
Fast Computation of Large Distributions

and Its Cryptographic Applications

Alexander Maximov and Thomas Johansson

Dept. of Information Technology, Lund University, Sweden
P.O. Box 118, 221 00 Lund, Sweden

{movax,thomas}@it.lth.se

Abstract. Let X1, X2, . . . , Xk be independent n bit random variables. If
they have arbitrary distributions, we show how to compute distributions
like Pr{X1 ⊕X2 ⊕ · · · ⊕Xk} and Pr{X1 � X2 � · · ·� Xk} in complexity
O(kn2n). Furthermore, if X1, X2, . . . , Xk are uniformly distributed we
demonstrate a large class of functions F (X1, X2, . . . , Xk), for which we
can compute their distributions efficiently.

These results have applications in linear cryptanalysis of stream
ciphers as well as block ciphers. A typical example is the approximation
obtained when additions modulo 2n are replaced by bitwise addition.
The efficiency of such an approach is given by the bias of a distribution
of the above kind. As an example, we give a new improved distinguishing
attack on the stream cipher SNOW 2.0.

Keywords: cryptanalysis, complexity, algorithms, convolution, approxima-
tions, large distributions, pseudo-linear functions.

1 Introduction

Linear cryptanalysis is one of the most powerful techniques for cryptanalysis.
It can be regarded as a generic attack. It is for example the fastest known
attack on DES. More recently, we have seen that linear cryptanalysis also plays
a major role in the area of stream ciphers. Many recent proposals have been
analyzed through the idea of replacing nonlinear operations by linear ones, and
then hoping that obtained linear equations are correct with a probability slightly
larger than otherwise expected. Actually, the best known attacks on many recent
stream cipher proposals are linear attacks. This includes stream ciphers like
Scream [1], SNOW [2, 3], SOBER [4, 5], RC4 [6], A5/1 [7], and many more.

Most work in linear cryptanalysis on block ciphers are based on bitwise linear
approximations. To oversimplify, we find a sum of certain plaintext bits, cipher-
text bits and key bits such that this sum is zero with a probability 1/2 + ε,
where ε is usually small. By getting access to a large number of different plain-
text/ciphertext pairs we can eventually find out the value of the sum of key bits.
This results in a key recovery attack.

In linear attacks on stream ciphers, it is mostly the case that a linear approxi-
mation will give us a set of keystream symbols that sum to zero with probability

1/2 + ε. Since no key bits are involved in the expression, this gives us a dis-
tinguishing attack. In some linear attacks on stream ciphers, one has moved
from the binary alphabet to instead consider a sum of variables defined over a
larger set. For example, we can consider a sum of different bytes from keystream
sequence if it is byte oriented. Distinguishers based on symbols from a larger
alphabet have been considered in for example [8–10].

It is clear that moving to a larger alphabet gives improved results. However,
the computational complexity of finding the result increases. To be a bit more
specific, assume for example that the operation X1 �X2 is replaced by X1⊕X2,
where � denotes mod 2n addition. The usefulness of such an approximation
is given by the distribution Pr{(X1 � X2) ⊕ (X1 ⊕ X2) = γ}. However, the
complexity of computing this distribution can be large. For example, for n = 32
bits a straight forward approach would require complexity 264, an impossible
size to implement.

Several previous papers studied related problems. For example, in [11] differ-
ential properties of addition, such as DC+(α, β → γ) := Pr{(x � y)⊕ ((x ⊕ α) �
(y ⊕ β)) = γ}, were studied in details, including different useful and efficient
computational algorithms. There are a few other results where different classes
of similar functions (mostly related to differential properties) were achieved,
e.g., in [12–14], and others. However, these papers focus only on a small class
of functions, which can be regarded as a subclass of the functions studied in
this paper, refered to as pseudo-linear functions. Moreover, our main concern is
the algorithms on large distribution tables, i.e., to provide a practical tool for
cryptanalysis over large distributions (or a large alphabet). When, for example,
the probability space is |Ω| = 232, our algorithms and data structures allow us
to store and perform the most common operations over such huge distributions,
with a reasonable time on a usual PC.

Consider X1, X2, . . . , Xk to be independent n bit random variables. If they
have arbitrary distributions, we show how to compute distributions like Pr{X1⊕
X2⊕· · ·⊕Xk} and Pr{X1�X2� · · ·�Xk} in complexity O(kn2n). For example,
we compute the distribution Pr{(X1�X2)⊕(X1⊕X2) = γ} in complexity 237 ·c
for some small c. The presented algorithms makes use of techniques from Fast
Fourier Transform and Fast Hadamard Transform. Although some of these tech-
niques were also mentioned in a recent paper [15], we include the full approach
for completeness. We show how they can be performed when more complicated
data structures are used, introduced due to a high memory complexity.

Next, if X1, X2, . . . , Xk are uniformly distributed we demonstrate a large
class of functions F (X1, X2, . . . , Xk), for which we can compute the distribution
Pr{F (X1, X2, . . . , Xk) = γ} efficiently. Here, the algorithms are based on per-
forming a combinatorial count in a bitwise fashion, taking the “carry depth” into
account. These results give us efficient methods of calculating distributions of
certain functions F (X1, X2, . . . , Xk). Fortunately, this includes many functions
that appear in linear analysis of ciphers.

As an example, we show an application in linear cryptanalysis of stream ci-
phers. A typical operation is the approximation obtained when additions modulo

2n are replaced by bitwise addition. The efficiency of such an approach is given
by the bias of a distribution of the above kind. In our example, we give a new
improved distinguishing attack on the stream cipher SNOW 2.0.

In Section 2 we define a pseudo-linear class of functions and derive an algo-
rithm to calculate their distributions. In Section 3 we show how a convolution
of several distributions can be calculated efficiently. In Section 4 an application
example of our approach to attack SNOW 2.0 is given. Finally, we summarize
our results and make conclusions.

2 A Pseudo-Linear Function Modulo 2n and Its
Distribution

For notation purposes we denote n-bit variables by a capital letter X , and 1-bit
variables by a small letter x. Individual bits of X in a vector form are repre-
sented as X = xn−1 . . . x1x0. By X [a : b] we denote an integer number of the
form xb . . . xa+1xa. If Y = ym−1 . . . y0, then X ||Y = xn−1 . . . x0ym−1 . . . y0 is
another integer number (concatenation). We use ‘�’ and ‘�’ to denote arith-
metical addition and subtraction modulo 2n, respectively. However, when the
inputs to a function F (·) are from the ring Z2n , we assume ‘+’ to be an addition
in the ring as well. Matrix multiplication is denoted as ‘×’. When ‘·’ is applied to
two vectors, then it denotes element-by-element multiplication of corresponding
positions from the vectors.

2.1 A Pseudo-Linear Function Modulo 2n

Let X be a set of k uniformly distributed n-bit (nonnegative) integer random
variables X = {X1, . . . , Xk}, Xi ∈ Z2n . Let C be a set of n-bit constants
C = {C1, . . . , Cl}. Let Ti be some symbol or expression on X and C. We de-
fine arithmetic, Boolean, and simple terms as follows.

Definition 1. Given X and C we say that: (1) A is an ‘arithmetic term’, if it
has only the arithmetic + operator between the input terms (e.g., A = T1 +T2 +
. . .); (2) B is a ‘Boolean term’ if it contains only bitwise operators such as NOT,
OR, AND, XOR, and others (e.g., B = (T1 ⊕ T2)|T3&T4 . . .); (3) S is a ‘simple
term’ if it is a symbol either from X or C (e.g., S = Xi). ��

Next, we define a pseudo-linear function modulo 2n.

Definition 2. F (X1, . . . , Xk) is called a ‘pseudo-linear function modulo 2n’
(PLFM) on X if it can recursively be expressed in arithmetic (A), Boolean (B),
and simple (S) terms 1. We also refer the number of A, B, and S terms to be
a, b, and s, respectively. ��
1 Note that a PLFM is a T-function [16], but not vice versa.

Note, if a given function contains a subtraction �, then it can easily be
substituted by � using

X � Y ≡ X � (NOT Y) � 1 mod 2n, (1)

which is valid in the ring modulo 2n. Note that the number of A-terms does not
grow during the substitution

As an example, let us consider a linear approximation of a modulo sum of the
following kind ‘X1�X2�X3 → X1⊕X2⊕X3⊕N ’, where N is the noise variable
introduced due to the approximation. The expression for the noise variable is a
PLFM: N = F (X1, X2, X3) = (X1 + X2 + X3)⊕X1 ⊕X2 ⊕X3.

Finding the distribution of such an approximation could be the bottleneck
in cryptanalysis work. The trivial algorithm for solving this problem would be
as follows.
1. Loop for all (X1, X2, X3) ∈ Z

3
2n

2. T [(X1 � X2 � X3)⊕X1 ⊕X2 ⊕X3] + +;

After termination of the algorithm we have Pr{N = γ} = T [γ]/23n. The
complexity of this classical solution when the variables are 32-bits integers, is
O(296), infeasible for a common PC. Instead, we suggest another principle to
solve this problem, as follows.
1. for γ = 0 . . . 2n − 1
2. T [γ] = some combinatorial function.

In the upcoming section we show how this combinatorial function is con-
structed.

2.2 Algorithm for Calculating the Distribution for a PLFM

The problem we are considering in this subsection is the following. Given a
PLFM F (X1, X2, . . . , Xk) on X and C, we want to calculate the probability
Pr{F (X1, X2, . . . , Xk) = γ}, for a fixed value γ, in an efficient way.

Let some arithmetic termA have k+ operators ‘+’, i.e., A = T0+T1+. . .+Tk,
where Tj are some other terms, possibly B or S. Then, considering 1-bit inputs,
the evaluation of the A term can, potentially, produce the local maximum carry
value ωmax = �k++1

2 �. This carry value at some bit t can influence on the next
bits of the sum at positions t+1, t+2, etc. Therefore, the maximum carry value
σmax at every bit t of the sum for A is then derived as the minimum integer
solution for the equation σmax = �(k+ +1+σmax)/2�. Thus, for every arithmetic
term Ai the maximum local carry value is

σimax = k+
i , (2)

where k+
i is the number of additions in Ai.

For any t-bit truncated input tuple (X1, . . . , Xk) to the function F (·) we can
define a tuple of local carry values for each of the Ai-terms, as follows:

Ψ |t = (σ1, σ2, . . . , σa)|t, (3)

where σi is the corresponding local carry value for the Ai-term, when the inputs
are t-bit truncated, and it can also be expressed as

σi|t =


 k+

i∑
j=0

(Ti,j(X1, . . . , Xk) mod 2t)


 div 2t, (4)

when Ai = Ti,0 + . . . + Ti,k+
i
.

Assume there is an oracle Pt(Ψ0, γ) which can tell us the number of choices
of the tuple (X1[0 : t − 1], . . . , Xk[0 : t − 1]) out of 2t·k possible combinations,
such that for each choice the function F produces a required vector of local carry
values Ψ |t = Ψ0, and the condition F (X1, . . . , Xk) = γ mod 2t is satisfied, i.e.
F (X1, . . . , Xk)[0 : t − 1] = γ[0 : t − 1]. The probability we are seeking can now
be written as

Pr{F (X1, . . . , Xk) = γ} =
1

2k·n
∑
Ψ

Pn(Ψ, γ). (5)

It remains to show how to construct the oracles Pt(Ψ0, γ). Assume we know
the answer Pt(Ψ0, γ) for every Ψ0. When Ψ |t = Ψ0 is fixed, then, by trying all
combinations for tth bits of the inputs, i.e., testing each k-bit vector (X1[t :
t], . . . , Xk[t : t]), we can calculate the exact value of F (X1, . . . , Xk)[t : t], as well
as the exact resulting local carries vector Ψ |t+1. Clearly, the oracle Pt+1(Ψ ′, γ)
makes calls to Pt(Ψ0, γ), for various values of Ψ0. That relation is linear, and can
easily be represented in a matrix form. For this purpose, let us introduce a one-to-
one index mapping function Index(Ψ) : (σ1×σ2× . . .×σa)→ θ ∈ [0 . . . θmax−1],
as follows.

Index(Ψ) = ((σ1 · (σ2max + 1) + σ2) · (σ3max + 1) + σ3) · . . .

θmax =
a∏

j=1

(σjmax + 1) =
a∏

j=1

(k+
j + 1).

(6)

Now, Pt(Ψ, γ) for all Ψ can be regarded as a vector
(
Pt(Index−1(0), γ), . . . ,

Pt(Index−1(θmax − 1), γ)
)
, also referred for simplicity as Pt, for all the consec-

utive valid tuples Ψ . The transformation from Pt to Pt+1 is a linear function,
i.e., it can be written as

Pt+1 = Mγt|t × Pt, (7)

where Mγt|t is some fixed connection matrix of size (θmax × θmax), which, in
general, is different for different t’s. It depends on the tth bits of the constants
involved in F (·), and it also depends on the value of the tth bit γt from the given
γ, since the oracle Pt+1(Ψ, γ) must satisfy γ taken modulo 2t+1 as well. If the
input variables are 0-truncated, then the only one vector Ψ |0 = (0, 0, . . . , 0) of
local carry values is possible, i.e., P0 = (1 0 . . . 0). Therefore, we assign the
oracle P0 to be just a zero vector, but P0(0, γ) = 1.

In this way, 2n such matrices have to be constructed. However, in most cases
this number is much less. The algorithm to construct matrices from (7) and then
calculate (5) is given as follows.

Theorem 1. For a given PLFM F (X1, . . . , Xk), and a fixed γ ∈ Z2n , we have:

Pr{F (X1, . . . , Xk) = γ} =
1

2k·n (1 1 . . . 1)×
(

0∏
t=n−1

Mγt|t

)
×(1 0 . . . 0)T, (8)

where Mγt|t are connection matrices of size (θmax× θmax), precomputed with the
algorithm below.

Algorithm: Construction of 2n matrices Mγt|t.

1. Input:
F (X1, . . . , Xk) – a PLFM with a arithmetical terms Ai, each having
k+

i operators ‘+’, correspondingly;
2. Data structures:

θmax =
∏a

i=1(k
+
i + 1);

M{0,1}|t=[0...n−1][θmax][θmax] – 2n square matrices of size (θmax×θmax),
initialised with zeros;

3. Precomputation algorithm:
for t = 0 . . . n− 1

Temporary set the constants from C to be just tth bit of the
original ones, i.e., set (C1, . . . , Cl) = (C1[t : t], . . . , Cl[t : t])

for (X1, . . . , Xk) ∈ {0, 1}k – (all combinations for the tth bits of X’s)

for θ = 0 . . . θmax − 1 – (all combinations for Ψ)

(σ1, . . . , σa) = Index−1(θ)
z Evaluate all µi = σi +Ai(X1, . . . , Xn), but in Ai substitute

all sub terms Aj with the values (µj mod 2), correspondingly
θ′ = Index(µ1 div 2, . . . , µa div 2) – (a new resulting Ψ ′)
Evaluate the function f = F (·) mod 2, but substitute

all terms Aj with the values µj , correspondingly
Mf |t[θ′][θ] := Mf |t[θ′][θ] + 1

- Time Complexity: O(n · θmax · 2k)
- Memory Complexity: O(2n · θ2

max)

z Variables µi, which correspond to the terms Ai, should be calculated recursively.
The deepest A term should be calculated first, and so on.

��
Below we give an example that demonstrates all the steps of the algorithm.

Example 1. Let k = 3, n = 5. Assume that our goal is to calculate the probability
Pr{F (X1, X2, X3) = 101102}, where:

F (X1, X2, X3) = (X1 � (X2 ⊕ (X1 � X2 � 25))))⊕ (X1 AND X3). (9)

The first step is to cancel the operator � by (1), and by rewriting the ex-
pression we get

F (X1, X2, X3) = (

A2︷ ︸︸ ︷
X1 + (

B2︷ ︸︸ ︷
X2 ⊕ (X1 + (NOT X2︸ ︷︷ ︸

B1

) + 26

︸ ︷︷ ︸
A1

)))⊕ (X1 AND X3)

︸ ︷︷ ︸
B3

.

The function F (·) is a PLFM,
since it can be expressed in A
and B terms, marked above (the
S terms are simply elements from
the set {X1, X2, X3, 26}). I.e.,

B1(X , C) = NOT X2

A1(X , C) = X1 + B1(X , C) + 26︸ ︷︷ ︸
k+
1 =2

B2(X , C) = X2 ⊕A1(X , C)
A2(X , C) = X1 + B2(X , C)︸ ︷︷ ︸

k+
2 =1

B3(X , C) = A2(X , C)⊕ (X1 AND X3), where F (X1, X2, X3) = B3(X , C).

1.θmax = (k+
1 + 1)(k+

2 + 1) = 3 · 2 = 6;
2.for t = 0 . . . 4
3. C = 26[t : t]
4. for (X1, X2, X3) ∈ {0, 1}3
5. for (σ1, σ2) = (0 . . . 2, 0 . . .1)
6. µ1 = σ1 + X1 + (NOT X2) + C
7. µ2 = σ2 + X1 + (X2 ⊕ µ1 mod 2)
8. f = (µ2 ⊕ (X1 AND X3)) mod 2
9. Mf |t[(µ1 div 2) · 2 + (µ2 div 2)]

[σ1 · 2 + σ2] + +.
Applying Theorem 1 to construct 2n
matrices.

After all computations we receive the following matrices
Mγ0=0|t=0 =


1 0 2 0 0 0
0 5 0 0 0 0
1 0 2 0 1 0
0 1 2 2 0 5
0 0 0 0 1 0
0 0 0 0 0 1




Mγ0=1|t=0 =


5 0 0 2 0 0
0 1 0 0 0 0
1 0 0 2 5 0
0 1 2 2 0 1
0 0 0 0 1 0
0 0 0 0 0 1




Mγ1=0|t=1 =


2 0 0 0 0 0
0 0 0 0 0 0
2 0 1 0 2 0
2 2 0 5 0 0
0 0 1 0 2 0
0 0 0 1 2 2




Mγ1=1|t=1 =


0 2 0 0 0 0
0 0 0 0 0 0
0 2 5 0 0 2
2 2 0 1 0 0
0 0 1 0 0 2
0 0 0 1 2 2


 .

No need to construct the matrices for t = 2, 3, 4, because they will repeat as
M∗|t=2 = M∗|t=0 and M∗|t=4 = M∗|t=3 = M∗|t=1. This happens since there are
only two different combinations for any tth “bit slice” of constants from the set
C = {26}. In particular, for every bit t we have 26[t : t] = 0 or 1 in step 3 in the
figure above. Finally, from (8) we calculate

Pr{F (X1, X2, X3) = 101102} =
1

215
(1 1 1 1 1 1)×M1|4 ×M0|3 ×M1|2×

×M1|1 ×M0|0 × (1 0 0 0 0 0)T =
1

215
· 404 ≈ 0.0123291015625.

One can check this probability by the classical solution, trying all possible
values for (X1, X2, X3) ∈ Z

3
25 and calculating the function F (·) directly from (9).

Preparing the matrices requires 2 · 23 · 6 = 96 steps (2 values for t, 8 combi-
nations for (X1, X2, X3), and the number of different local carries is θmax = 6);
each step requires one function evaluation. To calculate one probability we need
to make 5 multiplications of a matrix and a vector, which takes 5 ·62 operations,
plus one scalar product of two vectors at the end, i.e., in total 186 operations.
Calculating the complete distribution for all possible γ’s takes 25 · 186 = 5952
operations in total. Note that the classical way requires 23·5 = 32768 steps with
the function evaluation each step. ��
The second example presented in Appendix A is taken from the real cryptanaly-
sis. In that example we, additionally, demonstrate a new trick and show how
time complexity can be reduced even more than in Theorem 1. With a precom-
putation, which usually takes a negligible time, the construction of the complete
distribution can have a very small time complexity O(θmax · 2n). That exam-
ple also shows the advantage of using proposed technique as the computation
complexity 296 from the classical solution is reduced down to 232.585.

3 Distributions of Functions With Arbitrarily Distributed
Inputs

The previous section assumed X1, X2, . . . to be uniformly distributed, allowing
a combinatorial approach. In this section we consider X1, X2, . . . independent
but with arbitrary distributions. Despite the ideas described in this section were
partly mentioned in [15], we include them for completeness.

Let us have a probability space Ω of size q = |Ω| = 2n and two distributions
DX and DY over Ω for two random variables X and Y , respectively. Given the
distributions DX and DY we consider two major types of convolution, defined as

DZ = DX ∗DY :⇒
Pr{Z = Z0} =

∑
∀X0, Y0 ∈ Ω :
X0 ∗ Y0 = Z0

Pr{X = X0} · Pr{Y = Y0}, ∀Z0 ∈ Z2n , (10)

where ∗ is either � or ⊕.
In both cases the time complexity to calculate the resulting distribution

DZ is O(q2), i.e., quadratic. Due to such a high complexity, many attacks in
cryptanalysis deal with at most 16-18-bit distributions only. Nowadays, when
design of ciphers is often 32-bit oriented, it would be a challenging and useful task
to perform a convolution of two 32-bit distributions, i.e., calculating Pr{X+Y =
γ} for all γ when X and Y have some arbitrary distributions.

For notation purposes the distribution DX will also be represented as a vec-
tor of size 2n of probabilities as [DX] = {pX(0), pX(1), . . . , pX(2n − 1)}, where
pX(X0) = Pr{X = X0}.
Convolution over �. If [DX] and [DY] are represented as two polynomials with
coefficients from these two vectors, then the resulting vector [DZ] has coefficients
of the product of the polynomials [DX] and [DY]. Fast multiplication of two

polynomials can be done via Fast Fourier Transform (FFT) [17], the complexity
of which is O(q log q) 2. The convolution over � can now easily be calculated as

[DZ] = [DX � DY] = FFT−1
n (FFTn([DX])·FFTn([DY])). (11)

Convolution over ⊕. A similar idea can be applied to this type of convolution.
Instead, we use Fast Hadamard Transform (FHT) [17].

FHT is a linear transformation of a vector of size 2n. This transformation
can also be done by a matrix multiplication Hn × [V], where Hn is a well-
known Hadamard matrix. FHT, however, performs this matrix multiplication
for time O(q log q = n · 2n), the same as FFT. In practice, however, FHT is
much faster than FFT, since it does not need to work with complex and float
numbers. Therefore, approximations of kind � ⇒ ⊕ are more preferable, than
otherwise. Additionally, the implementation of FHT is extremely simple and
small in C/C++, and we present it in Appendix C.

Since FHT−1
n differs from FHTn by only the coefficient 2−n, then the convo-

lution over ⊕ via FHT is computed as

[DZ] = [DX ⊕DY] =
1
2n
· FHTn(FHTn([DX])·FHTn([DY])). (12)

Finally, we point out that the convolution of a linear composition of k inde-
pendent terms is derived as

D(Z=C1X1⊕C2X2⊕...⊕CkXk) =
1
2n
·FHTn (FHTn([DC1X1]) · . . . · FHTn([DCkXk

])) ,

where Ci are some constants. In practice, this also means that if these distribu-
tion tables for X1, . . . , Xk are stored with precisions ξ1, . . . , ξk bits after point,
respectively, then for probabilities of Z the precision of only ξ = n +

∑k
j=1 ξj

bits after point should be considered (or reserved) before the FHT procedure.

In sections above several algorithms have been derived with good time com-
plexities, which, in most cases, allow us to operate on large distributions. How-
ever, memory complexity problems become to be the main concern for imple-
mentation aspects. We have algorithms that operate with 32-bit distributions,
but how to manage the memory? We present a possible solution in Appendix B,
suggest our data structures for large distributions and show how typical opera-
tions can be mounted.

4 Application: 32-bit Cryptanalysis of SNOW 2.0

A stream cipher is a cryptographic primitive used to ensure privacy on a com-
munication channel. The SNOW family is a typical example of word-oriented
2 The resulting polynomial [DX] · [DY] is of degree 2q, but its powers have to be taken

modulo q. It means that the second half just need to be added to the first half of 2n
coefficients, in order to receive [DZ]. However, this is done automatically when FFT
of size q is applied to [DX] and [DY] directly.

KSGs based on a linear feedback shift register (LFSR). SNOW 2.0 is an im-
proved version of SNOW 1.0 aimed to be more secure and still more efficient in
performance. The most powerful attack on SNOW 2.0 was presented by Watan-
abe, Biryukov and De Cannie’re [18] in 2003. It is a linear distinguishing attack
similar to the general framework presented in [19, 20] and it requires a received
keystream sequence of length 2225 bits and has a similar time complexity.

In this section we propose an improved attack on SNOW 2.0. Whereas the
attack in [18] uses a binary linear approximation approach, the new attack is
based on approximations of words, i.e., 32-bit vectors. This technique is more
powerful and we get a reduction of the required keystream length to 2202. To
make the calculation of 32-bit distributions possible we use our algorithms and
data structures from Appendix B.

4.1 A Short Description of SNOW 2.0

The structure of SNOW 2.0 is shown in Figure 1. It has 128- or 256-bit secret key
and a 128-bit initial vector. It is based on LFSR over F232 [x] and the feedback
polynomial is given by

π(x) = αx16 + x14 + α−1x5 + 1, (13)

where α is a root of the polynomial

y4 + β23y3 + β245y2 + β48y + β239 ∈ F28 [y], (14)

and β is a root of
z8 + z7 + z5 + z3 + 1 ∈ F2[z]. (15)

s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15

S′R1 R2

αα−1

zi

FSM

running key

Fig. 1. The structure of SNOW 2.0

The state of the LFSR is denoted by (st+15, st+14, . . . , st). Each st+i is an el-
ement of the field F232 . The Finite State Machine (FSM) has two 32-bit registers,
R1 and R2. The output of the FSM Fi is given by

Fi = (st+15 � R1t)⊕R2t, t ≥ 0, (16)

and the keystream zt is given by

zt = Ft ⊕ st, t ≥ 1. (17)

Two registers R1 and R2 are updated as follows,

R1t+1 = st+5 � R2t,

R2t+1 = S′(R1t).
(18)

where S′(W) is a one-to-one mapping transformation S′ : F232 → F232 . If a 32-
bit integer W is represented as a vector of 4 8-bit bytes W = (w0 w1 w2 w3)T,
then

S′(W) =




x x + 1 1 1
1 x x + 1 1
1 1 x x + 1

x + 1 1 1 x


 ·




SR[w0]
SR[w1]
SR[w2]
SR[w3]


 , (19)

where SR is the Rijndael 8-to-8-bit S-box, and the linear transformation (matrix
multiplication) is done in the field F28 with generating polynomial

g(x) = x8 + x4 + x3 + x + 1 ∈ F2[x]. (20)

4.2 Basic Idea Behind the New Attack

The basic idea behind the new attack is to find such a linear combination of
the output words zi that is equal to 0 if the system is linear, or producing some
biased noise if the system is approximated by a linear function. From the other
hand, the linear combination representing the noise should be unbiased if the
given sequence zi is truly random.

Consider the feedback polynomial of the LFSR given in equation (13), i.e.,
π(x) = αx16 + x14 + α−1x5 + 1. A similar relation holds for the LFSR’s output
st at any time t, i.e.,

st+16 ⊕ α−1st+11 ⊕ st+2 ⊕ αst = 0, t ≥ 1. (21)

Next we make an approximation of the FSM to make it look linear. For any
time t ≥ 1 two output words zt and zt+1 can be expressed as{

zt = st ⊕ (R1 � st+15)⊕R2
zt+1 = st+1 ⊕ S′(R1)⊕ (R2 � st+5 � st+16).

(22)

Let us substitute �→ ⊕ and change S′(R)→ R. Then the sum zt ⊕ zt+1 is
expressed as

zt ⊕ zt+1 = st ⊕ (R1⊕ st+15 ⊕Nc2(R1, st+15))⊕R2
⊕st+1 ⊕ (R1⊕NS(S′(R1), R1))
⊕(R2⊕ st+5 ⊕ st+16 ⊕Nc3(R2, st+5, st+16))

= st ⊕ st+1 ⊕ st+5 ⊕ st+15 ⊕ st+16 ⊕N0(t),

(23)

where N0(t) is a variable representing the error introduced by the linear ap-
proximation in time t,

N0(t) = Nc2(R1, st+15)⊕NS(S′(R1), R1)⊕Nc3(R2, st+5, st+16). (24)

Here Nc2(R1, st+15) is a noise random variable introduced by the approxi-
mation of the modulo sum of two variables of the following kind “R1 � st+15 →
R1⊕ st+15 ⊕Nc2”. The variable Nc3(R2, st+5, st+16) is a similar approximation
noise, but for the modulo sum of three variables. Finally, NS(S′(R1), R1)) is the
noise variable from the approximation “S′(R1) → R1 ⊕ NS”. Let us derive a
linear relation, based on (21).

0
Eq(21)

= (st+16 ⊕ α−1st+11 ⊕ st+2 ⊕ αst)⊕ (st+17 ⊕ α−1st+12 ⊕t+3 ⊕αst+1)

⊕ (st+21 ⊕ α−1st+16 ⊕ st+7 ⊕ αst+5)⊕ (st+31 ⊕ α−1st+26 ⊕ st+17

⊕ αst+15)⊕ (st+32 ⊕ α−1st+27 ⊕ st+18 ⊕ αst+16)

= (st+16 ⊕ st+17 ⊕ st+21 ⊕ st+31 ⊕ st+32)⊕ α−1 · (st+11 ⊕ st+12

⊕ st+16 ⊕ st+26 ⊕ st+27)⊕ (st+2 ⊕ st+3 ⊕ st+7 ⊕ st+17 ⊕ st+18)
⊕ α · (st ⊕ st+1 ⊕ st+5 ⊕ st+15 ⊕ st+16)

Eq(22)
= (zt+2 ⊕ zt+3 ⊕ zt+16 ⊕ zt+17)⊕ α−1 · (zt+11 ⊕ zt+12)

⊕ α · (zt ⊕ zt+1)⊕ (N0(t + 2)⊕N0(t + 16))⊕ α−1 ·N0(t + 11)
⊕ α ·N0(t) = Z(t)⊕N(t),

(25)

where N(t) is the 32-bit total sum of noise variables introduced by several ap-
proximations, expressed as N(t) = (N0(t+2)⊕N0(t+16))⊕α−1 ·N0(t+11)⊕α ·
N0(t), and Z(t) is the “known” part calculated from the output sequence at any
time t, Z(t) = (zt+2 ⊕ zt+3 ⊕ zt+16 ⊕ zt+17)⊕ α−1(zt+11 ⊕ zt+12)⊕ α(zt ⊕ zt+1).
Obviously, N(t)⊕ Z(t) = 0.

After all, a linear distinguishing attack can now be performed, if we know
the distribution DN of the 32-bit noise variable N. For a sufficiently large num-
ber of received symbols from either the random distribution DRandom, or the
distribution of the noise DN, one can construct the type (or empirical distribu-
tion) DType. We then make a decision whether the stream comes from a truly
random generator or from the cipher, according to the distances from DType to
DN and DRandom. Note, the 32-bit noise distribution definitely contains the best
binary approximation found in [18], but, clearly, it also contains some additional
information, which makes the bias of the noise larger.

We will explain this procedure more in detail in the full version of the paper,
but since this is a standard hypothesis testing we simply refer to e.g., [9, 21].

4.3 Computational Aspects

To calculate the bias of the 32-bit noise variable N, its distribution table has
to be constructed. It can be calculates via the distribution of N0, expressed
in (24) 3. To construct the distributions of Nc2 and Nc3 we use Theorem 1
(PLFM construction). The expression for NS is a function on one variable, i.e.,
it takes no more than O(232) operations to build the distribution DNS . Next,
the distribution of N0 is calculated via FHT with the algorithm from Section 3
(convolution over ⊕) and Appendix B (FHT for large distributions). Afterwards,
the distribution of α ·N0 and α−1 ·N0 was computed using algorithms described
in Appendix B (function evaluation). Finally, we again use FHT to calculate
the distribution of the total noise variable DN, and then calculate the bias
ε = |DN −DRandom|.

All these operations took us less than 2 weeks on a usual Pentium IV 3.4GHz,
2Gb of memory and 256Gb of HDD.

4.4 Simulation Results and Discussions

At the end of our simulations we received the distance ε = |DN −DRandom| ≈
2−101, which means that SNOW 2.0 can be distinguished from random with the
known keystream of size 2202, and with a similar time complexity. The advantage
of our attack is presented in the following table.

Attack on SNOW 2.0 bit(s) considered bias (ε) complexity
Watanabe et. al. [18] 1 2−112.25 2225

our attack 32 2−101 2202

For future research work on this topic it is left to note that the expres-
sion for the noise variable N(t) (25) contains two parts: Nc3(R2t, st+5, st+16)
and Nc3(R2t+11, st+16, st+27), which, in our simulations, were considered as in-
dependent. However, since they both use the same input st+16, they are not
really independent and, theoretically, the result should be slightly improved if
one consider them as dependent.

5 Results and Conclusions

In this paper we have proposed new algorithms for computation of distributions
of certain functions where the input variables are from a large alphabet. In the
case when the input variables were uniformly distributed, the distribution for
3 We adopted the data structures from Appendix B for our simulations as follows: we

use 210 files, each containing 222 points of a sub distribution. Since the precision of
the probabilities have to be at least 2−(192·4+32) (four noises N0, each containing NS

with precision 2−32, Nc2 with precision 2−64, and Nc3 with precision 2−96; plus 32
bits must be reserved for FHT), each cell has to be of size at least 100 bytes. I.e.,
each sub distribution in the memory takes at least 400Mb. However, this estimate
is conservative, and in our simulations we used almost 2Gb of operation memory.

a class of functions called PLFM was shown to be efficiently calculated. The
second case considered the same problem but for arbitrary distribution of input
variables. Efficient methods of calculating the distribution of sums of variables
both in Z2n and F2n were proposed, based on Fast Fourier Transform and Fast
Hadamard Transform, respectively.

The cryptologic applications of the results were demonstrated by extending
the linear cryptanalysis of the stream cipher SNOW 2.0 to work over a larger
alphabet. We believe that there are many instances of stream ciphers as well
as block ciphers, where cryptanalytic results can be improved by considering
analysis over a larger alphabet. In all these cases, the algorithms derived in this
paper will be essential for calculating the performance of such attacks.

We also believe that the technique considering “local carries” presented in
algorithms for PLFMs can easily be transformed for finding one or even all solu-
tions for equations like F (X1, . . . , Xk) = 0. Finding solutions for other kinds of
equations, including F (X1, . . . , Xk) = γ and systems of equations, is obviously
converted to finding one or all solutions for an equation of the first kind. Conse-
quently, many properties of PLFM functions can be derived, similarly as it was
done for smaller classes in, e.g., [11, 12, 14]. More details will be included in the
extended version of this paper.

A few open problems can be mentioned. Clearly, we would like to find other
classes of functions where we can compute the distribution efficiently. Also, we
would like to find further instances of existing ciphers where linear attacks over
larger alphabets are applicable.

Acknowledgements

We thank anonymous reviewers for their useful comments that helped us to
improve this paper.

References

1. S. Halevi, D. Coppersmith, and C.S. Jutla. Scream: A software-efficient stream
cipher. In J. Daemen and V. Rijmen, editors, Fast Software Encryption 2002, vol-
ume 2365 of Lecture Notes in Computer Science, pages 195–209. Springer-Verlag,
2002.

2. P. Ekdahl and T. Johansson. SNOW - a new stream cipher. In Proceedings of First
Open NESSIE Workshop, 2000.

3. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In
K. Nyberg and H. Heys, editors, Selected Areas in Cryptography—SAC 2002, vol-
ume 2595 of Lecture Notes in Computer Science, pages 47–61. Springer-Verlag,
2002.

0
The work described in this paper has been supported in part by Grant VR 621-2001-2149, and in part by the
European Commission through the IST Program under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is and no guarantee or warranty
is given that the information is fit for any particular purpose. The user thereof uses the information at its sole
risk and liability.

4. P. Hawkes and G.G. Rose. Primitive specification and supporting documentation
for SOBER-t16 submission to NESSIE. In Proceedings of First Open NESSIE
Workshop, 2000. Available at http://www.cryptonessie.org, Accessed August 18,
2005.

5. P. Hawkes and G.G. Rose. Primitive specification and supporting documentation
for SOBER-t32 submission to NESSIE. In Proceedings of First Open NESSIE
Workshop, 2000. Available at http://www.cryptonessie.org, Accessed August 18,
2005.

6. N. Smart. Cryptography: An Introduction, 2003.
7. M. Briceno, I. Goldberg, and D. Wagner. A pedagogical implementation of A5/1.

Available at http://jya.com/a51-pi.htm, Accessed August 18, 2005, 1999.
8. T. Johansson and A. Maximov. A Linear Distinguishing Attack on Scream. In

Information Symposium in Information Theory—ISIT 2003, page 164. IEEE, 2003.
9. P. Ekdahl and T. Johansson. Distinguishing attacks on SOBER-t16 and SOBER-

t32. In J. Daemen and V. Rijmen, editors, Fast Software Encryption 2002, volume
2365 of Lecture Notes in Computer Science, pages 210–224. Springer-Verlag, 2002.

10. Jovan DJ. Golić and Philip Hawkes. Vectorial approach to fast correlation attacks.
Designs, Codes, and Cryptography, 35(1):5–19, 2005.

11. Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differential
properties of addition. In Fast Software Encryption 2001, pages 336–350. Springer-
Verlag, 2002.

12. Helger Lipmaa, Johan Wallén, and Philippe Dumas. On the additive differential
probability of exclusive-or. In Fast Software Encryption 2004, pages 317–331, 2004.

13. Alexander Maximov. On linear approximation of modulo sum. In Fast Software
Encryption 2004, pages 483–484, 2004.

14. Helger Lipmaa. On differential properties of pseudo-hadamard transform and re-
lated mappings. In Progress in Cryptology—INDOCRYPT 2002, pages 48–61.
Springer-Verlag, 2002.

15. Jovan Dj. Golic and Guglielmo Morgari. Vectorial fast correlation attacks. Cryp-
tology ePrint Archive, Report 2004/247, 2004.

16. A. Klimov and A. Shamir. A new class of invertible mappings. In CHES ’02:
Revised Papers from the 4th International Workshop on Cryptographic Hardware
and Embedded Systems, pages 470–483. Springer-Verlag, 2003.

17. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2001.

18. D. Watanabe, A. Biryukov, and C. De Canniere. A distinguishing attack of SNOW
2.0 with linear masking method. In Selected Areas in Cryptography—SAC 2003,
pages 222–233. Springer-Verlag, 2003.

19. D. Coppersmith, S. Halevi, and C.S. Jutla. Cryptanalysis of stream ciphers with
linear masking. In M. Yung, editor, Advances in Cryptology—CRYPTO 2002, vol-
ume 2442 of Lecture Notes in Computer Science, pages 515–532. Springer-Verlag,
2002.

20. J.D. Golić. Linear models for keystream generators. IEEE Transactions on Com-
puters, 45(1):41–49, January 1996.

21. P. Junod. On the optimality of linear, differential and sequential distinguishers.
In Advances in Cryptology—EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 17–32. Springer-Verlag, 2003.

Appendix A: Second Example From Real Cryptanalysis

Example 2. Let us have k = 3 uniformly distributed independent random vari-
ables X1, X2, X3 ∈ Z232 , i.e., n = 32. Assume in some cryptanalysis we perform
a linear approximation ‘X1 � X2 � X3 → X1 ⊕ X2 ⊕ X3 ⊕ N ’, where N is a
noise variable introduced due to the approximation. The task is to find the bias
ε of the noise variable N .

The expression for N is: N = (X1 + X2 + X3︸ ︷︷ ︸
A1

)⊕X1 ⊕X2 ⊕X3

︸ ︷︷ ︸
B1

mod 232,

which is a PLFM with only one A term. The maximum carry-bit index value is
θmax = (k+

1 + 1) = 3. Since no constants are involved all matrices M∗|t for all t’s
are the same. Hence, only two matrices M0|0 and M1|0 have to be constructed,
using Theorem 1.

Mγ0=0|t=0 =


4 0 0

4 0 4
0 0 4


 , Mγ0=1|t=0 =


0 1 0

0 6 0
0 1 0


 . (26)

The probability Pr{N = γ} can now be calculated efficiently. For example,
Pr{N = γ = 0x72A304F8} = 1

23·32 (1 1 1)×
(∏0

t=n−1 Mγ[t:t]|0
)
× (1 0 0)T =

1
296 ·2187 ·251 ≈ 0.266967773/232. Note that the probability for an odd γ is 0. To
calculate one probability the number of 32 · 32 + 3 = 291 operations is required.
Hence, to calculate the complete distribution would take 291 · 232 operations.

However, this time com-
plexity can be reduced sig-
nificantly with specific data
structures use, which we call
“fast-tables”. Each table is
of size 216 entries, which
contain 3-dimentional vec-
tors. These tables are pre-
computed as shown in Fig-
ure on the right. This pre-
computation requires 216·2·
32 = 9 · 217 operations. The
advantage is that any prob-
ability can now be derived
as just one scalar product

1. Data structures:
FastT[2][0 . . .216 − 1] – two ‘fast-tables’

2. Initialisation:
FastT[0][0] = (1 0 0), FastT[1][0] = (1 1 1)

3. Precomputation of the tables:
for t = 0 . . . 15
for x = 1, 0 (note, the order is backward)
for Y = 0 . . . 2t − 1
z FastT[0][x||Yt] = Mx|t×FastT[0][Y]

FastT[1][x||Yt] = FastT[1][Y]×Mx|n−t−1

Fast-tables precomputation algorithm.
z Yt is a t-bit value of Y . I.e., in C/C++ it would

look like: (x||Yt) ⇒(x<<t)|Y

Pr{N = γ} =
1

23·32 ·<FastT[0][γ15 . . . γ0], FastT[1][γ16 . . . γ31] > 4, (27)

which takes only 3 operations (instead of 291). Finally, the bias ε can be derived
as follows:
4 Note, the input for FastT[1][·] is bit-reversed.

1. ε = 0.5 (the bias for odd values of γ)
2. for γ = 0 . . . 231 − 1 (only even 2γ’s are considered)

3. ε+ = |Pr{N = 2γ} − 2−32|
The total time for this solution is the following sum: 2 · 23 · 3 = 48 – to

compute matrices, 9 · 217 – to precompute fast-tables, and 3 · 231 – to calculate
the bias ε. In total 6443630640 ≈ 232.585 number of operations is required. To
calculate the distribution of the noise variable N the same number of operations
is needed, whereas the classical solution requires 296 operations. Note, when the
question is only to find the bias ε for some large distribution with memory limits
conditions, the classical solution will fail with respect to the memory limits. ��

Appendix B: Data Structures for Large Distributions and
Operations

B.1 Data Structure Proposal

Assume we want to operate on a distribution of size 2n, but, however, the op-
eration memory allows us to work only with a distribution of size at most 2m,
where m < n. If this is the case, to be able to work with large distributions of
size 2n we then propose to use hard disk memory (HDD). Let

r = n−m,

then one need to create 2r files on HDD, which we denote as Filer
(0...2r−1), to

store one distribution table. The upper parameter r denotes the number of files
to be created (2r), and the index on the bottom is the selector of a particular file.
Sometimes we will write also Filer

X:(A) to show that this is the sub distribution file
A for the random variable X . Each file stores the corresponding sub distribution
of size 2m. I.e., the probability Pr{X = X0} can be accessed by

Pr{X = X0} = Filer
X:(X0[m:n−1])[X0 mod 2m]. (28)

Note that the upper r = (n−m) bits select the file, and the lower m bits are
the cell index in the sub distribution.

The operation memory is regarded as a fast memory, whereas the HDD
memory is regarded as a very slow memory. Working with such data structure
frequent access (loading and saving) to the files on HDD should be avoided, since
these operations are extremely much slower than an access to the memory. I.e.,
the most operations have to be done in the operation memory domain, and the
number of access to the files has to be reduced as much as possible. In the next
parts of this Appendix we present efficient solutions to apply common algorithms
when operating on large distributions with the proposed data structures.

B.2 A PLFM Distribution Construction

For a given pseudo-linear function F (·) modulo 2n its distribution can be con-
structed as follows.

1. for A = 0 . . . 2r − 1
2. load sub distribution SubDist[·]←Filer

(A)

3. calculate the vector v = (1 1 . . . 1)× (
∏0

t=r−1 MA[t:t]|t+m)
4. for B = 0 . . . 2m

5. SubDist[B] = Pr{F = AB} = v × (
∏0

t=m−1 MB[t:t]|t)× (1 0 . . . 0)T

6. save sub distribution Filer
(A)←SubDist[·]

This algorithm requires to access each file once. Additionally, the steps 3 and 5
could be done more efficient with precomputed fast-tables (see, e.g. Appendix A).

B.3 A Function Y = F (X) Evaluation Distribution

Let us have a distribution DX of a random variable X , stored in data structures
as suggested before. Let us also have a function defined on one variable F (X).
We need to construct the distribution of Y = F (X) in an efficient way. As an
example, this function could be a multiplication α · X in some finite field, a
permutation of X , a multiplication on a matrix, or some other function on X in
general.

One could take the values of X consecutively, and then each time calculate
Y . The problem appears when the consecutive values Y should be stored in
different files. It could happen that we need to access the Y ’s files O(2n) times,
which is expensive in time.

We suggest the following algorithm containing three stages. In the first stage
the function is evaluated and the resulting Y ’s are separated into two files (bins),
according to the upper bit value. In the second stage we perform binary sorting
algorithm, each time dividing each bin into two new bins. The third stage accu-
mulates probabilities from the bins and transfer the resulting sub distributions
to the data structures of Y (files).

Stage I: Evaluate Y = F (X) and separate into two files (narrowed distribution)

1. create two files (bins) f0 = ∗File1
Y :(0) and f1 = ∗File1

Y :(1)

2. for all A = 0 . . . 2n−m − 1
3. load sub distribution SubDistX[·]←Filer

X:(A)

4. for all B = 0 . . . 2m − 1
5. Evaluate Y0 = F (A||B)
6. Save the pair fY0[n−1:n−1] ← (SubDistX[B], Y0)
7. close the files f0 and f1

Stage II: Expand the files ∗File1
Y :(A1)

→ ∗File2
Y :(A2)

→ . . .→ ∗Filer
Y :(Ar)

1. for k = 1 . . . r − 1
2. for all A = 0 . . . 2k − 1
3. open two files f0 = ∗Filek+1

Y :(A||0) and f1 = ∗Filek+1
Y :(A||1)

4. while(not the end of the file ∗Filek
Y :(A))

5. read the pair (p, Y0) ← ∗Filek
Y :(A)

6. save the pair fY0[n−k−1:n−k−1] ← (p, Y0)
7. close the files f0 and f1

Stage III: Construct Filer
Y :(A) from ∗Filer

Y :(A)

1. for all A = 0 . . . 2r

2. clear SubDistY [0 . . . 2m − 1]
3. while(not the end of the file ∗Filer

Y :(A))
4. read the pair (p, Y0) ← ∗Filek

Y :(A)

5. SubDistY [Y0]=SubDistY [Y0]+p
6. save sub distribution Filer

Y :(A)←SubDistY [·]

The complexity of this algorithm is O((1+ r) ·2n). However, the coefficient r
in the complexity can be reduced with a small programming trick. If at the step
II.3 we, instead, open 2d files (in Windows at most 29 files can be open at the
same time), and perform not a binary sorting but a d-tuple bits sorting at once,
then the complexity will be reduced to O((1 + r/d) · 2n). For example, if the
number of files is 216 (r=16), then with d = 8 we can compute the distribution
of any function F (X) by reading and storing distributions of size 2n from the
files only 3 times (instead of 17).

Note that in the implementation of FFT the first operation is the construc-
tion of the distribution DRev(X) for the bit reverse of the random variable X ,
which is just a sub case of the general problem of this sub section. We simply
define the function Y = F (X) such that Y is the bit-reverse of X , and apply
the algorithm above. There are other more nice and efficient solutions for this
particular problem, but we only mention their existence.

B.4 Convolution over ⊕

To perform a convolution over ⊕ we need to be able to perform FHT on the
proposed data structures. We propose a modified FHT algorithm, where first
local FHTs for sub distributions are separately performed, and then evaluate
the “convolution” over the files as follows.
1. for A = 0 . . . 2r − 1
2. load sub distribution SubDist[·]←Filer

(A)

3. FHT(m, SubDist)
4. save sub distribution Filer

(A) ←SubDist[·]
5. FHT∗(r, NULL) -- the same FHT as before but with another

butterfly function bfly∗(j+k, j+k+(1<<i)).

The modified butterfly function bfly∗ is

1. bfly∗(A, B)
2. load SubDist1[·]←Filer

(A) and SubDist2[·]←Filer
(B)

3. for i = 0 . . . 2m − 1
4. bfly(SubDist1[i], SubDist2[i])
5. save Filer

(A) ←SubDist1[·] and Filer
(B) ←SubDist2[·]

This algorithm requires to load/save each file r = n−m times. The modified
butterfly function bfly∗ can also be implemented memoryless. It can read one
value from Filer

(A) and one value from Filer
(B), perform the usual butterfly oper-

ation and save the results back to the files immediately. There are two additional
ideas to accelerate the FHT evaluation:

(a) In steps 3 and 4 of the algorithm above only two files are processed. In-
stead, we could have a larger block of 2d files opened and processed at
the same time. The calculation of the batterfly function on two probabil-
ities SubDist1[i] and SubDist2[i] can be substituted by a ‘local’ FHT on
2d inputs, instead. Since the size of each file is 2m, we need to repeat this
procedure 2m times for each group of 2d files (inputs are taken in parallel
from a group of 2d files opened at the same time, but the number of such
parallel inputs for each group is 2m). As the result, each file is accessed
around (r + 1)/d times;

(b) The computation can also be splittet into 2c independent processes (2c com-
puters), and then the results can be merged together afterwards.

B.5 Convolution over �

A convolution over � on the suggested data structures can be done in a similar
way as for ⊕. In the first step we perform the bit reversing operation on the input
distribution, as described in Appendix B.3. Afterwards, we use the same idea as
in the previous sub section, based on the parallel FFT circuit. The description
of the parallel FFT circuit can be found in the book [17].

Appendix C: Efficient FHT Implementation in C/C++

Fast Hadamard Transform (FHT) implementation in C/C++

// butterfly operation
template<class T> void inline bfly (T &a, T &b)
{ T tmp; tmp=a; a+=b; b=tmp-b; }

// FHTn, size of the input distribution is 2n

template<class T> void FHT(int n, T *Dist)
{ for (int i=0; i<n; ++i)

for (int j=0; j<(1<<n); j+=1<<(i+1))
for (int k=0 ; k<(1<<i); ++k)

bfly (Dist[j+k], Dist[j+k+(1<<i)]);
}

