
Privacy-Preserving Graph Algorithms in the
Semi-Honest Model

Justin Brickell and Vitaly Shmatikov

The University of Texas at Austin, Austin TX 78712, USA

Abstract. We consider scenarios in which two parties, each in posses-
sion of a graph, wish to compute some algorithm on their joint graph
in a privacy-preserving manner, that is, without leaking any information
about their inputs except that revealed by the algorithm’s output.

Working in the standard secure multi-party computation paradigm, we
present new algorithms for privacy-preserving computation of APSD (all
pairs shortest distance) and SSSD (single source shortest distance), as
well as two new algorithms for privacy-preserving set union. Our algo-
rithms are significantly more efficient than generic constructions. As in
previous work on privacy-preserving data mining, we prove that our al-
gorithms are secure provided the participants are “honest, but curious.”

Keywords: Secure Multiparty Computation, Graph Algorithms, Privacy

1 Introduction

In this paper, we investigate scenarios with two mutually distrustful parties, each
in possession of a graph (representing, e.g., a network topology, a distribution
channel map, or a social network). The parties wish to compute some algorithm
on their combined graph, but do not wish to reveal anything about their private
graphs beyond that which will be necessarily revealed by the output of the
algorithm in question.

For example, consider two Internet providers who are contemplating a merger
and wish to see how efficient the resulting joint network would be without reveal-
ing the details of their existing networks; or two transportation companies trying
to determine who has the greatest capacity to ship goods between a given pair
of cities without revealing what that capacity is or which distribution channels
contribute to it; or two social networking websites wishing to calculate aggre-
gate statistics such as degrees of separation and average number of acquaintances
without compromising privacy of their users, and so on.

In this paper, we construct privacy-preserving versions of classic graph algo-
rithms for APSD (all pairs shortest distance) and SSSD (single source shortest
distance). Our algorithm for APSD is new, while the SSSD algorithm is a privacy-
preserving transformation of the standard Dijkstra’s algorithm. We also show
that minimum spanning trees can be easily computed in a privacy-preserving

manner. As one of our tools, we develop protocols for privacy-preserving set
union, which are results of independent interest.

We demonstrate that our constructions are significantly more efficient than
those based on generic constructions for secure multi-party computation such
as Yao’s garbled circuits [39]. Some of the efficiency gain is due to our use of
canonical orderings on graph edges. We believe that this technique may find
applicability beyond the problems considered in this paper.

We prove that our constructions are secure in the semi-honest model. Assum-
ing that a party correctly follows the protocol, there is no efficient adversary that
can extract more information from the transcript of the protocol execution than
is revealed by that party’s private input and the result of the graph algorithm.
Our choice of the semi-honest model follows previous work on privacy-preserving
data mining such as Lindell and Pinkas’ construction for a privacy-preserving
version of the ID3 decision tree learning algorithm [28], and constructions by
Yang et al. for privacy-preserving classification [38].

In general, the semi-honest model seems to be the right fit for our setting,
where there is no realistic way to verify that the parties are submitting their
true graphs as private inputs. The best we could hope for in the case of actively
malicious participants is a protocol in which the parties first commit to their
graphs, and then prove at every step of the protocol that their inputs match their
commitments. This would greatly complicate the protocols without providing
any protection against parties who maliciously choose their graphs in such a way
that the result of the computation on the joint graph completely reveals the other
party’s input. We leave investigation of privacy-preserving graph algorithms in
the model with malicious participants to future work.

This paper is organized as follows. We survey related work in section 2,
then present our definition of privacy in section 3 and our cryptographic toolkit,
including a construction for private set union, in section 4. Section 5 contains
the main results of the paper: privacy-preserving APSD and SSSD algorithms.
Their complexity is analyzed in section 6. Conclusions are in section 7.

2 Related Work

This paper follows a long tradition of research on privacy-preserving algorithms
in the so called secure multiparty computation (SMC) paradigm. Informally, se-
curity of a protocol in the SMC paradigm is defined as computational indistin-
guishability from some ideal functionality, in which a trusted third party accepts
the parties’ inputs and carries out the computation. The ideal functionality is
thus secure by definition. The actual protocol is secure if the adversary’s view in
any protocol execution can be simulated by an efficient simulator who has access
only to the ideal functionality, i.e., the actual protocol does not leak any infor-
mation beyond what is given out by the ideal functionality. Formal definitions
for various settings can be found, for example, in [6, 7, 22].

Any polynomial-time multi-party computation can be done in a privacy-
preserving manner using generic techniques of Yao [39] and Goldreich, Micali,

and Wigderson [23]. Generic constructions, however, are sometimes impractical
due to their complexity. Recent research has focused on finding more efficient
privacy-preserving algorithms for specific problems such as computation of ap-
proximations [18], auctions [33], set matching and intersection [20], surveys [19],
computation of the k-th ranked element [1] and especially data mining problems
such as privacy-preserving computation of decision trees [28], classification of
customer data [38], and mining of vertically partitioned data [16, 37].

The techniques we use in this paper are closely related to those previously
used in the cryptographic version of privacy-preserving data mining, e.g., by
Lindell and Pinkas in their privacy-preserving transformation of the ID3 algo-
rithm [28]. We, too, use generic Yao’s protocol [39, 29] as a building block. Yao’s
protocol can be implemented using efficient constructions for oblivious trans-
fer [31, 32] and secure function evaluation [30].

In this paper, we aim to follow the SMC tradition and provide provable cryp-
tographic guarantees of security for our constructions. Another line of research
has focused on statistical privacy in databases, typically achieved by randomly
perturbing individual data entries while preserving some global properties [4,
2, 5, 3, 26, 12, 17]. A survey can be found in [36]. The proofs of security in this
framework are statistical rather than cryptographic in nature, and typically per-
mit some leakage of information, while supporting more efficient constructions.
In this paradigm, Clifton et al. have also investigated various data mining prob-
lems [10, 24, 35, 25], while Du et al. researched special-purpose constructions for
problems such as privacy-preserving collaborative scientific analysis [14, 13, 34,
15]. Recent work by Chawla et al. [8] aims to bridge the gap between the two
frameworks and provide rigorous cryptographic definitions of statistical privacy
in the SMC paradigm.

Another line of cryptographic research on privacy focuses on private infor-
mation retrieval (PIR) [9, 21], but the problems and techniques in PIR are sub-
stantially different from this paper.

3 Definition of Privacy

We use a simplified form of the standard definition of security in the static
semi-honest model due to Goldreich [22] (this is the same definition as used, for
example, by Lindell and Pinkas [28]).

Definition 1. (computational indistinguishability): Let S ⊆ {0, 1}∗. Two en-
sembles (indexed by S), X

def= {Xw}w∈S and Y
def= {Yw}w∈S are computation-

ally indistinguishable (by circuits) if for every family of polynomial-size circuits,
{Dn}n∈N, there exists a negligible (i.e., dominated by the inverse of any polyno-
mial) function µ : N 7→ [0, 1] so that

|Pr[Dn(w,Xw) = 1]− Pr[Dn(w, Yw) = 1]| < µ(|w|)

In such a case we write X
c≡ Y .

Suppose f is a polynomial-time functionality (deterministic in all cases con-
sidered in this paper), and π is the protocol. Let x and y be the parties’ respective
private inputs to the protocol. For each party, define its view of the protocol as
(x, r1,m1

1, . . . ,m
1
k) (respectively, (y, r2,m2

1, . . . ,m
2
l)), where r1,2 are the parties’

internal coin tosses, and mi
j is the jth message received by party i during the

execution of the protocol. We will denote the ith party’s view as viewπ
i (x, y), and

its output in the protocol as outputπi (x, y).

Definition 2. Protocol π securely computes deterministic functionality f in the
presence of static semi-honest adversaries if there exist probabilistic polynomial-
time simulators S1 and S2 such that

{S1(x, f(x, y))}x,y∈{0,1}∗
c≡ {viewπ

1 (x, y)}x,y∈{0,1}∗

{S2(y, f(x, y))}x,y∈{0,1}∗
c≡ {viewπ

2 (x, y)}x,y∈{0,1}∗

where |x| = |y|.

Informally, this definition says that each party’s view of the protocol can be
efficiently simulated given only its private input and the output of the algorithm
that is being computed (and, therefore, the protocol leaks no information to a
semi-honest adversary beyond that revealed by the output of the algorithm).

4 Tools

As building blocks for our algorithms, we use protocols for privacy-preserving
computation of a minimum min(x, y) and set union S1 ∪ S2.

In the minimum problem, the parties have as their respective private inputs
integers x1 and x2 which are representable in n bits. They wish to privately com-
pute m = min(x1, x2). Because this problem is efficiently solved by a simple cir-
cuit containing O(n) gates, it is a good candidate for Yao’s generic method [39].
An implementation of this functionality with Yao’s garbled circuit requires 2
communication rounds with O(n) total communication complexity and O(n)
computational complexity.

4.1 Privacy-Preserving Set Union

In the set union problem, parties P1 and P2 have as their respective private
inputs sets S1 and S2 drawn from some finite universe U . They wish to compute
the set S = S1 ∪ S2 in a privacy-preserving manner, i.e., without leaking which
elements of S are in the intersection S1 ∩S2. We will define |S1| = s1, |S2| = s2,
|S| = s, and |U | = u.

In this section, we give two solutions for privacy-preserving set union: the
iterative method, and the tree-pruning method. Both require communication
and computational complexity that is logarithmic in u, provided s is small (note
that even if we are not concerned about privacy, computing the set union requires
at least O(s lg u) bandwidth, although it can be done in 1 round). Appendix B

surveys several previously proposed techniques that can be used to compute the
set union, but these techniques are all either linear in u (or worse), or do not
fully preserve privacy.

Iterative method. The basic idea of the iterative method is to build up S one
element at a time, from “smallest” to “largest.” Before the protocol begins,
both parties agree upon a canonical total ordering for the entire universe U . As
a result, each element in U is given an integer label with lg u bits. In addition,
we need a label representing ∞, for which can simply use the integer u + 1. The
protocol proceeds as follows:
Step 1. Set S = ∅.
Step 2. P1 selects m1 as the canonically smallest element in S1, or sets m1 = ∞
if S1 = ∅. P2 likewise selects m2 as the canonically smallest element in S2, or
sets m1 = ∞ if S1 = ∅.
Step 3. Using a protocol for private minimum, P1 and P2 privately compute
m = min(m1,m2).
Step 4. If m = ∞, stop and return S. Otherwise, S = S ∪ {m} and the parties
remove m from their input sets (it may be present in one or both). Then return
to step 2.

The protocol preserves privacy because, given the output set S, a simulator
can determine the value of m at each iteration. The protocol used for computing
the minimum is private, so there exists an efficient algorithm that can simulate
its execution to the party P1 given its input and the output m (likewise for
P2). The simulator for the iterative method protocol uses the simulator for the
minimum protocol as a subroutine, following the standard hybrid argument.

The iterative method protocol requires s + 1 iterations, and in each itera-
tion the minimum of two (lg u)-bit integers is privately computed. Using Yao’s
method, this requires a circuit with 2 lg u inputs and O(lg u) gates. The 2 lg u
oblivious transfers can all take place in parallel, and since Yao’s method re-
quires a constant number of rounds the whole protocol takes O(s) communi-
cation rounds. The total communication and computational complexity for the
iterative method is O(s lg u).

Tree-pruning method. Before the tree-pruning protocol begins, the participants
agree on a (lg u)-bit binary label for each element in the universe (note that a
canonical total ordering would automatically provide such a label). The basic
idea of the protocol is that the participants will consider label prefixes of in-
creasing length, and use a privacy-preserving Bit-Or protocol (see appendix C)
to determine if either participant has an element with that prefix in his set.

Initially, the single-bit prefixes “0” and “1” are set “live.” The protocol pro-
ceeds through lg u rounds, starting with round 1. In the ith round, the partic-
ipants consider the set P of i-bit “live” prefixes. For each prefix p ∈ P , each
participant sets his respective 1-bit input to 1 if he has an element in his set
with prefix p, and to 0 if he does not have any such elements. The participants
then execute a privacy-preserving Bit-Or protocol on their respective 1-bit in-

puts. If the result of the Bit-Or protocol is 1, then p0 and p1 are set as live
(i + 1)-bit prefixes. Otherwise, p0 and p1 are dead prefixes.

By a simple inductive argument, the number of live prefixes in each round
does not exceed 2 · |S|, because an i-bit prefix pi = b1 . . . bi can be live if and
only if at least one of the participants has an element whose label starts with
b1 . . . bi−1, and the number of such elements cannot exceed the total number of
elements in the union, i.e., |S|.

In the last round (i = lg u), the length of the prefix is the same as the length
of the binary labels, and the entire set P of live prefixes is declared to be the
output S of the privacy-preserving set union protocol.

The tree-pruning protocol preserves privacy because, given the output set
S, a simulator can determine the output of each of the Bit-Or protocols. As
in the case of the iterative method protocol, we can construct a simulator for
the tree-pruning protocol that uses a simulator for the Bit-Or protocol as a
subroutine, and prove its correctness using a hybrid argument. The construction
is simple and is omitted for brevity.

The tree-pruning protocol requires lg u iterations, and in each iteration the
pairwise Bit-Or of at most 2s bits is computed. These computations can all
take place in parallel, so the protocol requires O(lg u) communication rounds.
Each iteration requires O(s) communication and computational complexity, so
the entire protocol has complexity O(s lg u). Both the iterative method and tree
pruning protocols have the same complexity, but different numbers of rounds.
The iterative method requires fewer rounds when s = o(lg u).

5 Privacy-Preserving Algorithms on Joint Graphs

We now present our constructions that enable two parties to compute algorithms
on their joint graph in a privacy-preserving manner. Let G1 and G2 be the two
parties’ respective weighted graphs. Assume that G1 = (V1, E1, w1) and G2 =
(V2, E2, w2) are complete graphs on the same set of vertices, that is, V1 = V2

and E1 = E2. Let w1(e) and w2(e) represent the weight of edge e in G1 and G2,
respectively. To allow incomplete graphs, the excluded edges may be assigned
weight ∞. We are interested in computing algorithms on the parties’ joint min-
imum graph gmin(G1, G2) = (V,E,wmin) where wmin(e) = min(w1(e), w2(e)),
since minimum joint graphs seem natural for application scenarios such as those
considered in section 1.

5.1 Private All Pairs Shortest Distance (APSD)

The All Pairs Shortest Distance (APSD) problem is the classic graph theory
problem of finding shortest path distances between all pairs of vertices in a
graph (see, e.g., [11]). We will think of APSD(G) as returning a complete graph
G′ = (V,E′, w′) in which w′(eij) = dG(i, j) and V is the original edge set of
G. Here dG(i, j) represents the shortest path distance from i to j in G. This

problem is particularly well suited to privacy-preserving computation because
the solution “leaks” useful information that can be used by the simulator.

To motivate the problem, consider two shipping companies who are hoping
to improve operations by merging so that they can both take advantage of fast
shipping routes offered by the other company. They want to see how quickly
the merged company would be able to ship goods between pairs of cities, but
they don’t want to reveal all of their shipping times (and, in particular, their
inefficiencies) in case the merger doesn’t happen. In other words, they wish to
compute APSD(G) where G = gmin(G1, G2).

The basic idea behind our construction is to build up the solution graph by
adding edges in order from shortest to longest. The following algorithm takes as
input the parties’ complete graphs G1 and G2. The graphs may be directed or
undirected, but they must have strictly positive weight functions.

1. For notational convenience we introduce a variable k, initially set to 1, that
represents the iteration count of the algorithm. Color each edge in E “blue”
by letting B(k) denote the set of blue edges in the edge set E at iteration
k, and setting B(0) = E. Let R(k) denote the set of “red” edges, R(k) def

=
E − B(k). The lengths of red edges have reached their final values and will
not change as the algorithm proceeds, while the lengths of blue edges may
still decrease.

2. A public graph G
(0)
0 = (V,E, w

(0)
0) is created. Its edges are all initially

weighted as w
(0)
0 (e) = ∞. When the algorithm terminates after n iterations,

we will have w
(n)
0 (eij) = dG(i, j) and B(n) = ∅.

3. The parties compute the following public value

m
(k)
0 = min

e∈B(k−1)
w

(k−1)
0 (e) (1)

and the respective private values

m
(k)
1 = min

e∈B(k−1)
w1(e), and (2)

m
(k)
2 = min

e∈B(k−1)
w2(e) (3)

4. Now the parties privately compute the length of the smallest blue edge
among all three graphs, m(k) = min(min(m(k)

1 ,m
(k)
0),min(m(k)

2 ,m
(k)
0)), us-

ing a generic protocol for private minimum (section 4). This protocol does
not reveal the larger value.

5. The parties form the following public set

S
(k)
0 = {e|w(k−1)

0 (e) = m(k)} (4)

and the respective private sets

S
(k)
1 = {e|w1(e) = m(k)}, and (5)

S
(k)
2 = {e|w2(e) = m(k)} (6)

By construction, S
(k)
0 , S

(k)
1 , and S

(k)
2 contain only blue edges.

6. First, the parties privately compute the set union S(k) = S
(k)
0 ∪ S

(k)
1 ∪ S

(k)
2 .

This is done using the privacy-preserving set union algorithm from section 4.
Next, the color of each edge e ∈ S(k) is changed from blue to red by setting
B(k) = B(k−1) − S(k). Define a weight function w

′(k)
0 by

w
′(k)
0 (e) =

{
m(k) if e ∈ S(k)

w
(k−1)
0 (e) otherwise

(7)

7. Examine triangles with an edge eij ∈ S(k), an edge ejk ∈ R(k), and an edge
eik ∈ B(k). Define the weight function w

(k)
0 by fixing these triangles if they

violate the triangle inequality under w
′(k)
0 . More precisely, if w

′(k)
0 (eij) +

w
′(k)
0 (ejk) < w

′(k)
0 (eik), then define w

(k)
0 (eik) = w

′(k)
0 (eij) + w

′(k)
0 (ejk). Do

the same for triangles with an edge eij ∈ R(k), an edge ejk ∈ S(k), and an
edge eik ∈ B(k).

8. If there are still blue edges, go to step 3. Otherwise stop; the graph G
(k)
0

holds the solution to APSD(G).

The algorithm is proved correct in appendix A. The proof of privacy follows.

Proof (Privacy). We describe a simulator for P1; the simulator is given P1’s
input to the protocol, x, and the output of the protocol, f(x, y) = G′. The
simulators are identical for P1 and P2 except for the asymmetry in the simulation
of the set union and minimum subprotocols. We assume that simulators for
the subprotocols exist because they are private protocols. For instance, if Yao’s
protocol is used then we can use the simulator in [29].

We will assume that there are n protocol rounds. The view of P1 is

{RTm(x1, y1), RTu(x2, y2), RTm(x3, y3), . . . , RTu(x2n, y2n)} (8)

where RTm denotes the real transcript of the private minimum protocol, and
RTu denotes the real transcript of the private set union protocol.

We will show in later theorems that the output of each of these protocol
executions can be computed by the simulator as a polynomial function of G′,
which we will denote as hm

i (G′) and hu
i (G′). We will also show that P1’s input

to each of these protocol executions can be computed as a polynomial function
of x and G′ which we will denote as gm

i (x, G′) and gu
i (x,G′). The simulator can

therefore use the subprotocol simulators as subroutines, producing the simulated
transcript

{STm(gm
1 (x,G′), hm

1 (G′)), . . . , STu(gu
2n(x, G′), hu

2n(G′))} (9)

where STm and STu denote the simulated transcripts of the minimum and union
protocols, respectively.

We prove a hybrid argument over the simulated views for the minimum and
set union protocols. First, define the hybrid distribution Hi in which the first i

minimum/union protocols are simulated and the last 2n − i are real. Formally,
let Hi(x, y) denote the distribution:

{STm(gm
1 (x,G′), hm

1 (G′)), . . . , STu(gu
i (x, G′), hu

i (G′)),
RTm(xi+1, yi+1), RTu(xi+2, yi+2), . . . , RTu(x2n, y2n)}

We now prove that H0(x, y)
c≡ H2n(x, y) by showing that for all i, Hi(x, y)

c≡
Hi+1(x, y). For the sake of contradiction, assume the opposite, and choose i so

that Hi(x, y)
c

6≡ Hi+1(x, y). These two distributions differ in only one term, so
there must be a polynomial-time distinguisher for either

STu(gu
i (x,G′), hu

i (G′)) and RTu(xi, yi) or
STm(gm

i (x, G′), hm
i (G′)) and RTm(xi, yi)

However, this contradicts the privacy of the subprotocols, which implies that no
such polynomial-time distinguishers exist.

We now show that for each execution of the set union and minimum subprotocols,
P1’s subprotocol input and the subprotocol output are computable as functions
of P1’s input and the output of the entire APSD protocol.

Theorem 1 m(k) is efficiently computable as a function of G′.

Proof. The edge weights found in G′ are m(1) < m(2) < . . . < m(n). Therefore
m(k) is the kth smallest edge weight in G′.

Theorem 2 S(k) is efficiently computable as a function of G′.

Proof. S(k) is the set of edges in G′ with weight m(k).

Theorem 3 m
(k)
1 is efficiently computable as a function of G1 and G′.

Proof. m
(k)
1 is the smallest edge weight in G1 that is > m(k−1), allowing that

m(0) = 0. This is because all edges with weight ≤ m(k−1) are in R(k−1).

Theorem 4 S
(k)
1 is efficiently computable as a function of G1 and G′.

Proof. S
(k)
1 is the set of edges in G1 with weight m(k).

5.2 Private All Pairs Shortest Path

While there is only a single all pairs shortest distance solution for a given graph,
there may be many all pairs shortest path solutions, because between a pair of
points there may be many paths that achieve the shortest distance. As a side
effect of engaging in the protocol described in section 5.1, the two participants
learn an APSP solution. When defining the weight function w

(k)
0 by fixing vio-

lating triangles in w
′(k)
0 during step 7, a shortest path solution may be associated

with the fixed edge. Specifically, if w
′(k)
0 (eij) + w

′(k)
0 (ejk) < w

′(k)
0 (eik), then the

shortest path from i to k is through j.
In step 6 of subsequent iterations, when adding an edge eij ∈ S(k) to the set

of blue edges, we can conclude that the shortest path from i to j is the edge
eij itself if eij 6∈ S

(k)
0 , or is the shortest path solution as computed above if

eij ∈ S
(k)
0 .

Note that learning this APSP solution does not imply any violation of privacy,
as it is the APSP solution implied by the APSD solution.

5.3 Private Single Source Shortest Distance (SSSD)

The Single Source Shortest Distance (SSSD) problem is to find the shortest
path distances from a source vertex s to all other vertices [11]. An algorithm to
solve APSD also provides the solution to SSSD, but leaks additional information
beyond that of the SSSD solution and cannot be considered a private algorithm
for SSSD. Therefore, this problem warrants its own investigation.

Similar to the protocol of section 5.1, the SSSD protocol on the minimum
joint graph adds edges in order from smallest to largest. This protocol is very
similar to Dijkstra’s algorithm, but is modified to take two graphs as input.

1. Set w
(0)
1 = w1 and w

(0)
2 = w2. Color all edges incident on the source s blue

by putting all edges esi into the set B(0). Set the iteration count k to 1.
2. Both parties privately compute the minimum length of blue edges in their

graphs.

m
(k)
1 = min

esi∈B(k−1)
w

(k−1)
1 (esi),

m
(k)
2 = min

esi∈B(k−1)
w

(k−1)
2 (esi)

3. Using the privacy-preserving minimum protocol, compute

m(k) = min(m(k)
1 ,m

(k)
2).

4. Each party finds the set of blue edges in its graph with length m(k).

S
(k)
1 = {esi|w(k−1)

1 (esi) = m(k)}, and

S
(k)
2 = {esi|w(k−1)

2 (esi) = m(k)}

5. Using the privacy-preserving set union protocol, compute

S(k) = S
(k)
1 ∪ S

(k)
2 .

6. Color the edges in S(k) red by setting Bk = B(k−1) − S(k). Define a weight
function w

′(k)
1 by

w
′(k)
1 (e) =

{
m(k) if e ∈ S(k)

w
(k−1)
1 (e) otherwise

(10)

and a weight function w
′(k)
2 by

w
′(k)
2 (e) =

{
m(k) if e ∈ S(k)

w
(k−1)
2 (e) otherwise

(11)

7. Similar to the APSD algorithm, form the weight function w
(k)
1 by fixing the

triangles in w
′(k)
1 that violate the triangle inequality and contain edges in

S(k). w2(k) is likewise formed from w
′(k)
2 .

If there are still blue edges remaining, go to step 2. Otherwise stop; both
parties now have a graph with each edge incident on s colored red, and with
the weight of these edges equal to the shortest path distance from s to each
vertex.

5.4 Minimum Spanning Tree

Suppose that two frugal telephone companies wish to merge. Each company has
a cost function for connecting any pair of houses, and they want to connect
every house as cheaply as possible using the resources available to the merged
company. In other words, they wish to compute MST(gmin(G1, G2)). If they can
perform this computation privately, then both companies can see the final result
without revealing their entire cost functions.

Both Kruskal’s and Prim’s algorithms for MST are easily turned into private
protocols using our techniques, because the algorithms already consider edges in
order from smallest to largest. At each iteration, Kruskal’s algorithm adds the
shortest edge such that its addition does not form a loop. It is a simple task for
each party to compute the set of edges which would not form loops, and then
to privately compute the length of the shortest edge in this set. One problem
arises when there are multiple edges that share this length. In the shortest path
algorithms, we addressed this issue by adding all edges of appropriate length
at the same time using the private set union protocol, but this will not work
for MST. Instead, we can assign a canonical ordering to the edges, and at each
step find the shortest length edges that are canonically “first.” This will allow a
simulator to determine, given the final MST, in what order the edges arrived.

6 Complexity analysis

For each algorithm considered in this paper, we calculate the number of rounds,
the total communication complexity, and the computational complexity, and
compare them with the generic method. Using Yao’s method on a circuit with
m gates and n inputs requires O(1) rounds, O(m) communication, and O(m+n)
computational overhead. Lindell and Pinkas note in [28] that the computational
overhead of the n oblivious transfers in each invocation of Yao’s protocol typ-
ically dominates the computational overhead for the m gates, but for correct
asymptotic analysis we must still consider the gates.

Complexity of privacy-preserving APSD. For our analysis we will assume that
the edge set E has size n, and that the maximum edge length is l. The generic
approach to this problem would be to apply Yao’s Method to a circuit that
takes as input the length of every edge in G1 and G2, and returns as output
G = APSD(gmin(G1, G2)). Clearly, such a circuit will have 2n log l input bits.
To count the number of gates, note that a circuit to implement Floyd-Warshall
requires O(n3/2) minimums and O(n3/2) additions. For integers represented with
log l bits, both of these functionalities require log l gates, so we conclude that
Floyd-Warhsall requires O(n3/2 log l) gates. To compute gmin requires O(n log l)
gates, but this term is dominated by the gate requirement for Floyd-Warshall.
We conclude that the generic approach requires O(1) rounds, O(n3/2 log l) com-
munication, and O(n3/2 log l) computational overhead.

The complexity of our approach depends on the number of protocol iterations
k, which is equal to the number of different edge lengths that appear in the
solution graph. In iteration i, we take the minimum of two (lg l)-bit integers,
and compute a set union of size si. Because each edge in the graph appears in
exactly one of the set unions, we also know that

∑k
i=1 si = n.

First we will determine the contribution to the total complexity made by
the integer minimum calculations. If we use Yao’s protocol, then each integer
minimum requires a constant number of communication rounds, O(lg l) inputs,
and O(lg l) gates, so the k calculations together contribute O(k) rounds, O(k lg l)
communication complexity, and O(k lg l) computational complexity.

Complexity contribution of the set union subprotocols depends on whether we
use the iterative method or the tree pruning method as described in section 4.
If the iterative method is used, then the k invocations of set union require a
total of O(n) rounds, O(k lg n) communication complexity, and O(k lg n) com-
putational complexity. If the tree-pruning method is used, then O(k lg n) rounds
are required, but the communication and computational complexity remains
the same. The asymptotically better performance of the iterative method hides
the fact that each of the k rounds requires O(lg n) oblivious transfers, which
are considerably more expensive than the O(|si|) private Bit-Or computations
performed in each of the lg u rounds of the tree-pruning method.

Using the iterative method for set union, and noting that k = O(n), we con-
clude that our APSD protocol requires O(n) communication rounds, O(n log n+
n log l) communication complexity, and O(n log n + n log l) computational com-
plexity. As compared to the generic approach, we have traded more rounds for
better overall complexity.

Complexity of privacy-preserving SSSD. Complexity of SSSD is similar to that
of APSD, except that the number of rounds is k = O(v) and the total number
of set union operations is v, where v is the number of vertices (O(e1/2)). We
conclude that our protocol requires O(v) rounds, O(v(log v + log l)) oblivious
transfers, and O(v(log v + log e)) gates. A generic solution, on the other hand,
would require O(v2 log l) oblivious transfers.

7 Conclusions

In this paper, we presented privacy-preserving protocols that enable two honest
but curious parties to compute APSD and SSSD on their joint graph. A related
problem is how to construct privacy-preserving protocols for graph comparison.
Many of these problems (e.g., comparison of the graphs’ respective maximum
flow values) reduce to the problem of privacy-preserving comparison of two val-
ues, and thus have reasonably efficient generic solutions. For other problems, such
as graph isomorphism, there are no known polynomial-time algorithms even if
privacy is not a concern. Investigation of other interesting graph algorithms that
can be computed in a privacy-preserving manner is a topic of future research.

References

1. G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the k-th ranked
element. In Proc. Advances in Cryptology - EUROCRYPT 2004, volume 3027 of
LNCS, pages 40–55. Springer-Verlag, 2004.

2. D. Agrawal and C. Aggarwal. On the design and quantification of privacy pre-
serving data mining algorithms. In Proc. 20th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pages 247–255. ACM,
2001.

3. R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private
databases. In Proc. 2003 ACM SIGMOD International Conference on Management
of Data, pages 86–97. ACM, 2003.

4. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. 2000 ACM
SIGMOD International Conference on Management of Data, pages 439–450. ACM,
2000.

5. M. Bawa, R. Bayardo, and R. Agrawal. Privacy-preserving indexing of documents
on the network. In Proc. 29th International Conference on Very Large Databases
(VLDB), pages 922–933. Morgan Kaufmann, 2003.

6. D. Beaver. Foundations of secure interactive computing. In Proc. Advances in
Cryptology - CRYPTO 1991, volume 576 of LNCS, pages 377–391. Springer-Verlag,
1992.

7. R. Canetti. Security and composition of multiparty cryptograpic protocols. J.
Cryptology, 13(1):143–202, 2000.

8. S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Towards privacy in
public databases. In Proc. 2nd Theory of Cryptography Conference (TCC), volume
3378 of LNCS, pages 363–385. Springer-Verlag, 2005.

9. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval.
J. ACM, 45(6):965–981, 1998.

10. C. Clifton, M. Kantarcioglou, J. Vaidya, X. Lin, and M. Zhu. Tools for privacy
preserving distributed data mining. ACM SIGKDD Explorations, 4(2):28–34, 2002.

11. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
1990.

12. I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proc.
22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), pages 202–210. ACM, 2003.

13. W. Du and M. Atallah. Privacy-preserving cooperative scientific computations.
In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), pages
273–294. IEEE, 2001.

14. W. Du and M. Atallah. Privacy-preserving cooperative statistical analysis. In
Proc. 17th Annual Computer Security Applications Conference (ACSAC), pages
102–112. IEEE, 2001.

15. W. Du, Y. Han, and S. Chen. Privacy-preserving multivariate statistical analysis:
linear regression and classification. In Proc. 4th SIAM International Conference
on Data Mining (SDM), pages 222–233. SIAM, 2004.

16. C. Dwork and K. Nissim. Privacy-preserving data mining on vertically partitioned
databases. In Proc. Advances in Cryptology - CRYPTO 2004, volume 3152 of
LNCS, pages 528–544. Springer-Verlag, 2004.

17. A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining
of association rules. Information Systems, 29(4):343–364, 2004.

18. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright. Secure
multiparty computation of approximations. In Proc. 28th International Colloquium
on Automata, Languages and Programming (ICALP), volume 2076 of LNCS, pages
927–938. Springer-Verlag, 2001.

19. J. Feigenbaum, B. Pinkas, R. Ryger, and F. Saint-Jean. Secure computation of
surveys. In Proc. EU Workshop on Secure Multiparty Protocols, 2004.

20. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set inter-
section. In Proc. Advances in Cryptology - EUROCRYPT 2004, volume 3027 of
LNCS, pages 1–19. Springer-Verlag, 2004.

21. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in pri-
vate information retrieval schemes. J. Computer and System Sciences, 60(3):592–
629, 2000.

22. O. Goldreich. Foundations of Cryptography: Volume II (Basic Applications). Cam-
bridge University Press, 2004.

23. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc.
Annual 19th ACM Symposium on Theory of Computing (STOC), pages 218–229.
ACM, 1987.

24. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of associa-
tion rules on horizontally partitioned data. In Proc. ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery (DMKD). ACM, July
2002.

25. M. Kantarcioglu, J. Jin, and C. Clifton. When do data mining results violate
privacy? In Proc. 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 599–604. ACM, 2004.

26. H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving
properties of random data perturbation techniques. In Proc. 3rd IEEE Interna-
tional Conference on Data Mining (ICDM), pages 99–106. IEEE, 2003.

27. L. Kissner and D. Song. Privacy-preserving set operations. In Proc. Advances in
Cryptology - CRYPTO 2005 (to appear). Springer-Verlag, 2005.

28. Y. Lindell and B. Pinkas. Privacy preserving data mining. J. Cryptology, 15(3):177–
206, 2002.

29. Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party compu-
tation. http://eprint.iacr.org/2004/175, 2004.

30. M. Naor and K. Nissim. Communication preserving protocols for secure func-
tion evaluation. In Proc. 33rd Annual ACM Symposium on Theory of Computing
(STOC), pages 590–599. ACM, 2001.

31. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Proc. 12th Annual
Symposium on Discrete Algorithms (SODA), pages 448–457. ACM, 2001.

32. M. Naor and B. Pinkas. Computationally secure oblivious transfer. J. Cryptology,
18(1):1–35, 2005.

33. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In Proc. 1st ACM Conference on Electronic Commerce, pages 129–139.
ACM, 1999.

34. H. Polat and W. Du. Privacy-preserving collaborative filtering using randomized
perturbation techniques. In Proc. 3rd IEEE International Conference on Data
Mining (ICDM), pages 625–628. IEEE, 2003.

35. J. Vaidya and C. Clifton. Privacy-preserving association rule mining in vertically
partitioned data. In Proc. 8th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 639–644. ACM, 2002.

36. V. Verykios, E. Bertino, I. Fovino, L. Provenza, Y. Saygin, and Y. Theodoridis.
State-of-the-art in privacy preserving data mining. SIGMOD Record, 33(1):50–57,
2004.

37. R. Wright and Z. Yang. Privacy-preserving Bayesian network structure compu-
tation on distributed heterogeneous data. In Proc. 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pages 713–
718. ACM, 2004.

38. Z. Yang, S. Zhong, and R. Wright. Privacy-preserving classification of customer
data without loss of accuracy. In Proc. 5th SIAM International Conference on
Data Mining (SDM). SIAM, 2005.

39. A. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 162–167. IEEE, 1986.

A Proof of Private APSD Protocol Correctness

Before proving the algorithm correct, we prove some supporting lemmas.

Lemma 1 If an edge e ∈ Rk and w
(k)
0 (e) = l then ∀j > k, w

(j)
0 (e) = l.

Proof. Intuitively, this says that once the protocol establishes the length of a red
edge, it never changes. This follows from the protocol lacking operations that
alter the length of red edges.

Lemma 2 For an edge e ∈ R(k), w
(k)
0 (e) ≤ m(k)

Proof. In step 6 of iteration k, for edges e ∈ S(k) we set w
(k)
0 (e) = m(k) and

e ∈ R(k). Apply lemma 1 to complete the proof.

Lemma 3 For an edge e ∈ B(k), w
(k)
0 (e) > m(k)

Proof. First, we show that for an edge e ∈ B(k), w
′(k)
0 (e) > m(k). If w

′(k)
0 (e) =

m(k) then e ∈ S(k) (and e 6∈ B(k)). If w
′(k)
0 (e) < m(k) and e ∈ B(k), then

w
(k−1)
0 (e) < m(k) and we would have defined a smaller m(k).

Now, for those edges e where we have w
(k)
0 (e) < w

′(k)
0 (e) because of step 7,

we still have w
(k)
0 (e) > m(k) because the right-hand side of the assignment is

strictly greater than m(k).

Lemma 4 For all edges e, e ∈ R(k) ↔ w
(k)
0 (e) ≤ m(k) and e ∈ B(k) ↔

w
(k)
0 (e) > m(k)

Proof. This is an immediate consequence of lemmas 2 and 3.

Lemma 5 For every red edge eij ∈ R(k), w
(k)
0 (eij) = dG(i, j).

Proof. The proof is by induction on k. For k = 0, the result is trivial. We will
now assume that the result holds for values less than k and prove it for k.

Because of lemma 1, it is sufficient to prove that for edges eij ∈ S(k),
dG(i, j) = m(k). We consider two cases.

1. The shortest path from i to j in G is the edge eij .
In this case, dG(i, j) = min(w1(eij), w2(eij)). To complete the proof, it’s
enough to show that w

(k−1)
0 (eij) ≥ dG(i, j). Suppose that in some iteration

h < k we set w
(h)
0 (eij) = w

′(h)
0 (eik) + w

′(h)
0 (ekj) in step 7. Then by inductive

hypothesis, this implies a shorter path from i to j than the edge eij which
is a contradiction.

2. The shortest path from i to j in G is through k.
In this case, dG(i, j) = dG(i, k) + dG(k, j). WLOG, assume that w

(k)
0 (eik) ≥

w
(k)
0 (ekj). Then by lemmas 1 and 4, we have that for some h < k, w

(k)
0 (eik) =

m(h). This means that in step 7 of iteration h the protocol set w
(h)
0 (eij) =

w
(h)
0 (eik) + w

(h)
0 (ekj). By the inductive hypothesis, w

(h)
0 (eik) = dG(i, k) and

w
(h)
0 (ekj) = dG(k, j). We conclude that w

(h)
0 (eij) = dG(i, k) + dG(k, j) and

therefore that w
(k)
0 (eij) ≤ dG(i, k) + dG(k, j). By the same argument as

in the first case, we also have w
(k)
0 (eij) ≥ dG(i, k) + dG(k, j). Therefore,

m(k) = dG(i, k) + dG(k, j) = dG(i, j).

It is now a simple task to prove algorithm correctness.

Proof (Correctness). Suppose the algorithm terminates after n iterations. Then
R(n) = E. Apply lemma 5.

B Survey of Privacy-Preserving Set Union Protocols

Generic Yao’s method. It is easy to construct a circuit for computing the set
union. Each party Pp inputs one bit for every element e in the universe U . The
input bit bpi is set to 1 if party Pp has element ei in his set, and 0 otherwise.
The circuit consists of |U | AND gates, each of which takes as inputs b0i and b1i

and outputs oi = b0i ∧ b1i. Then oi = 1 iff element ei is in the set union. Since
this circuit has O(u) inputs and O(u) gates, we conclude that the computational
overhead and the communication complexity are both O(u).

Commutative encryption. Clifton et al. [10] present a simple construction for
privacy-preserving set union that uses commutative encryption. Each party en-
crypts the elements in its set, exchanges the encrypted sets with the other party,
and then encrypts the other party’s encrypted elements with its own key. The
double-encrypted sets are then combined. Due to commutativity of encryption,
all elements in the intersection appear as duplicates. They are removed, and the
remaining elements are decrypted. Scrambling the order of elements may hide
which elements are in the intersection, but the size of the intersection is still re-
vealed, thus this method is not secure in the standard sense of definition 2. This
protocol requires communication and computational complexity O(|s1|+ |s2|).

Complement of set intersection. When the universe U is small, it is possible to
use complementation and take advantage of the fact that S1 ∪ S2 = S̄1 ∩ S̄2.
Freedman et al. [20] present a privacy-preserving protocol for set intersection
that uses homomorphic encryption which requires O(k) communication overhead
and O(k ln ln k) computation overhead, where k is the size of the set intersection.
For applications considered in this paper, sets S1 and S2 are very small, so their
complements are of size O(u). As a result, this method requires O(u ln lnu)
computation, which is unacceptable.

Polynomial set representation. Kissner and Song [27] present a method for rep-
resenting sets as polynomials, and give several privacy-preserving protocols for
set operations using these representations. They do not provide a protocol for
the standard set union problem. Instead, they give a protocol for the “threshold
set union” problem, in which the inputs are multi-sets and the output is the set
of elements whose multiplicity of appearance in the union exceed some thresh-
old; the intersection of the input sets is also revealed. When applied to regular
sets (as opposed to multi-sets) this protocol does not preserve privacy as the
intersection is the only information one can hope to keep private.

C Privacy-Preserving Bit-Or

First, observe that the circuit for computing Or of 2 bits consists in a single gate.
Therefore, even the generic construction using Yao’s protocol [39] is efficient,
requiring a single 1-out-of-2 oblivious transfer.

An alternative construction without oblivious transfers is provided by a se-
mantically secure homomorphic encryption scheme such as ElGamal. Suppose
Alice and Bob want to compute Or of their respective bits bA and bB in a
privacy-preserving manner (Alice and Bob are honest, but curious). Alice picks
some cyclic group G of prime order q with generator g where the Decisional
Diffie-Hellman problem is presumed hard, e.g., the group of quadratic residues
modulo some large prime p = 2q + 1, and chooses its secret key k at random
from {0, . . . , q − 1}. Alice sends to Bob its public key q, g, gk together with its
ciphertext cA, which is created as follows. If bA = 0, then cA = (gr, gkr), where
r is randomly selected from {0, . . . , q − 1}. If bA = 1, then cA = (gr, g · gkr).

Upon receipt of cA = (α, β) and Alice’s public key, Bob computes cB as fol-
lows. First, it randomly picks r′ ∈ {0, . . . , q − 1}. If bB = 0, then cB = (αr′ , βr′).
If bB = 1, then cB = (αr′ , gr′ · βr′). Bob returns cB to Alice.

Alice computes bit b by decrypting cB = (γ, δ) with its private key k, i.e.,
b = δ

γk . Clearly, if bA = bB = 0, then b = 1. In this case, Alice declares that
bA ∨ bB = 0. If b 6= 1, then Alice declares that bA ∨ bB = 1.

To verify that this construction preserves privacy, observe that secrecy of bA

follows from the semantic security of ElGamal. Now suppose bA = 1. If bB = 0,
then the decrypted plaintext b = gr′ . If bB = 1, then b = g2r′ . Since B does not
know r′, it cannot tell the difference. Thus, A does not learn bB if bA = 1.

(We are grateful to Stas Jarecki for a helpful discussion of constructions for
privacy-preserving Bit-Or).

