
Discrete-Log-Based Signatures May Not Be
Equivalent to Discrete Log

Pascal Paillier1 and Damien Vergnaud2

1 Gemplus Card International, Advanced Cryptographic Services
34, rue Guynemer, 92447 Issy-les-Moulineaux Cedex, France

pascal.paillier@gemplus.com
2 Laboratoire de Mathématiques Nicolas Oresme

Université de Caen, Campus II, B.P. 5186,
14032 Caen Cedex, France,
vergnaud@math.unicaen.fr

Abstract. We provide evidence that the unforgeability of several dis-
crete-log based signatures like Schnorr signatures cannot be equivalent
to the discrete log problem in the standard model. This contradicts in
nature well-known proofs standing in weakened proof methodologies, in
particular proofs employing various formulations of the Forking Lemma
in the random oracle Model. Our impossibility proofs apply to many
discrete-log-based signatures like ElGamal signatures and their exten-
sions, DSA, ECDSA and KCDSA as well as standard generalizations
of these, and even RSA-based signatures like GQ. We stress that our
work sheds more light on the provable (in)security of popular signature
schemes but does not explicitly lead to actual attacks on these.

1 Introduction

It is striking to observe that after more that two decades of active research
on the matter, the standard-model security of discrete-log based signatures like
Schnorr, ElGamal or DSA remains mysteriously unknown. Although dedicated
proof techniques do exist in weakened models (e.g. the random oracle model
(ROM) [19,4,8] or the generic group model (GGM) [7]), none of them provides
intuition about the actual security of discrete-log signatures. Even though they
have withstood concerted cryptanalytic effort fairly well, we suspect that the
real-life security of many of these signature schemes is actually weaker than
expected. We provide evidence that most discrete-log-based signatures defined
over some prime-order group G cannot be equivalent to extracting discrete logs
over G in the standard model. Our results are partial in the sense that we
disprove equivalence via algebraic reductions. In brief, algebraic reductions can
only apply group operations on group elements. This restriction is not overly
restrictive as we do not know any example of a cryptographic reduction which is
not algebraic. Our results suggest that most discrete-log based signature schemes
just cannot reach a maximal security level i.e. equivalence towards their primitive

problem, or that if some of them do, it is through non-algebraic reductions
exploiting intricate and subtle relations within the group G.

Most interestingly, our work highlights a possible separation between the
standard model and the random oracle model in which it is well-known that
forging Schnorr signatures (for instance) is equivalent to extracting discrete logs.
An interpretation is that random-oracle-based proofs leave unfair advantage to
security reductions by probing and modifying the adversary’s internal computa-
tions and thereby letting the random oracle play a crucial role that cannot be
justified in real life. Previous works have observed similar separations in specific
contexts [2,18].

The Fiat-Shamir paradigm of transforming identification schemes into digital
signature schemes [13] is popular because it yields efficient protocols. However
all known results for the security of Fiat-Shamir-transformed signature schemes
like Schnorr take place in the ROM1. Even worse, they impose the loss of a factor
nearly qH (the number of queries the forger makes to the random oracle) in either
execution time or success probability of reductions that convert a forger into an
algorithm that extracts discrete logarithms. While no proof exists that the loss of
this factor is necessary, the problem seems inherent to the way signature schemes
are constructed from identification protocols.

We prove in this paper that any random-oracle-based reduction from com-
puting discrete logarithms to forging Schnorr signatures must lose a factor at
least

√
qH . This shows that a proof of equivalence in the ROM, if algebraic, will

never be tight. We believe our work gives a new perspective as to why no efficient
proof of equivalence to the discrete log problem has ever been found for Schnorr
signatures despite considerable research efforts.

We emphasize that although our work disproves that Schnorr, ElGamal,
DSA, GQ, etc. are maximally secure, no actual attack or weakness of either
of these signature schemes arises from our impossibility results. Nothing stated
here refutes that forging signatures is likely to be intractable in practice.

1.1 Our contributions

Our results are manyfold. Introducing a simple way to simulate forgeries, we are
able to relate security properties of many signature schemes (Schnorr, (Meta)
ElGamal, DSA2, ECDSA, KCDSA, GQ) to one-more computational problems,
in a positive or negative sense. In the positive sense, we prove the unbreaka-
bility of these signatures (meaning that the signing key cannot be recovered)
under chosen-message attacks, thereby identifying security properties that have
remained unknown for these schemes.
1 It is known that the Fiat-Shamir transform provides a separation between the ROM

and the standard model, see [14].
2 Note that this work constitutes the first proper security analysis of DSA and ECDSA

in the standard model. Previous to this work the only known security result on DSA
schemes was that of Brown on ECDSA which assumed a generic group [7].

Starting from the same simulation technique, we show that no algebraic re-
duction can exist that would relate the unforgeability (under any kind of attacks)
of these signatures to their primitive problem. This result is extendable to the
one-more setting, meaning that there cannot exist a similar reduction to a weak-
ened, one-more version of the primitive problem. Our impossibility proofs rely
on the construction of an efficient meta-reduction relating such a reduction to
the one-more problem itself. Thus, under the assumption that this problem is in-
tractable, the fact that a polynomial meta-reduction exists forbids the existence
of algebraic reductions. We note that our meta-reductions are perfect meaning
that they preserve success probabilities perfectly. This emphasizes the strength
of our impossibility results.

1.2 Roadmap

We start by providing definitional facts about discrete-log-based signature sche-
mes, security notions for signatures, the discrete log and one-more discrete log as-
sumptions over a group G, reductionist security proofs and algebraic reductions.
Section 3 proves that Schnorr signatures are unbreakable under a chosen-message
attack. Section 4 then proves that if the one-more discrete log assumption holds,
then Schnorr signatures cannot be proven equivalent to the discrete log prob-
lem and Section 5 further extends this impossibility to the one-more discrete log
problem. Section 6 then applies our proof technique to other signatures schemes,
slightly adapting the proof to the underlying computational problem when nec-
essary. Lastly, Section 7 explores the case of random-oracle-based reductions and
shows that any reduction of that type, if algebraic, must loose a factor close to√

qH . We conclude with a series of open questions in Section 8.

2 Preliminaries

2.1 Schnorr Signatures

Schnorr’s identification protocol was introduced in the late eighties [21,20] as a
means to prove knowledge of the discrete logarithm of a publicly known group
element. Let G = 〈g〉 be a group of prime order q and P and V denote a prover
and a verifier. By engaging in the protocol, P proves to V that he knows the
discrete log x of a public group element y = gx. The protocol has three simple
moves. (Commitment) P selects a random k

$← Zq, computes r = gk and sends
r to V . (Challenge) V picks a random c

$← Zq and sends c to P . (Response) P
computes and sends s = k + cx mod q to V . Lastly, V verifies that gs · y−c = r
and recognizes that P knows x if the equality holds.

Schnorr signatures derive from Schnorr’s identification protocol by applying
the Fiat-Shamir transform [13] with respect to a hash function H : {0, 1}? 7→ Zq.
The Fiat-Shamir-transformed protocol is changed into a signature scheme by
making it non-interactive. In this respect, the signer acts like P and simulates a
verifier V by computing the challenge c himself as c = H (m, r). For concreteness,

we detail Schnorr’s signature scheme ΣH as a tuple of probabilistic algorithms
ΣH = (Gen,Sign,Ver) defined as follows.

Key generation. Gen selects a random x
$← Zq. The secret key is x while the

public key is y = gx ∈ G.
Signing procedure. Given a message m ∈ {0, 1}?, Sign(m) picks a random
k

$← Zq, computes r = gk, c = H (m, r) and s = k + cx mod q. The output
signature is (s, c).
Verification procedure. Ver(m, (s, c)) returns 1 if H (m, gsy−c) = c and 0
otherwise.

Schnorr signatures constitute one of the most important ingredients in the
design of cryptographic protocols, cryptosystems and proofs of knowledge.

2.2 Security Notions

Security notions for signature schemes are defined with respect to several types
of adversaries or equivalently, as the conjunction of an adversarial goal and
an attack scenario. An adversary is modeled as a probabilistic Turing machine
attempting to fulfill the goal while given access to certain resources when inter-
acting with the signature scheme.
Adversarial goals. We make use of three separate goals in this paper al-
though others may also be of interest (e.g. signature malleability [19]). We say
that a signature scheme is breakable (BK) when an adversary extracts the se-
cret key matching a prescribed public key. The scheme is said to be universally
forgeable (UF) when there exists an adversary A that returns a valid signature
on a message given as input to A. The notion of existential forgeability (EF) is
similar but allows the adversary to choose freely the value of the signed message.
Attack models. We consider two attack scenarios in this paper. In a key-only
attack (KOA), the adversary is given nothing else than a public key as input3.
In a chosen-message attack (CMA), the adversary is given adaptive access to
signatures on messages of his choice while attempting to achieve his goal.

Security notions are obtained by coupling an adversarial goal with an attack
model. We distinguish between several notions of reference for which general
results are immediate, as shown on Figure 1. We refer the reader to the extensive
cryptographic literature for a more formal definition of these security notions.

2.3 Discrete Logarithm Problems

DL. Solving the discrete log problem DL[g, r] in a group G = 〈g〉 of prime or-
der q consists in computing k ∈ Zq given r = gk ∈ G. Because of its random
self-reducibility [19], the hardness of the discrete log problem is essentially in-
dependent from the choice of its inputs (g, r) and rather depends on the inner

3 The term no-message attacks is also frequently used to designate such attacks.

Existential forgeries EF-KOA [S] ⇒ EF-CMA [S]

⇑ ⇑
Universal forgeries UF-KOA [S] ⇒ UF-CMA [S]

⇑ ⇑
Breakability BK-KOA [S] ⇒ BK-CMA [S]

Goal vs. Attack Key only Chosen message

Fig. 1. Major security notions for signature schemes. S denotes an arbitrary signa-
ture scheme and P1 ⇐ P2 means that P1 is polynomially reducible to P2. Security
notions are defined by their underlying problem e.g. UF-KOA [S] denotes the problem
of computing a universal forgery under a key-only attack.

structure of the group G itself. We denote DL the problem of computing discrete
logs over G = 〈g〉 with respect to a fixed base g. A probabilistic algorithm A
that (ε, τ)-solves DL is such that

Pr
k

$←Zq

[A(gk) = k
] ≥ ε

where the probability is taken over the random tape of A and A stops after time
at most τ . The (ε, τ)-discrete-log assumption tells that DL cannot be (ε, τ)-
solved over G. The (asymptotic) discrete log assumption tells that if DL can be
(ε, τ)-solved for τ = poly (log q) then ε is negligible before 1/poly (log q).
The One-More DL. The computational problem n-DL is defined as a natural
extension of DL. A probabilistic algorithm A solving n-DL is given n + 1 group
elements r0, r1, . . . , rn as well as a limited access to a discrete log oracle DLOM. A
is allowed to access DLOM at most n times, thus obtaining the discrete logarithm
of n group elements of his choice with respect to a fixed base g.Amust eventually
output the n + 1 discrete logs k0 = dlg (r0) , . . . , kn = dlg (rn). An algorithm A
is said to (ε, τ)-solve n-DL when

Pr
k0,...,kn

$←Zq

[ADLOM(gk0 , . . . , gkn) = (k0, . . . , kn)
] ≥ ε

where the probability is taken over the random tape of A, A stops after time at
most τ and A calls DLOM at most n times. The one-more discrete log assumption
tells that no probabilistic algorithm can solve n-DL with non-negligible success
probability over G for any integer n ≥ 1. It is easily seen that DL is contained
as the special case DL ≡ 0-DL and that n1-DL ⇐ n2-DL whenever n1 ≥ n2.

2.4 Reduction-based Security Proofs

Reductions. Cryptographers use reductionist proofs to convince others that
their schemes are computationally secure. An algorithm R is said to reduce a

problem P1 to a problem P2, which we then denote by P1 ⇐R P2, if R solves P1

with the help of an algorithm solving P2. Algorithm R is then called a reduction
from P1 to P2. We write P1 ⇐ P2 when there exists a polynomial time reduction
from P1 to P2, and P1 ≡ P2 when one has simultaneously P1 ⇐ P2 and P2 ⇐ P1.

Algebraic algorithms. Our method of converting a reduction R such that
DL ⇐R UF-KOA [ΣH] into an algorithm solving the one-more discrete log prob-
lem applies whenever R belongs to a certain “natural” class of reductions. We
refer to these as algebraic reductions.

In brief, a reduction algorithm R is algebraic with respect to a group G if R
is limited to perform group operations on group elements. Adding 1G to g ∈ G is
thus not permitted, even if this operation is well-defined and meaningful (if G is
the multiplicative subgroup of a ring, for instance). R is free to apply arbitrary
operations on other data types, but when it comes to elements of G, the only
available operations are among the (redundant) limited set

S = {(g1, g2) 7→ g1
?= g2, (g1, g2) 7→ g1 · g2, (g1, λ) 7→ gλ

1 , g1 7→ g−1
1 } .

For instance a reduction placed into the generic group model (GGM) or more
precisely in the non-programmable GGM is an algebraic reduction4. However,
the class of algebraic reductions encompasses much more algorithms and in par-
ticular may be relevant on groups where there do exist algorithms exploiting the
encoding of elements. This class of reductions is not overly restrictive (in fact, we
do not know any example of a cryptographic reduction which is not algebraic).
The restriction of our results to algebraic reductions is far much weaker than the
one made in [11] which considers only reductions supplying the adversary with
a public key which is always the same as its own challenge. It is worth noting
that our results extend readily to such reductions.

Algebraic algorithms were originally defined by Boneh and Venkatesan [5] in
the context of rings of integers modulo n = pq under the form of straight-line
programs computing polynomials over the ring structure Zn. Here, we stick to
a (somewhat more natural) definition of algebraicity towards a group structure.
A formal definition of this property is that an algebraic algorithm R admits a
polynomial time extractor Extract enabling one, givenR’s inputs (s, g1, . . . , gk) ∈
{0, 1}∗ × Gk and random tape $, to recover for any variable h ∈ G output by
R after τ elementary steps, the coefficients αi such that h = gα1

1 . . . gαk

k . Extract
possibly has non black-box access to R and in particular may be given the code
of R. We require that Extract runs in time poly (τ, |R|) where |R| denotes the
code size of R.

In the sequel, we adopt the notation P1 ⇐alg P2 whenever there exists an
algebraic algorithm R such that P1 ⇐R P2 and P1 ≡alg P2 when P1 ⇐R1

P2 and P2 ⇐R2 P1 for algebraic reductions R1,R2. Conversely, the notation
P1:algP2 says that there exists no algebraic algorithm R such that P1 ⇐R P2.
We define P1 6≡algP2 in a similar way.

4 It should be mentioned that the GGM suffers from the same separation problems as
the ROM, see [10].

3 Schnorr is Unbreakable under the One-More Discrete
Log Assumption

We start by showing that Schnorr’s signature scheme ΣH defined over some
group G is at least as hard to break that the one-more discrete log problem is
hard to solve over G. This is a positive security result standing in the standard
model.

Theorem 1 (qs-DL ⇐ BK-CMA [ΣH]). Assume there exists an adversary A
against ΣH that breaks the secret key under a chosen-message attack with qs

signature queries and success probability ε. Then there exists an algorithm R
that solves qs-DL with probability ε′ = ε in similar time.

Proof. The description of G = 〈g〉 is implicitly given to all parties (this will be
the case for all reductions and meta-reductions considered in this paper). Assume
there exists a probabilistic algorithm A that takes as input y = gx, requests the
signature of qs messages, and outputs the secret key x with probability ε after
τ steps. We construct a reduction algorithm R which makes use of A to solve a
qs-DL instance over G. Algorithm R works as follows.

R receives qs + 1 group elements r0, . . . , rqs , defines y = r0 and launches
A(y,$) over some random tape $. Now whenever A requests the Schnorr sig-
nature of a message mi, R uses ri to compute ci = H (mi, ri). R then queries
the discrete log oracle to get si ← DLOM (ri · yci) and returns the signature
σi = (si, ci). It is easily seen that this simulation is perfect.

After at most qs signature queries, A returns k0 such that r0 = gk0 with
probability ε in which case R uses k0 to retrieve the discrete logarithm ki =
si − k0ci mod q of ri for i = 1, . . . , qs. R then returns (k0, k1, . . . , kqs) and
therefore succeeds in solving qs-DL with probability ε′ = ε after at most τ ′ =
τ + poly (qs, Time (H) , log q) steps. ut

4 Schnorr Signatures are not Unforgeable under the
Discrete Log Assumption

We now show that Schnorr signatures cannot be proven universally unforgeable
under the discrete log assumption in the standard model with respect to an
algebraic reduction. We actually show that if such a reduction existed then the
one-more discrete log assumption would not hold over G.

Theorem 2. Assume that the one-more discrete log assumption holds. Then
DL:alg UF-KOA [ΣH].

We give a more precise formulation of Theorem 2 in the following lemma.

Lemma 1. Assume there exists an algebraic reduction algorithm R that con-
verts an (ε, τ)-universal forger A under a key-only attack into an (ε′, τ ′)-solver
for the discrete logarithm and assume that R executes A at most n times. Then
there exists a meta-reduction algorithm M that solves n-DL with success proba-
bility ε′′ = ε′ within time τ ′′ = τ ′ + poly (τ ′, |R|, n, Time (H) , log q).

Proof. The rest of the section is dedicated to proving Lemma 1 and we start by
giving an overview of how the proof works. Assuming the existence of an algebraic
reduction R as above, we construct a meta-reduction M that solves n-DL with
success probability identical to the one of R. Algorithm M works as follows.
Given n + 1 group elements r0, . . . , rn ∈ G, M launches R over r0 and some
arbitrary random tape. M then perfectly simulates at most n executions of the
adversary A by using r1, . . . , rn and by making requests of discrete logarithms
to oracle DLOM. If R outputs k0, M uses its transcript information to retrieve
the discrete logs kj of the rj ’s.
Tracing R’s internal group operations. The reduction algorithm R takes
as input a challenge discrete log instance r0 = gk0 and is allowed to invoke n
times the universal forger A with freely chosen public keys yi = gxi , messages
mi and random tapes $i where i = 1, . . . , n. For our meta-reduction M to
work, however, we must dispose of a constructive way to recover the value of
the xi’s from the one of k0 = dlg (r0). This is where an additional mechanism is
needed. We may either choose to dive R into the generic model to have access to
its internal computations involving group elements, or more generally consider
R to be algebraic and let M dispose of the code of R if necessary, i.e. have
non black-box access to R. In the sequel, we impose that R is algebraic, and
provided that the code of R is polynomial in length, M is assumed to dispose of
a polynomial time extraction procedure Extract(k0, Transcript) = (x1, . . . , xn).
Simulation of A. The simulation of a universal forger A(y,m, $) under a
key-only attack is described as follows. Transcript and j are viewed as global
variables initialized before A is executed for the first time.

1. Receive (y, m,$) ∈ G× {0, 1}? × {0, 1}?

2. Select δ
$← [0, 1] uniformly at random

3. If δ > ε stop and output ⊥
4. Else if (y, m,$) 7→ (s, c) ∈ Transcript for some signature (s, c), stop and

output (s, c)
5. Else

(a) Define r = rj and increment j by 1
(b) Compute c = H (m, r)
(c) Request the discrete log s ← DLOM(ryc)
(d) Append (y, m, $) 7→ (s, c) to Transcript

(e) Output σ = (s, c)

Description of M. M takes the first group element r0 ∈ G, initializes j =
1 and Transcript = ∅, and invokes R with input r0 and arbitrary random
tape. M then simulates the universal forger A as above, resulting in a perfect
simulation. During simulation, M sends ` requests to oracle DLOM for some
` ∈ [1, n] (therefore ` is the value of j after the n successive simulations of A).
Now assume R outputs k0 = dlg (r0). M then uses its transcript information to
extract

(x1, . . . , xn) = Extract(k0, Transcript) .

There are ` records of type (y, m, $) 7→ (s, c) in Transcript. Then for j ∈ [1, `],
if the j-th record is of the form (gxi , ∗, ∗) 7→ (s, c) for some i ∈ [1, n] then M
computes kj = dlg (rj) = s− cxi mod q. At this point, M knows (k0, k1, . . . , k`).
Now for j = `+1 to n,M directly requests kj = dlg (rj) to DLOM.M then returns
(k0, . . . , k`, k`+1, . . . , kn), thereby succeeding in solving n-DL. This occurs with
probability ε′′ = ε′ and time τ ′′ = τ ′ + poly (τ ′, |R|, n, Time (H) , log q). ut

5 Extension to the One-More Discrete Log Assumption

Theorem 2 shows that under the one-more discrete log assumption, no algebraic
reduction exists that would reduce the discrete log problem to forging Schnorr
signatures. This is a big step towards proving that coming up with forgeries
is strictly easier than extracting discrete logs. One may ask whether a similar
impossibility result extends to computational problems weaker than DL. We
provide a positive answer to this question too by showing that if the one-more
discrete log assumption holds, there can be no algebraic reduction from solving
any one-more discrete log problem to forging signatures. In other words

Theorem 3. Assume that the one-more discrete log assumption holds. Then

t-DL :alg UF-KOA [ΣH]

for any integer t ≥ 0.

Note that Theorem 3 contains Theorem 2 in the special case where t = 0. This
shows that Schnorr signatures cannot be proven universally unforgeable under
the one-more discrete log assumption with respect to an algebraic reduction,
or that if they can, the one-more discrete log assumption does not hold over G,
thus rendering such a reduction useless. The following lemma captures this more
precisely.

Lemma 2. Assume there exists an algebraic reduction algorithm R that con-
verts an (ε, τ)-universal forger A under a key-only attack into an (ε′, τ ′)-solver
for t-DL and assume that R executes A at most n times. Then there exists
a meta-reduction algorithm M that solves (t + n)-DL with success probability
ε′′ = ε′ within time τ ′′ = τ ′ + poly (τ ′, |R|, t, n,Time (H) , log q).

Proof (of Lemma 2). The proof is very similar to the one of Lemma 1. We
therefore avoid details and focus on the changes we apply to extend to the
general case t-DL, t ≥ 0. Again, from an algebraic reduction R as above, we
construct M that solves (t + n)-DL with success probability identical to the one
of R.

Extraction of secret keys. The reduction algorithm R now takes as input
a t-DL instance

(
r0 = gk0 , r1 = gk1 , . . . , rt = gkt

) ∈ Gt+1 ,

calls DLOM up to t times and invokes at most n times the universal forger A with
freely chosen public keys yi = gxi , messages mi and random tapes $i where
i = 1, . . . , n. Since R is algebraic and of polynomially bounded size, we dispose
of a polynomial time extraction procedure Extract(k0, k1, . . . , kt, Transcript) =
(x1, . . . , xn).
Simulation of A. The simulation of the universal forger A is identical to the
one given in the previous section.
Simulation of DLOM. Since R attempts to solve t-DL, we must allow R to
send up to t requests to the discrete logarithm oracle DLOM. The meta-reduction
M individually collects these requests, forwards them to DLOM and sends the
corresponding outputs back to R. We may assume that R makes exactly t oracle
calls since in the case when R sends strictly less than t requests during the game,
M sends additional requests of discrete logs for randomly chosen group elements
to DLOM on behalf of R. This simulation is obviously perfect.
Overall description of M.M takes its first t+1 group elements (r0, . . . , rt)
among (r0, . . . , rt+n), initializes Transcript = ∅ and j = 1, and invokes R with
input (r0, . . . , rt) and arbitrary random tape. M then simulates the universal
forger A and discrete log oracle DLOM as above, resulting in a perfect simulation.
During simulation, M sends t + ` requests to DLOM for some ` ∈ [1, n]. Now
assume R succeeds and outputs

k0 = dlg (r0) , k1 = dlg (r1) , . . . , kt = dlg (rt) .

M then uses its transcript information to extract

(x1, . . . , xn) = Extract(k0, . . . , kt, Transcript) .

There are ` records of type (y, m, $) 7→ (s, c) in Transcript. Then for j ∈ [1, `],
if the j-th record is of the form (gxi , ∗, ∗) 7→ (s, c) for some i ∈ [1, n] then M
computes kt+j = dlg (rt+j) = s − cxi mod q. Thus M recovers (kt+1, . . . , kt+`).
Now for j = t + ` + 1 to n, M directly requests kj = dlg (rj) to DLOM. Then M
returns

(k0, k1, . . . , kt)︸ ︷︷ ︸
ouput by R

∪ (kt+1, . . . , kt+`)︸ ︷︷ ︸
extracted by M

∪ (kt+`+1, . . . , kt+n)︸ ︷︷ ︸
requested to DLOM

= (k0, . . . , kt+n) ,

thereby succeeding in solving (t + n)-DL. This occurs with probability ε′′ = ε′

and execution time τ ′′ = τ ′ + poly (τ ′, |R|, t, n, Time (H) , log q). ut

Summary. Because of the relations

EF-CMA [ΣH] ⇐ { EF-KOA [ΣH] , UF-CMA [ΣH] } ⇐ UF-KOA [ΣH] ,

our impossibility results readily extend to forgeries of any kind, under any attack
model. We summarize our results (also displayed on Figure 2), stating our pos-
itive and negative security proofs for Schnorr signatures assuming the one-more
discrete log assumption holds:

Forgeries 6≡algDL and even 6≡algt-DL for t > 0

Breakability ≡ DL ⇒ qs-DL

Goal vs. Atk Key-Only Attacks Chosen-Message Attacks

Fig. 2. Our results for Schnorr’s signature scheme ΣH are shown in boxes. In particular,
universal and existential forgeries under any kind of attack cannot be proven equivalent
to the discrete log problem via an algebraic reduction.

Theorem 1: Schnorr’s scheme is unbreakable under chosen-message attacks.

Theorems 2 and 3: Universal and existential forgeries under any kind of at-
tack cannot be proven secure under the discrete log assumption or even the
one-more discrete log assumption with respect to an algebraic reduction.

6 Applications to Other Signature Schemes

We extend our results to various signature schemes, adapting our meta-reduction-
based proof technique to comply with the schemes’ inner design.

6.1 Guillou-Quisquater

GQ signatures were suggested by Guillou and Quisquater in [15]. Among other
properties, GQ is a Fiat-Shamir-transformed signature scheme based on RSA
and supports identity-based public keys.
Scheme parameters and key generation. Let p, q be two large primes, set
n = pq and choose randomly v such that gcd(v, φ(n)) = 1. The public parameters
are (n, v) as well as a hash function H : {0, 1}? 7→ Zv. Now the signer chooses a
secret key x

$← Zn. The related public key is y = x−v mod n.
Signature generation and verification. Given a message m, the signer se-
lects k

$← Zn, computes r = kv mod n, c = H (m, r) and s = kxc mod n. The sig-
nature is σ = (s, c). To verify the signature, check whether H (m, svyc mod n) =
c.

Because of their similarity with Schnorr, GQ signatures fit our impossibility
proofs quite well. However the primitive computational problem here is not DL
but rather extracting v-th roots modulo n, which we denote of course by RSA.
The one-more version of RSA is easily defined with the help of an oracle RSAOM

extracting the v-th root of its argument [3]. Solving n-RSA thus consists in
finding the v-th root of n + 1 elements of Zn given no more than n invocations
of RSAOM. The one-more RSA assumption says that n-RSA is intractable for
n ≥ 1.

Theorem 4. Assume the one-more RSA assumption holds. Then (i) GQ is un-
breakable under chosen-message attacks. (ii) Universal and existential forgeries

under any attack cannot be proven secure under the RSA assumption or the
one-more RSA assumption with respect to an algebraic reduction.

Proof (Sketch). We rely on the same proof technique as in the proofs of Theo-
rems 1, 2 and 3. Here, however, the simulation of the UF-KOA adversary A must
be slightly reformulated. An overall description of our meta-reduction M is as
follows. The reduction algorithm R takes as input a t-RSA instance

(r0 = kv
0 mod n, r1 = kv

1 mod n, . . . , rt = kv
t mod n) ∈ Zt+1

n ,

calls RSAOM up to t times and calls the forger A at most n times with public keys
yi = xi

−v mod n, messages mi and random tapes $i where i = 1, . . . , n. Since
R is algebraic, M is assumed to dispose of a polynomial time extraction pro-
cedure Extract(k0, k1, . . . , kt, Transcript) = (x1, . . . , xn). Now when simulating
A(y,m, $) for new inputs (y, m, $), if M must compute a forgery then M takes
r = rj , computes c = H (m, r) and requests the v-th root s ← RSAOM(ry−c mod
n). The simulation is perfect. After recovering (x1, . . . , xn) from (k0, . . . , kt),
M consults its transcript and if the j-th entry is (x−v

i mod n, ∗, ∗) 7→ (s, c)
for some i then M computes kt+j = sxc

i = v
√

rt+j mod n. The unused inputs
rt+`+1, . . . , rt+n are sent by M to RSAOM to retrieve their v-th root directly.
Following this slightly modified description of M, one gets as before ε′′ = ε′ and
τ ′′ = τ ′ + poly (τ ′, |R|, t, n, Time (H) , log q). ut

6.2 DSA, ECDSA and Generic DSA

DSA is a signature scheme standardized by the NIST in 1991 [9]. The original
version of DSA is based on the discrete log problem over the subgroup of Z∗p of
prime order q|p−1. ECDSA, standardized as well [1], presents the same structure
but is defined over a prime-order subgroup of an elliptic curve. We consider here
their generalization to arbitrary prime-order groups as suggested by Brown in
[7].

Scheme parameters and key generation. Again, G = 〈g〉 denotes a group
of prime order q. The public parameters are (G, g), a function G : G 7→ Zq and
a hash function H : {0, 1}? 7→ Zq. The signer chooses a secret key x

$← Zq. The
related public key is y = gx ∈ G.

Signature generation and verification. Given a message m, the signer
selects k

$← Z∗q , computes r = gk, ρ = G(r), u = H (m) and s = k−1(u +
ρx) mod q. The signature is σ = (ρ, s). To verify the signature, check whether
G

(
gH(m)/s · yρ/s

)
= ρ.

Note that the original DSA corresponds to the case where G =
(
Z∗p

)(p−1)/q,
|q| = 160, H = SHA-1 and G(r) = r mod q. Let E be an elliptic curve group over
a finite field admitting an element P of prime order q with |q| = 160. ECDSA
is obtained with g = P , G = 〈g〉, H = SHA-1 and G(r) = xr mod q where xr is
an integer representation of the x-coordinate of point r.

Before stating our security results, we define a variant of the one-more dis-
crete log problem n-DL as follows. n-DL? consists in computing the discrete logs
with respect to a fixed base g of n+1 group elements with bounded (to n) access
to a discrete log oracle DL?

OM. Unlike DLOM which was limited to the fixed base
g, DL?

OM provides discrete logarithms with respect to any base h ∈ G meaning
that DL?

OM(hα, h) returns α for any h ∈ G. Although 0-DL? ≡ DL ≡ 0-DL, one
only has in the general5 case n-DL? ⇐ n-DL for n ≥ 1. The one-more free-base
discrete log assumption says that n-DL? is intractable for n ≥ 1.

Theorem 5. Assume the one-more free-base discrete log assumption holds. Then
(i) Generic DSA is unbreakable under chosen-message attacks. (ii) Universal and
existential forgeries under any attack cannot be proven secure under the discrete
log assumption or the one-more free-base discrete log assumption with respect to
an algebraic reduction.

Proof (Sketch). We use the same proof technique as for Theorem 1 and Lemmas 1
and 2. What we are after is a reduction qs-DL? ⇐ BK-CMA [Generic-DSA] as well
as a means to simulate an UF-KOA adversary A leading to a meta-reduction M
such that if t-DL? ⇐R UF-KOA [Generic-DSA] whereR is limited to n executions
of UF-KOA [Generic-DSA], then n-DL? ⇐M R. We first have to show how to
simulate a signing oracle without knowing the secret key. Remembering that the
simulator is given group elements {rj} for j ∈ [1, qs] or [t+1, t+n], the signature
simulation is as follows. For a given public key y = gx ∈ G and a message m, we
define r = rj and compute ρ = G(r) and u = H (m). We then invoke DL?

OM to
get

s = DL?
OM (gu · yρ, r) .

It is easy to see that if we write r = gk then s conforms to the equation s =
k−1(u + ρx) mod q. The simulator then outputs σ = (ρ, s). The simulation is
obviously perfect. We now have to show how to recover kj = dlg (rj) from a)
either the list of secret keys {xi} given to simulation number i ∈ [1, qs] or [1, n]
b) or from the outputs k0, . . . , kt of R. Since R is algebraic, the key extraction
procedure using Transcript leads case b) to case a). Therefore, we are left with
the task of recovering kj from xi and the transcript of our simulations. This is
easily done by inverting the signature formula to recover kj = s−1(u+ρxi) mod q.

ut

6.3 KCDSA and Trusted ElGamal Signatures Type I

DSA and DSA-like signature schemes have been extended in many ways. We
focus on a generalization called TEGTSS-I put forward by Brickell et al. in [6].
This extension contains the korean standard KCDSA [17] as a particular case.

Scheme parameters and key generation. Let G = 〈g〉 be a group of prime
order q. Now define three functions f1 : Z4

q 7→ Zq, f2 : Z3
q 7→ Zq and f3 : Z3

q 7→ Zq

5 The converse is unknown.

such that for any integers k, x, u, ρ ∈ Zq,

if s = f1(k, x, u, ρ) then f2 (s, u, ρ) + xf3 (s, u, ρ) ≡ k mod q .

The public parameters are (G, g, f1, f2, f3), a function G : G 7→ Zq and a hash
function H : {0, 1}? 7→ Zq. The signer chooses a secret key x

$← Zq. The related
public key is y = gx ∈ G.
Signature generation and verification. Given a message m, the signer
selects k

$← Z∗q , computes r = gk, ρ = G(r), u = H (m) and s = f1(k, x, u, ρ).
The signature is σ = (ρ, s). To verify the signature, compute u = H (m), α =
f2(s, u, ρ), β = f3(s, u, ρ) and check whether G

(
gα · yβ

)
= ρ.

KCDSA fulfils this description where G =
(
Z∗p

)(p−1)/q = 〈g〉, H and G are
hash functions mapping Zp to Zq, and functions f1, f2, f3 are defined by

f1(k, x, u, ρ) = (k − u⊕ ρ)/x mod q ,

f2(s, u, ρ) = u⊕ ρ ,

f3(s, u, ρ) = s .

Before stating any security property of TEGTSS-I signatures, we leave as an
exercise to the reader to prove the following property.

Claim. Let f1, f2, f3 be functions as above. Then there exist efficiently com-
putable functions δ1, δ2, δ3, δ4 and ε mapping Z2

q to Zq and such that δ1(u, ρ) 6= 0,
δ3(u, ρ) · δ4(u, ρ) 6= 0, ε(u, ρ) 6= 0 for any u, ρ ∈ Zq and

f1(k, x, u, ρ) =
(

δ1(u, ρ)k + δ2(u, ρ)
δ3(u, ρ)x + δ4(u, ρ)

) 1
ε(u,ρ)

, (1)

f2(s, u, ρ) =
δ4(u, ρ)sε(u,ρ) − δ2(u, ρ)

δ1(u, ρ)
, (2)

f3(s, u, ρ) =
δ3(u, ρ)sε(u,ρ)

δ1(u, ρ)
, (3)

where all evaluations are modulo q.

As an illustration, KCDSA yields δ1(u, ρ) = 1, δ2(u, ρ) = −u⊕ρ, δ3(u, ρ) = 1,
δ4(u, ρ) = 0 and ε(u, ρ) = 1. Note that DSA is also a particular case if we set
δ1(u, ρ) = 1, δ2(u, ρ) = 0, δ3(u, ρ) = ρ, δ4(u, ρ) = u and ε(u, ρ) = −1. We
now state our security results. As for Generic DSA, we rely on n-DL? and the
one-more free-base discrete log assumption:

Theorem 6. Let Σ be a signature scheme of type TEGTSS-I. Assume the one-
more free-base discrete log assumption holds. Then (i) Σ is unbreakable under
chosen-message attacks. (ii) Universal and existential forgeries under any attack
cannot be proven secure under the discrete log assumption or the one-more free-
base discrete log assumption with respect to an algebraic reduction.

Proof (Sketch). Here again, we make use of the proofs of Theorem 1, Lemmas 1
and 2. As discussed earlier, it is necessary to show how to simulate a signing ora-
cle without knowing the secret key. Recall the simulator is given group elements
{rj} for j ∈ [1, qs] or [t+1, t+n]. Now the signature simulation is as follows. For
a given public key y = gx ∈ G and a message m, we define r = rj and compute
ρ = G(r) and u = H (m). Using our claim above, we compute δi = δi(u, ρ) for
i ∈ [1, 4] and then invoke DL?

OM to get

s =
(
DL?

OM

(
gδ4(u,ρ) · yδ3(u,ρ), rδ1(u,ρ) · gδ2(u,ρ)

)) 1
ε(u,ρ)

.

Now writing r = gk, we easily see that s conforms to the signature equation s =
f1(k, x, u, ρ) mod q. The simulator then outputs σ = (ρ, s) and the simulation
is perfect. Following the same argument as in the proof of Theorem 5, we now
have to show how to recover kj from xi and the transcript of our simulations.
This directly follows from the definition of TEGTSS-I since kj = f2(s, u, ρ) +
xi · f3(s, u, ρ) mod q. ut

6.4 Trusted ElGamal Signatures Type II

Trusted ElGamal signatures of type II form another family of discrete-log-based
signatures and were also suggested by Brickell et al. in [6]. TEGTSS-II are similar
to TEGTSS-I in that functions f1, f2, f3 are defined along the same lines and
the generation of the public parameters and user keys is identical.

Signature generation and verification. Given a message m, the signer
selects k

$← Z∗q , computes r = gk, ρ = G(r), u = H (m, ρ) and s = f1(k, x, u, ρ).
The signature is σ = (ρ, s). To verify the signature, compute u = H (m, ρ),
α = f2(s, u, ρ), β = f3(s, u, ρ) and check whether G

(
gα · yβ

)
= ρ.

Therefore, TEGTSS-II signatures define u = H (m, ρ) instead of u = H (m)
while generating or verifying the signature. It is straightforward that Theorem 6
still applies in this case. The proof is identical except that the signature simulator
now defines r = rj and computes ρ = G(r) and u = H (m, ρ).

6.5 ElGamal and Meta-ElGamal Signatures

ElGamal signatures were suggested in 1984 [12] and generalized later by Horster,
Michels and Petersen [16]. We consider here a similar generalization to arbitrary
prime-order groups.

Scheme parameters and key generation. Let G = 〈g〉 be a group of prime
order q. Define three functions F1, F2, F3 : G×{0, 1}∗×Zq such that Fi(r,m, s)
is linear in s for i ∈ [1, 3]. F1, F2 and F3 may involve arbitrarily many hash
functions. The public parameters are (G, g, F1, F2, F3). The signer selects a secret
key x

$← Zq. The public key is y = gx ∈ G.

Signature generation and verification. Given a message m, the signer
selects k

$← Z∗q , computes r = gk and solves the linear equation

F1(r,m, s) ≡ x · F2(r,m, s) + k · F3(r,m, s) mod q (4)

which solution is some s ∈ Zq. The signature is then σ = (r, s) ∈ G × Zq. To
verify the signature, check whether

gF1(r,m,s) = yF2(r,m,s) · rF3(r,m,s) .

Original ElGamal signatures define G as the subgroup of order q|p − 1 of
Z∗p, F1(r,m, s) = m or for long messages F1(r,m, s) = H (m) where H is a
hash function mapping strings to Zq, F2(r,m, s) = r mod q and F3(r,m, s) = s.
We now give our results for any Meta-ElGamal scheme i.e. for any choice of
F1, F2, F3 as above. We still rely on n-DL? and the one-more free-base discrete
log assumption.

Theorem 7. Let Σ be a Meta-ElGamal signature scheme. Assume the one-more
free-base discrete log assumption holds. Then (i) Σ is unbreakable under chosen-
message attacks. (ii) Universal and existential forgeries under any attack cannot
be proven secure under the discrete log assumption or the one-more free-base
discrete log assumption with respect to an algebraic reduction.

Proof (Sketch). As discussed above, it is enough to show how to simulate a
signing oracle without knowing the secret key and recover kj from x afterwards.
Recalling that the simulator is given group elements {rj} for j ∈ [1, qs] or [t +
1, t+n], the signature simulation is as follows. For a given public key y = gx ∈ G
and a message m, we define r = rj and compute (as functions of m and r) the
coefficients a1, b1, a2, b2, a3 and b3 such that Fi(r,m, s) = ais + bi for i ∈ [1, 3].
We then call DL?

OM to get

s = DL?
OM

(
ga1y−a2r−a3 , g−b1yb2rb3

)
.

Obviously, s conforms to the verification equation. The simulator then outputs
σ = (r, s) and the simulation is perfect. Now when R or M knows all the
values of x, the transcript of the simulation involving rj leads to specific values
for (r,m, s). Then kj is recovered as the unique solution in k of the signature
equation Eq. 4. ut

7 Impossibility Results in the Random Oracle Model

All known reductions attesting the unforgeability of Fiat-Shamir-transformed
signatures in the random oracle model lead to a loss factor close to qH in terms
of execution time or success probability [19]. Since a reasonable bound on the
number of possible hash queries is around qH = 280, this loss definitely makes
these reductions loose, and subsequently imply larger keys and lowered perfor-
mances. There exists no proof that this loss factor is necessary. The following

theorem states however, that if the one-more discrete logarithm assumption holds
then each and every algebraic reduction from computing the discrete logarithm
to forging Schnorr signatures must lose at least a factor

√
qH .

We note that a similar result can be extended to the one-more discrete log
problems. Also, although we do not extend our work further in this direction,
it is easily seen that this result applies to the random-oracle security of other
signature schemes as well. We start by stating a few statistical facts.

Lemma 3 (Birthday paradox). We consider an experiment in which n ob-
jects are drawn uniformly at random from a set of m elements. Then,

1. the probability of selecting the same element twice is

P (m,n) = 1− m(m− 1) . . . (m− n + 1)
mn

.

2. when n = O(
√

m) and as m →∞, one gets

P (m,n) → 1− exp
(
−n(n− 1)

2m
+ O

(
1√
m

))
' 1− exp

(
− n2

2m

)
.

Lemma 4. Let q be a rational prime number, then

|GLn(Fq)| = (qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1) .

Therefore, the probability z(n, q) that an n× n matrix picked at random is non-
invertible is

z(n, q) = 1− (qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1)
qn2 ≤ n

q
.

Theorem 8. Assume there exists an algebraic reduction algorithm R that con-
verts an (ε, τ, qH)-universal forger A under a key-only attack in the random
oracle into an (ε′, τ ′)-solver for the discrete logarithm and assume that R ex-
ecutes A at most n times. Then there exists a probabilistic algorithm M that
solves n-DL with success probability ε′′ ≥ ε′ · exp

(
− n2

2qH

)
·
(
1− n

q

)
within time

τ ′′ = τ ′ + poly (τ ′, |R|, n, qH , log q).

Proof. Assuming the existence of an algebraic reduction R as above, we con-
struct a meta-reduction M that solves n-DL. R takes as input a challenge dis-
crete log instance r0 = gk0 and is allowed to invoke n times the universal forger
A with freely chosen public keys yi = gxi , messages mi and random tapes $i

where i = 1, . . . , n. Without loss of generality, we may assume that the n invo-
cations of R, are pairwise distinct i.e. that two distinct executions of A differ in
the value of the public key and/or the random tape, and/or at least one value
returned by the random oracle H of R.
Simulation of A. M attempts to simulate at most n executions of the adver-
sary A by using the vector of group elements r = (r1, . . . , rn) and by making
requests to the discrete-log oracle DLOM. More specifically, the i-th invocation
of A is simulated as follows:

1. Receive (yi,mi, $i) ∈ G× {0, 1}? × {0, 1}?

2. For h ∈ [1, qH]
(a) Randomly select αh

$← (Zq)
n

(b) Query H to get ch = H (mi, r
αh)

3. Randomly select `i
$← [1, qH]

(a) Set ci ← c`i
and βi ← α`i

(b) Request si ← DLOM

(
rβi · yci

i

)

(c) Append (yi,mi, $i) 7→ (si, ci) and (`i, βi) to Transcript

4. Pick at random δ ∈ [0, 1]
5. If δ > ε return ⊥
6. Else return σi = (si, ci)

Here, if a = (a1, . . . , aw) and b = (b1, . . . , bw) then ab stands for
∏w

κ=1 abκ
κ . Note

that all random selections made by A are in fact pseudo-random in $i and all
hash values ch defined by H when the selection takes place.
Extraction of discrete logs. Again, we assume that M disposes of a poly-
nomial time extraction procedure Extract(k0, Transcript) = (x1, . . . , xn) i.e. we
consider R to be algebraic. Therefore, if R outputs k0, M uses its transcript
information to retrieve the discrete logs xi of the yi’s. Now M attempts to solve
over Zq the linear system





β1 · k ≡ s1 − c1 · x1 mod q
...

βn · k ≡ sn − cn · xn mod q ,

where the unknowns are k = (k1, . . . , kn) and a · b denotes the dot product of
vectors. The solution k is easily found using linear algebra as soon as vectors
β1, . . . , βn are linearly independent. Two mutually exclusive cases may occur.

1. ∀ i, j ∈ [1, n] with i 6= j, one has `i 6= `j . Then by Lemma 4, we get

Pr [det(β1, . . . , βn) = 0] = z(n, q) .

Then with probability 1 − z(n, q), M recovers k and succeeds in solving
n-DL.

2. ∃ i, j ∈ [1, n] with i 6= j such that `i = `j . Then the reduction M may
fail because it might be the case that βi = βj while si − cixi 6≡ sj −
cjxj mod q resulting in that the system above is not solvable. The probability
of this event is unknown and depends on how R modified its simulation of H
between two executions of A. Since distinct executions of A are not identical
and the values of the `i’s are picked pseudo-randomly after all H queries
have been made, we invoke Lemma 3 to see that a collision `i = `j occurs
with probability

Pr [∃ i, j ∈ [1, n], `i = `j] = P (qH , n) .

Since Pr [M fails] ≤ Pr [∃ i, j ∈ [1, n], `i = `j], noting ε′′ the success probability
of M, we finally get

ε′′ ≥ ε′ · (1− P (qH , n)) · (1− z(n, q)) ≈ ε′ · exp
(
− n2

2qH

)
·
(

1− n

q

)
.

The execution time of M is upper-bounded by τ ′+poly (τ ′, |R|, n, qH , log q). ut

Our result can be interpreted as follows. When n is smaller than
√

qH , the
ratio ε′′/ε′ remains negligibly close to 1 and the algebraic reduction algorithm
R cannot exist if n-DL is intractable over G. However when n À √

qH , the ratio
ε′′/ε′ becomes rapidly negligibly close to 0 as n increases, allowing R to exist
in the sense that having a substantial ε′ does not lead us to solve n-DL with
substantial success probability anymore.

8 Conclusion

We believe that our results pose new challenging questions about the standard-
model security of common signature schemes. Focusing specifically on Schnorr’s
scheme, one might wonder what security level is actually reached in real life,
as DL cannot be at reach of a humanly conceivable reduction. Could Schnorr
signatures be proven secure under the CDH or DDH assumption? Can one prove
a similar separation with these assumptions? What can be said in this regard
about other signature schemes like ElGamal, DSA, GQ, etc. ?

Concerning the random oracle model, we leave it as an open problem to find
a more efficient meta-reduction M that is, to come up with a proof that a factor
close to qH must be lost in any random-oracle-based algebraic reduction R.

9 Acknowledgement

We thank the anonymous reviewers for their valuable feedback. The work de-
scribed in this document has been financially supported by the European Com-
mission through the IST Program under Contract IST-2002-507932 ECRYPT.

References

1. ANSI X9.62, Public-Key fryptography for the financial services industry: the elliptic
curve digital standard algorithm (ECDSA), American National Standards Institute,
1999.

2. M. Bellare, A. Boldyreva and A. Palacio. An Un-Instantiable Random-Oracle-
Model Scheme for a Hybrid-Encryption Problem. Advances in Cryptology - Eu-
rocrypt 2004, LNCS vol. 3027, 2004.

3. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko, The One-More-
RSA-Inversion Problems and the security of Chaum’s Blind Signature Scheme. J.
Cryptology 16 (2003), no. 3, 185–215.

4. M. Bellare and A. Palacio, GQ and Schnorr Identification Schemes: Proofs of
Security against Impersonation under Active and Concurrent Attacks. Advances in
Cryptology - Crypto 2002, LNCS vol. 2442, Springer, 2002, pp. 162–177.

5. D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to factoring. Ad-
vances in Cryptology - Eurocrypt 1998, LNCS vol. 1233, Springer, 1998, pp. 59–
71.

6. E. Brickell, D. Pointcheval, S. Vaudenay and M. Yung, Design Validations for dis-
crete logarithm based signature schemes. Publick Key Conference 2000, LNCS
vol. 1751, Springer, 2000, pp. 276–292.

7. D. R. L. Brown, Generic Groups, Collision Resistance and ECDSA, Des. Codes
Cryptography 35 (2005), 119–152.

8. R. Canetti, O. Goldreich, and S. Halevi, The Random Oracle Methodology, Revis-
ited. J. Assoc. Comput. Mach. 51 (2004), no. 4, 557–594.

9. FIPS 186. Digital Signature Standard, Federal Information Processing Standards
Publication 186. US Department of Commerce/NIST, National Technical Informa-
tion Service, Springfield, Virginia, 1994.

10. A. Dent, Adapting the weaknesses of the random oracle model to the generic
model. Advances in Cryptology – Asiacrypt 2002, LNCS vol. 2501, Springer,
2002, pp. 100–109.

11. Y. Dodis and L. Reyzin, On the Power of Claw-Free Permutations. Third Con-
ference on Security in Communication Networks, SCN 2002, LNCS vol. 2576,
Springer, 2003, pp. 55–73.

12. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, vol. IT–31, no. 4,
pp. 469–472, 1985.

13. A. Fiat and A. Shamir, How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. Advances in Cryptology - Crypto 1986, LNCS vol. 263,
Springer, 1987, pp. 186–194.

14. S. Goldwasser and Y. Tauman, On the (In)security of the Fiat-Shamir Paradigm.
FOCS 2003, IEEE Computer Society, 2003, pp. 102–122.

15. L. C. Guillou and J.-J. Quisquater, A ”Paradoxical” Identity-Based Signature
Scheme Resulting from Zero-Knowledge. Advances in Cryptology - Crypto 1988,
LNCS vol. 403, Springer, 1990, pp. 216–231.

16. P. Horster, H. Petersen and M. Michels, Meta-ElGamal signature schemes. CCS
’94: Proceedings of the 2nd ACM Conference on Computer and communications
security, ACM Press, 1994, pp. 96–107.

17. KCDSA, Digital Signature Mechanism with Appendix - Part 2 : Certificate-Based
Digital Signature Algorithm (KCDSA), TTA.KO -12.0001, 1998.

18. J. B. Nielsen, Separating Random Oracle Proofs from Complexity Theoretic Proofs:
The Non-committing Encryption Case. Advances in Cryptology - Crypto 2002,
LNCS vol. 2442, Springer, 2002, pp. 111–126.

19. D. Pointcheval and J. Stern, Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology 13 (2000), no. 3, 361–396.

20. C. P. Schnorr, Efficient signature generation by smart cards. J. Cryptology 4
(1991), no. 3, 161–174.

21. C. P. Schnorr, Efficient identification and signatures for smart cards. Advances in
Cryptology - Crypto 1989, LNCS vol. 435, Springer, 1990, pp. 239–251.

22. V. Shoup, Lower Bounds for Discrete Logarithms and Related Problems. Advances
in Cryptology - Eurocrypt 1997, LNCS vol. 1233, Springer, 1997, pp. 256–266.

