secret values (at least 192 bits), the proba-
bility that at least one error occurs during the attack is high. Additionally, after
one error at step j, since next experiments rely on the value of Kj , subsequent
tests will fail to detect P0 and with high probability, the next guessed bits will
be equal to 1.

Of course, one way to overcome this problem is to have a very low error prob-
ability per bit. However, more subtle approaches can be devised: for example, if
a long run of ones is guessed, one can attempt to restart from the computation
step where the run begins.

5.2 Experimental Results

We simulated a Montgomery Ladder using randomized projective coordinates
on the various NIST curves. We used the most basic variance estimator, with
no backtracking in case of long runs of ones. We looked for the number of mea-
surements required to guess the whole secret scalar with a success probability of
90%. No noise was added to the measurements, unlike in a real setting.

The number of measurements that had to be performed in order to reach a
confidence level of 90% does not grow linearly in the size of the scalar. In fact,
it depends on Iλ; this is to be expected because of the expression of V(U) under
the hypothesis kn−1−j = 0.

Current results are summarized in table 1 below.

Curve Total number of experiments Experiments per bit λ Iλ

p192 1117 6 2 2

p224 2347 10 6 6

p256 2729 11 4 12

p384 2519 7 1 3

p521 1305 3 n.a. 0

B233 482 2 1 1

B283 1854 7 5 15

B409 789 2 1 1

B571 2219 4 5 15

Table 1. Experiments Required for a 90% Confidence Level

6 Conclusion

In this paper, we presented a new chosen-ciphertext Side-Channel Attack on
elliptic curve scalar multiplication. It does not apply to any elliptic curve, but
rather to curves whose coefficient fields are chosen to enable efficient implemen-
tations on resource-constrained hardware; unfortunately, this kind of hardware
is precisely the target of choice for Side-Channel Attacks.

The attack is able to defeat some widely used countermeasures like anti-SPA
scalar multiplication algorithms and projective coordinate randomization. It is
stopped by more complex defenses like point blinding and scalar randomization;
these countermeasures do not however come for free in hardware. The attack
might also be prevented if the cryptanalyst cannot have full control over the
scalar multiplication input.

Practically, basic simulations show that the attack is able to recover a secret
scalar with a success rate of 90% on any NIST curve using no more than 11
power measurements per bit guessed, using a very simple statistical test. This
lead us to think that it is a practical threat that should be taken into account
by implementors.

References

1. ANSI X9.62-1998. Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA), 1998.

2. T. Baigneres, P. Junod, and S. Vaudenay. How Far Can We Go Beyond Linear
Cryptanalysis? In Advances in Cryptology – ASIACRYPT’ 04, volume 3329 of
LNCS, pages 432–450. Springer-Verlag, 2004.

3. C.Kocher, J.Jaffe, and B.Jun. Differential Power Analysis. In Advances in Cryptol-
ogy – CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer-Verlag, 1999.

4. J.-S. Coron. Resistance Against Differential Analysis for Elliptic Curve Cryptogra-
phy. In Advances in Cryptology – CHES’99, volume 1717 of LNCS, pages 292–302.
Springer-Verlag, 1999.

5. W. Feller. An Introduction To Probability Theory and Its Applications. Wiley
Series In Probability And Mathematical Statistics. John Wiley & Sons, 1968.

6. L. Goubin. A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems. In
Advances in Cryptology – PKC’03, volume 2567 of LNCS, pages 199–210. Springer-
Verlag, 2003.

7. K. Itoh, T. Izu, and M. Takenaka. Efficient Countermeasures Against Power Anal-
ysis for Elliptic Curve Cryptosystems. In CARDIS, pages 99–114, 2004.

8. N. Koblitz. Elliptic Curve Cryptosystems. In Mathematics of Computation, vol-
ume 48, pages 203–209. Springer-Verlag, 1987.

9. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of LNCS, pages 104–113. Springer-Verlag, 1996.

10. V. Miller. Use of Elliptic Curve in Cryptography. In Advances in Cryptology –
CRYPTO’ 85, volume 218 of LNCS, pages 417–426. Springer-Verlag, 1985.

11. P. Montgomery. Speeding the Pollard and Elliptic Curves Methods of Factorization,
volume 44. Math. Comp, 1985.

12. NIST. Recommended Elliptic Curves for Federal Government Use, 2000.
13. Standards for Efficient Cryptography Group/ Certicom Research. SEC 2: Rec-

ommended Elliptic Curve Cryptography Domain Parameters, Version 1.0, 2000.
http://www.secg.org.

A Computation of the Probability Law of U

A.1 Binary Case

In that section, we compute the exact probability law of the Hamming weight
difference between xλZ and Z <<< λ, under the assumption that the λ-bit
windows do not overlap.

We use the same notations as in 4.4: F2n = F2[X]/(P) and Z is a random
uniform value in F2n . For some λ < n− kI ,

U = Ham(Z)− Ham(xλZ)

is the random variable whose law we want to compute. We saw in section 4.4
that if Z = Z1 + xn−λZ2 with deg(Z1) < n− λ and deg(Z2) < λ, then

xλZ ≡ (Z <<< λ)⊕
I∑

i=1

xki .Z2

Set (Z <<< λ) =
∑n−1

i=0 zix
i. Then Z2 =

∑λ−1
j=0 zj xj . Let Uj be the con-

tribution of the j-th bit of Z2, zj , to U . Under the non-overlapping condition,
U = U0 + . . . + Uλ−1 and

Uj = Ham(Z <<< λ)− Ham

(
(Z <<< λ)⊕ zj

I∑
i=1

xki+j

)

= zj

I∑
i=1

(2zki+j − 1) = zj

(
2

I∑
i=1

zki+j − 2I

)

and for each i, j, zj and zki+j are independent because ki 6= 0. If W is a
binomial random variable B(I, 1/2),

P(Uj = k) =
1
2

P(2W − I = k) if k 6= 0

P(Uj = 0) =
1
2

+
1
2

P(2W = I)

In particular, E(Uj) = 0, and V(Uj) = I/2. Now U0, . . . , Uλ−1 depend on
different bits of Z and are therefore independent: the law of U is simply the law
of the sum of λ independent ”copies” of U0, for example. In order to implement
a Neyman-Pearson test on outcomes of U , its law can therefore be derived by
computing the λ-th convolution power of the law of U0. In order to perform
variance tests, we only need E(U) = 0, and V(U) = Iλ/2.

A.2 Large prime case

In the prime field case, we want to approximate the law of U = Ham(Z) −
Ham(2λZ), where 0 ≤ Z < p is random and the Hamming weight is computed
on reduced representations mod p.

In section 4.5, we proved that the law of U is very close to the law of

U ′ = Ham(Z ′)− Ham(Z ′ + ∆)

with Z ′ a random value in [0, 2n − 1],

∆ = (2n − p− 1)(Z ′ mod 2λ) =
I∑

i=1

εi 2mi (Z ′ mod 2λ)

and εi = ±1. Set Z ′ mod 2λ = Z ′
2. λ copies of Z ′

2 are added or subtracted
at I different λ-bit windows in Z. For the prime numbers we consider, mi+1 −
mi � λ and we will therefore assume that these windows do not overlap, and
even more, that no carry can propagate from one window to the other. We
will handle separately bit differences occurring inside these windows and bit
differences outside them, caused by carries overflowing the windows. The first
category of bit differences will be enumerated by a random value U ′

i , and the
second one by U ′

o: U ′ = U ′
o+U ′

i . We will assume that U ′
i and U ′

o are independent.
The contribution ci of each λ-bit window to U ′

i is a random binomial value
satisfying ci/2 − 1 ∼ B(λ, 1/2), and these contributions are independent be-
cause they involve independent bits of Z ′ (and although they both involve Z ′

2).
Therefore U ′

i/2− 1 ∼ B(Iλ, 1/2).
Let us focus on the contribution co of a term 2miZ ′

2 to U ′
o, corresponding

to a case εi = 1. With probability 1/2, no carry occurs and co = 0. If a carry
occurs, co contributes to U ′

o in the following way:

Contribution 1 0 −1 −i

Probability 1/4 1/8 1/16 2−(i+2)

For example, in the second case of the above table, two bits 01 in Z ′ are
changed by the carry into 10.

In fact, c0 = b(1 − Z) where b is a Bernoulli variable that is equal to one
if and only if a carry occurs, P(Z = i) = 2−i+1 for i ≥ 0, and b and Z are
independent. With the help of this expression, one can check that E(co) = 0 and
V(co) = 1/2. We would have obtained the same result for εi = −1, although c0

would be changed into −c0.

Finally, in the simplified model corresponding to the assumptions we made,
E(U) = 0 and V(U) = (I(λ + 1))/2. Also note that the modeling above can be
used to compute the probability law of U .

