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Abstract. We give improved upper bounds on the communication com-
plexity of optimally-resilient secure multiparty computation in the cryp-
tographic model. We consider evaluating an n-party randomized function
and show that if f can be computed by a circuit of size c, then O(cn2κ)
is an upper bound for active security with optimal resilience t < n/2 and
security parameter κ. This improves on the communication complexity
of previous protocols by a factor of at least n. This improvement comes
from the fact that in the new protocol, only O(n) messages (of size O(κ)
each) are broadcast during the whole protocol execution, in contrast to
previous protocols which require at least O(n) broadcasts per gate.

Furthermore, we improve the upper bound on the communication com-
plexity of passive secure multiparty computation with resilience t < n
from O(cn2κ) to O(cnκ). This improvement is mainly due to a simple
observation.

1 Introduction

1.1 Secure multiparty computation

Secure multiparty computation (MPC) allows a set of n players to compute an
arbitrary function of their inputs in a secure way. More generally, we consider re-
active computations, which are specified as a circuit with input gates, evaluation
gates (e.g., AND and OR gates), random gates, and output gates.

Security is specified with respect to an adversary corrupting up to t of the
players for a defined threshold t. A passive adversary can inspect the internal
state of corrupted players, an active adversary can take full control over them.
A protocol is t-secure if an adversary attacking the protocol with t corruptions
can only obtain inevitable goals w.r.t. gathering information and influencing
the output of the protocol. I.e. it can only learn the inputs and outputs of the
corrupted players, and, if it is active, only influence the inputs of the corrupted
players.
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1.2 Brief history of MPC
The MPC problem dates back to Yao [Yao82]. Independently Goldreich, Micali
and Wigderson and Chaum, Damg̊ard and van de Graaf [GMW87,CDG87] pre-
sented solutions to the MPC problem. Their protocols provide cryptographic se-
curity against a computationally bounded active adversary corrupting up to t <
n/2 of the players. Later, unconditionally secure MPC protocols were proposed
by Ben-Or, Goldwasser and Wigderson [BGW88] and Chaum, Crépeau and
Damg̊ard [CCD88] for the secure-channels model , where perfectly secure chan-
nels are assumed between every pair of parties. These protocols have resilience
t < n/3. Later Rabin and Ben-Or [RB89] and independently Beaver [Bea91b]
presented protocols with resilience t < n/2 for the secure-channels model with
broadcast channels.

1.3 Previous work on the complexity of secure MPC
There has been substantial research on the complexity of secure MPC, both the
round complexity and the communication complexity in messages and bits.

As for the round complexity of secure MPC, it is now known that in a network
without any setup any functionality can be computed securely in three rounds
and that there exists functionalities which cannot be computed in two rounds
without setup [GIKR02]. Furthermore, it is known that after an initial setup
phase, any functionality can be computed in two rounds [GIKR02,CDI05] and
that there exist functionalities which cannot be computed in one round even
after a setup phase. Even though the resulta in [GIKR02,CDI05] only applies to
a setting where the number of parties is relatively small, the above results go a
long way in resolving the exact round complexity of secure MPC.

As for the communication complexity, the picture is much more open, and
we are far from knowing the exact communication complexity of secure MPC.
The communication complexity of a protocol is measured as the total number of
bits sent by all uncorrupted parties during the protocol execution.

Very few results are known about the lower bound on the communication
complexity, except those which follow trivially from known lower bounds on the
communication complexity of Byzantine agreement — since the model of secure
MPC requires agreement on the output, Byzantine agreement is a special case
of secure MPC. For the upper bound on the communication complexity, much
more is known.

The seminal protocols with passive security tend to be very communication-
efficient, in contrast to their active-secure counterparts, that require high com-
munication complexities. The high communication complexities of active-secure
protocols is mainly due to their intensive use of a Byzantine agreement primi-
tive, which is to be simulated by communication-intensive broadcast protocols.
The most efficient broadcast protocols for t < n communicate Ω(n2�) bits for
broadcasting an �-bit message [BGP92,CW92]. We denote the communication
complexity for broadcasting an �-bit message by B(�).

Over the years, several protocols have been proposed which
improve the efficiency of active-secure MPC. In the crypto-
graphic model (with t < n/2), all protocols presented so



far [GV87,BB89,BMR90,BFKR90,Bea91a,GRR98,CDM00,CDD00] require
every player to broadcast one message for each multiplication gate. For a
circuit with c gates, this results in a total communication complexity of
Ω(cnB(κ)) = Ω(cn3κ), where κ denotes the security parameter of the protocol.
In the secure-channels model with broadcast with t < n/2, things are even
worse: The most efficient protocol in this model [CDD+99] requires Ω(n4) κ-bit
messages to be broadcast for every multiplication gate.

In the secure-channels model with t < n/3, recently more efficient protocols
were proposed [HMP00,HM01]: The latter protocol requires only O(n2) broad-
casts in total (independently of the size of the circuit), and communicates an
additional O(cn2) bits in total. This result is based on the so-called player-
elimination framework , where subsets of players with faulty majority are elimi-
nated. This prevents corrupted players from repetitively disturbing and slowing
down the computation. Unfortunately, the player-elimination framework cannot
capture models with t < n/2: In order to reconstruct an intermediate value (a
wire), at least t + 1 players are required. After eliminating a group of players
with faulty majority, the remaining set of players does not necessarily contain
t + 1 honest players (it might even contain only one single player), hence the
remaining players cannot reconstruct intermediate results — and would have to
restart the whole computation.

1.4 Contributions
We consider upper bounds on the communication complexity of active-secure
MPC protocol in the cryptographic model with t < n/2 and passive-secure
MPC protocols in the cryptographic model with t < n. The most efficient
active-secure protocol for this model is the protocol by Cramer, Damg̊ard and
Nielsen [CDN01]. This protocol requires every player to broadcast O(1) κ-bit
values for each multiplication gate in the circuit. When replacing the broadcast
primitive by the most efficient broadcast protocol with resilience t < n/2 known
today (but unknown at the time when [CDN01] was published), this results in
an overall communication complexity of O(cn3κ) for evaluating a circuit with c
gates. The same upper bound for active security was proved by Jakobsson and
Juels [JJ00] using similar techniques.

We improve the upper bound for active security by constructing a new MPC
protocol for the cryptographic model with resilience t < n/2: The new protocol
requires every player to broadcast O(1) κ-bit values in total, i.e., during the
whole protocol execution. Additionally, the players communicate O(n2κ) bits per
multiplication over the normal channels. This results in a total communication
complexity of O(cn2κ + nB(κ)) = O(cn2κ + n3κ). If every party has just one
input to the circuit, then c ≥ n and O(cn2κ + n3κ) = O(cn2κ).3

The new protocol follows the basic paradigm of [CDN01], enhanced with ideas
of [Bea91a] and [HMP00] and several novel technical contributions. Our protocol
essentially improves over the best known upper bound for active security by a
factor n.
3 For simplicity we specify all bounds in the following for circuits with c = Θ(n).

Bounds for c ≤ n are obtained by letting c = n.



Using a simple observation about threshold homomorphic encryption-based
MPC protocols we also present a passive secure protocol with resilience t < n,
communicating only O(cnκ) bits. This improves the best known upper bound
for passive security, as given by the protocol of Franklin and Haber [FH96], by
a factor n.

2 Preliminaries

In this section we discuss our model of security of protocols and we sketch the
technical setting for threshold homomorphic encryption based MPC. The reader
familiar with these issues can safely skip this section.

2.1 Model
We consider n players that are pairwise connected with authenticated open chan-
nels and we assume synchronous communication. The adversary may corrupt any
t of the players. All parties and the adversary are restricted to probabilistic poly-
nomial time. We consider a static adversary, which corrupts all parties before
the protocol execution.

Specifying a multiparty functionality. We assume that the task to be realized is
given by an arithmetic circuit with input, addition, multiplication, randomizing
and output gates, all over some ring M. We consider reactive circuits where
some input gates might appear after output gates. We assume that the circuit
is divided into layers being either input layers, consisting solely of input gates,
evaluation layers consisting of addition, multiplication, and randomizing gates,
and output layers, consisting solely of output gates. An input gate G specifies
its layer and the party that is to supply the value for the gate. A negation gate
specifies its layer and a gate in a previous layer, from which it takes its input.
An addition gate as well as a multiplication gate specifies its layer and two gates
in a previous layer, from which it takes its input. An output gate specifies its
layer and a gate in a previous layer, which is to be revealed.

The ideal evaluation. To explain the multiparty functionality specified by a re-
active circuit, it is convenient to image an ideal process, where the parties are
connected to a fully trusted party with secure channels. The ideal evaluation of
the circuit takes place in a layer by layer manner. For each input layer, for every
gate specifying Pi as the party to contribute the input, Pi sends to the trusted
party an input value v ∈ M over a secure line. If no value is sent, the trusted
party sets v to be 0. For each evaluation layer, the trusted party computes values
of all evaluation gates according to the circuit; Randomizing gates are set to be
uniformly random values v ∈R M and addition gates and multiplication gates
are evaluated in the expected manner. For each output layer, the trusted party
sends the value of all output gates in the layer to all parties.

Notice that in the ideal evaluation an adversary controlling some set of cor-
rupted parties can only achieve inevitable goals: Of information it only learns the
output and the corrupted parties’ inputs and, if it is active, the only influence
it can exert on the evaluation is changing the corrupted parties’ inputs to the
function.



The goal of a protocol for a circuit is to realize the same functionality in a
real-life network.

The real-life model. We assume that the network has a setup phase. In the setup
phase a setup function s : {0, 1}∗ → ({0, 1}∗)n+1, r �→ (p, s1, . . . , sn) is evaluated
on a random input, and the value p is made public. The value si is only given to
the party Pi. The reason for having a setup phase is that we will be interested
in MPC protocols with active resilience t < n/2, and without a setup phase not
even the Byzantine agreement problem [LSP82], which is a special case of the
general MPC problem, can be solved with active resilience t < n/2. The function
s is specified as part of the general protocol. In particular, s is not allowed to
depend on the circuit.

Defining security. There are many proposals on how to model the security of
an n-party protocol, i.e. for what it means for a protocol to realize the ideal
evaluation of a circuit. Common to most is that the real-life adversary can only
obtain goals comparable to those of an ideal-model adversary, i.e. inevitable
goals.

The comparison of the protocol execution to the ideal evaluation is made by
requiring that the complete view of an adversary attacking the protocol execu-
tion can be simulated given only the view of an adversary attacking the ideal
evaluation with the same corrupted parties. This captures exactly the idea that
the information gathering and the influencing capabilities of the adversary in-
clude nothing extra to that of which the adversary is entitled. This so-called
simulation approach to comparing the protocol execution to the ideal evaluation
originates in the definition of zero-knowledge proof in [GMR85] by Goldwasser,
Micali and Rackoff. For the MPC setting the simulation approach is introduced
by Goldreich, Micali and Wigderson [GMW87] and elaborated on in a large
body of later work [GL90,MR91,Bea91b,BCG93,HM00,Can00,Can01]. Of these
models, the universally composable (UC) security framework of Canetti [Can01]
gives the strongest security guarantees. When proving an upper bound it makes
sense to consider the strongest security notion. The core model in [Can01] is
asynchronous, but contains hints on how to apply it to a synchronous setting as
we consider here. This was e.g. done in [DN03]. It is straight-forward to formally
cast our reactive circuit model in the model of [DN03], and we can prove all our
protocols secure in this model.

For the detail of proofs permitted in this extended abstract we will not need
any formal details about this particular simulation model. The informal proof
sketches given in subsequent sections can easily be extended to fully formal simu-
lation proofs using by now standard proof techniques for threshold homomorphic
encryption based MPC, see e.g. [CDN01,DN03].

2.2 Homomorphic encryption scheme
In our protocols we assume the existence of a semantically secure (in the sense of
IND-CPA [BDPR98]) probabilistic public-key encryption function EZ : M×R →
E, (m, α) �→ M , where Z denotes the public key, M denotes a set of messages, R

denotes the set of random strings, and E denotes the set of encryptions. We write



E instead of EZ for shorthand. The decryption function is Dz : E → M, M �→ m,
where z denotes the secret key. Again, we write D instead of Dz.

We require that E is a group homomorphism, i.e., E(m1, α1)⊕E(m2, α2) =
E(m1 + m2, α1 � α2) for the corresponding group operations + in M, � in R,
and ⊕ in E. We require that M is a ring ZM for M > 1. The other groups can
be arbitrary.

In general we use capital letters to denote the encryption of the corresponding
lowercase letters. For a ∈ N and B ∈ E and α ∈ R we write aB as a shorthand
for B⊕· · ·⊕B with a−1 additions and we use αa as a shorthand for α� · · ·�α
with a−1 multiplications. We use A�B to denote A⊕(−B), where −B denotes
the inverse of B in E.

We define a ciphertext-randomization function R : E × R → E, (M, γ) �→
(M ⊕ E(0, γ)). If M = E(m, α), then R(M, γ) = E(m, α � γ). If γ is uniformly
random in R and independent of α, then α � γ is uniformly random in R and
independent of α, so R(M, γ) will be a new independent, uniformly random
encryption of m. We say that M ′ = R(M, γ) is a randomization of M .

We also require that there exists a passive secure threshold function sharing
of Dz between n parties. I.e. for a given threshold t we split the decryption
key z in n shares z1, . . . , zn and there exists a share-decryption function SDzi :
E → S, M �→ mi, where S denotes the set of message shares. And there exists
a combining function C : St+1 → M, (m(1), . . . , m(t+1)) �→ m, with the property
that if M = EZ(m) and m(j) = SDzij

(M) for i = 1, . . . , t+1 and t+1 distinct key
shares zij , then m = C(m(1), . . . , m(t+1)). We require that the semantic security
holds even when the distinguisher is given any t decryption key shares prior to
the distinguishing game. Furthermore, for all M = EZ(m), given M , m and
any t key shares one can efficiently compute all decryption shares mi = Dzi(M)
for i ∈ {1, . . . , n}. This requirement is made to guarantee that no subset of
the parties of size at most t learns anything from the other parties’ decryption
shares, which they could not have computed themselves from the result of the
decryption.

Realizations. The probabilistic encryption function of Paillier [Pai99], enhanced
by threshold decryption [FPS00,DJ01], satisfies all required properties. This
scheme has M = ZN for an RSA modulus N . A scheme satisfying the require-
ments can also be build based on the QR assumption [CDN01,KY02]. For this
scheme M = Z2.

2.3 Non-malleable zero-knowledge proofs
The passive secure protocol uses only a threshold homomorphic encryption
scheme as described above. To add robustness and independence of inputs to
the active protocol a number of zero-knowledge proofs of correct behavior and
a non-malleable proof of knowledge are needed. In the following sections we re-
fer to these proofs when they are needed. The proofs can all be realized with
three round protocols with a total of O(κ) bits of communication per proof.
The scheme based on the QR assumption in addition needs the strong RSA
assumption for the proofs to be realizable in O(κ) bits.



Details on how to realize the non-malleable zero-knowledge proofs can be
found in e.g. [CDN01].

3 Active-secure MPC protocol for t < n/2

In this section we present our upper bound on the communication complexity
of an active-secure MPC protocol. The upper bound is given by a protocol. We
first give an overview on this protocol, then present the required sub-protocols,
and finally analyze the security and the communication complexity.

3.1 Overview
In the protocol description we use P = {P1, . . . , Pn} to denote the set of parties.
We assume that the parties agree on the circuit before the protocol is run.
The circuit is specified over the ring M of the encryption scheme with input
gates, addition gates, multiplication gates, randomizing gates, and output gates.
The proposed protocol can easily be modified to evaluate Boolean circuits, see
Section 3.7 for details. In the simplest case, when the parties wish to evaluate
a deterministic function, the circuit will consist of a layer of inputs gates, then
the arithmetic gates necessary to evaluate the function, and finally the output
gates. However, we also consider randomized gates, set to an unknown random
values, and reactive circuits, where some players may receive output before some
(other) players provide inputs.

The proposed protocol follows Beaver’s circuit randomization ap-
proach [Bea91a]: In a preparation phase, a pool of random triples (a, b, c), with
c = ab, are generated, encrypted and distributed to all players. In the evaluation
phase, for each multiplication one prepared triple is used. This approach brings
two advantages: First, it might be simpler to generate random products (instead
of multiplying two given values). Second, the load of the multiplication protocol
is shifted to the preparation phase, where all triples are generated in parallel,
and costs can be amortized.

More formally, the protocol proceeds in three phases:
Setup Phase: In the setup phase a random key pair (Z, z) is generated and

the decryption key z is shared among the parties with threshold t, where
t < n/2.

Preparation Phase: In a preparation phase, cM random triples(
a(i), b(i), c(i)

) ∈ M
3 (for i = 1, . . . , cM ) with c(i) = a(i)b(i) are gener-

ated, encrypted, and given to every player in P , where cM denotes the
number of multiplication gates in the circuit. Furthermore, cR random
values r(i) ∈ M (for i = 1, . . . , cR) are generated and encrypted, where cR

denotes the number of random gates in the circuit.
Evaluation Phase: In an evaluation phase, the gates of the circuit are pro-

cessed level by level, associating to each gate a random ciphertext encrypting
the (output) value of the gate. The various gates are handled as follows: For
each input gate, the designated input party broadcasts an encryption of its
input for that gate. Addition gates are handled non-interactively using the
homomorphic properties of the encryption scheme. For each multiplication



gate one prepared triple from the preparation phase is used as described
in [Bea91a]. For each randomizing gate, an encryption of a prepared random
value r(i) is used. For the output gates, the ciphertexts are decrypted using
the threshold function sharing of Dz.
In the subsequent sections we describe the phases of the protocol in detail,

and finally analyze the overall complexity of the protocol.

3.2 Setup phase

The setup function generates ((Z, pk, H), z1, . . . , zn), where (Z, z) is a random
key pair with z split into (z1, . . . , zn) with threshold t, pk is a random key
for a non-malleable trapdoor commitment scheme,4 and H is a random hash
function chosen from a class of collision-resistant hash functions, which is used
by a protocol described in the following section. The setup function also sets
up digital signatures to allow to do Byzantine Agreement (BA) for resilience
t < n/2, as discussed in Section 2.1.

One could consider a simpler setup function which only sets up digital signa-
ture keys. This allows to realize BA for resilience t < n/2, which in turn allows
to run a secure protocol to compute the setup function for the remaining values.
Either a specialized protocol or one of the general MPC protocols. In all cases
this would add a term p = O(poly(n+κ)) to our bounds, where p is independent
of the circuit to be evaluated, giving a bound O(cn2κ + poly(n + κ)).

3.3 Preparation phase

The goal of this phase is to securely generate cM encrypted triples(
A(i), B(i), C(i)

)
(i = 1, . . . , cM ), where a(i) and b(i) are uniformly random values

from M unknown by all parties and c(i) = a(i)b(i), and furthermore, to generate
cR encrypted random values R(i) (i = 1, . . . , cR).

The preparation phase proceeds in three stages: First, cM random fac-
tors A(1), . . . , A(cM ) are generated. Second, the factors B(1), . . . , B(cM) and the
products C(1), . . . , C(cM ) are computed in parallel. Third, the random values
R(1), . . . , R(cR) for the randomizing gates are prepared.

In each stage, every player in P contributes to the generation of the values.
However, not all these contributions will be considered. Instead, the players in
P agree on a subset Pok ⊆ P with the following two properties: (1) Every player
in Pok successfully verified the contribution of every other player in Pok, and (2)
the majority of the players in Pok is honest. Given both properties are satisfied,
the output of the stage (so far known only to Pok) can easily be made known
to the players in P \ Pok. This interim reduction of the player set is similar to
the player elimination framework of [HMP00], but opposed to this, can also be
applied to settings with t < n/2.

For the sake of easier presentation, we use a vector notation: We denote
the triples by ( �A, �B, �C) and the random values by �R. Furthermore, we extend
all operators on group elements also to vectors of group elements, where the
semantics is component-wise application of the operator.

4 To be used in the non-malleable zero-knowledge proofs (see [CDN01]).



Prepare cM random ciphertexts �A

We first present a protocol to generate a single random encryption A, and will
then extend it to generate cM random ciphertexts �A at once. The protocol
proceeds as follows:
1. Every player Pi ∈ P selects at random ai ∈ M and computes an encryption

Ai = E(ai).
2. Every player Pi ∈ P sends Ai to every player Pj ∈ P , and proves to Pj

interactively that he knows the plaintext of Ai.
3. Every player Pi broadcasts the hash value hi = H(Ai) among all players in

P , where H denotes the collision-resistant hash function defined in the setup
phase.

4. Initially we set the set of mutually agreeing players to Pok = P . Then, in
sequence, every player Pj ∈ Pok verifies for every player Pi ∈ Pok whether
– the broadcast hash value hi matches the received encryption Ai, i.e.,

hi
?= H(Ai), and

– the bilateral interactive proof by Pi is accepting for Pj .
If Pj ’s verifications succeed for all players Pi ∈ Pok, then Pj broadcasts ⊥
to confirm so. Otherwise, Pj picks the index i of some player Pi ∈ Pok that
failed in Pj ’s verification, and broadcasts i. In the latter case, both players
Pi and Pj are removed from the set Pok of agreeing players, i.e., all players
set Pok ← Pok \ {Pi, Pj}.

5. Every player Pj ∈ Pok sets A =
⊕

Pi∈Pok
Ai and sends it to every Pi ∈ P\Pok.

6. Every player Pi ∈ P \Pok sets A as the majority of received values by players
in Pok.
We first argue that at the end of the protocol, all players in P hold the same

encryption A, and then, that the plaintext of A is unknown to the adversary.
One can easily verify that all honest players in Pok compute the same value A
(otherwise they hold a collision of H). Furthermore, the majority of players in
Pok is honest (at least half of the removed players P \Pok is corrupted), hence in
Step 5, the majority of players Pj ∈ Pok distributes the correct value A, and all
players in P will decide for the same value A. In order to argue about the secrecy
of the plaintext of A, observe that at least one player in Pok is honest and chooses
ai uniformly at random. Since the encryption scheme is semantically secure5 and
the proof of plaintext knowledge for ai is zero-knowledge, the protocol reveals
zero knowledge about ai to the corrupted parties.6 Since all (corrupted) parties
Pj ∈ Pok gave a non-malleable proof of plaintext knowledge of their contribution
5 Notice that the fact that the decryption key is shared between the parties is no

problem for the semantic security as the adversary can inspect at most t parties;
Since the decryption key is shared with threshold t, the t shares known by the
adversary gives zero knowledge about the decryption key.

6 Here we colloquially distinguish between information and knowledge. Since Ai de-
termines ai clearly the adversary has full information about ai. However, by the
semantic security and the fact that the adversary is polynomial time bounded, it
has zero knowledge about ai.



aj , and this proof was accepted by all parties in Pok (at least one of them being
honest), their shares aj are independent of the share ai. It follows that A is an
encryption of a uniformly random value a =

∑
i∈Pok

ai of which the adversary
has zero knowledge. This informal sketch of the security can be turned into a
formal simulation proof using known proof techniques, see e.g. [CDN01,DN03].

In order to generate cM random ciphertexts �A, the above protocol is slightly
modified:

1. Every player Pi ∈ P selects at random �ai ∈ McM and computes its
component-wise ciphertexts �Ai.

2. Every player Pi ∈ P sends �Ai to every player Pj ∈ P , and proves to Pj

interactively that he knows the plaintext of each component of �Ai.
3. Every player Pi broadcasts the hash value hi = H( �Ai) among all players in

P .
4. Set Pok = P and, in sequence, every player Pj ∈ Pok verifies for every player

Pi ∈ Pok whether

– the broadcast hash value hi matches the received ciphertexts �Ai, i.e.,
hi

?= H( �Ai), and
– all the bilateral interactive proofs by Pi are accepting for Pj .

If Pj ’s verifications succeed for all players Pi ∈ Pok, then Pj broadcasts ⊥
to confirm so. Otherwise, Pj picks the index i of some player Pi ∈ Pok that
failed in Pj ’s verification, and broadcasts i. In the latter case, both players
Pi and Pj are removed from the set of agreeing players, i.e., all players set
Pok ← Pok \ {Pi, Pj}.

5. Every player Pj ∈ Pok sets �A =
⊕

Pi∈Pok
�Ai and sends it to every Pi ∈ P\Pok.

6. Every player Pi ∈ P\Pok sets �A as the majority of received vectors by players
in Pok.

The security of this protocol follows immediately from the security of the
previous protocol. The communication complexity of the protocol is O(cMn2κ+
nB(κ)) bits.

Prepare random ciphertexts �B and products �C

The B and C values of the triples are generated similarly to the A values. For the
sake of simplicity, we present solely the protocol for generating a single triple.
The generalization to vectors of triples is straight-forward along the lines of the
protocol for generating �A.

1. Every player Pi ∈ P selects at random bi ∈ M, computes Bi = E(bi) and
Ci = R(biA).

2. Every player Pi ∈ P sends Bi and Ci to every player Pj ∈ P , and proves
to Pj interactively that he knows the plaintext bi of Bi, and that Ci is a
randomization of biA.

3. Every player Pi broadcasts the hash value hi = H(Bi, Ci) among all players
in P .



4. Set Pok = P and, in sequence, every player Pj ∈ Pok verifies for every player
Pi ∈ Pok whether
– the broadcast hash value hi matches the received ciphertexts (Bi, Ci),

i.e., hi
?= H(Bi, Ci), and

– all the bilateral interactive proofs by Pi are accepting for Pj .
If Pj ’s verifications succeed for all players Pi ∈ Pok, then Pj broadcasts ⊥
to confirm so. Otherwise, Pj picks the index i of some player Pi ∈ Pok that
failed in Pj ’s verification, and broadcasts i. In the latter case, both players
Pi and Pj are removed from the set of agreeing player, i.e., all players set
Pok ← Pok \ {Pi, Pj}.

5. Every player Pj ∈ Pok sets B =
⊕

Pi∈Pok
Bi, and C =

⊕
Pi∈Pok

Ci, and sends
them to every Pi ∈ P \ Pok.

6. Every player Pi ∈ P \Pok sets B and C to be the majority of received values
from players in Pok.
The correctness of the resulting triple (A, B, C) follows directly from the

distributive law in groups. The security of the protocol can be argued along the
lines of the proof of the previous protocol.

The above protocol can be extended to vector-values in a straight-forward
manner. The communication complexity of the extended protocol is O(cMn2κ+
nB(κ)) bits.

Prepare cR random values �R

The random �R vector is prepared exactly as the random �A vector, only the
corresponding �B and �C vectors are not generated.

3.4 Evaluation phase
In the evaluation phase, the circuit is evaluated layer by layer. In the following,
we give the protocols for evaluating the different types of gates.

Input gates
When a party Pi is to provide an input for some gate G, the parties proceed as
follows:
1. Pi computes Vi = E(vi) broadcasts Vi.
2. Pi bilaterally proves (in zero-knowledge) knowledge of plaintext vi to every

player Pj ∈ P .
3. Each Pj ∈ P , lets bj = 1 if the proof from Pi was accepted and lets bj = 0

otherwise.
4. The parties in P run a BA with input bj from Pj . Let the output be b ∈ {0, 1}.
5. If b = 1, then each Pj ∈ P sets the encryption for gate G to be the broadcast

value Vi; Otherwise, Pj sets the encryption for gate G to be E(0, e), where 0
and e denotes the neutral elements from M respectively R.
After this protocol the input gate is defined to the same value by all parties.

The proof of knowledge given by Pi serves the purpose of guaranteeing indepen-
dence of inputs. The privacy of the protocol follows from the semantic security
of the encryption scheme, using that the proofs are zero-knowledge.



Using that the communication complexity of one zero-knowledge proof is
O(κ), the communication complexity for giving one input is seen to be O(B(κ)+
nκ + B(1)). Assuming that B(κ) ≥ nκ, this is O(B(κ)).

Output gates
When the value of some gate G (with associated ciphertext M) is to be revealed
towards a party Pj , the parties proceed as follows:

1. Every player Pi ∈ P computes mi = SDzi(M) and sends it to Pj .
2. Every player Pi ∈ P gives a zero-knowledge proof to every other party Pj

that mi is a correct i’th decryption share.
3. Pj collects t + 1 decryption shares for which the proof of correct decryption

share succeeded and combine them to obtain m = D(M).

Since at least t + 1 parties are honest, Pj will be able to collect t + 1 shares
where the proof succeeded. By the soundness of the zero-knowledge proof all
collected shares will be correct, except with negligible probability. By the way
the values (z1, . . . , zn) were set up and the requirements on the share combining
algorithm have that indeed m = Dz(M).

The privacy of the protocol follows from the requirements on the threshold
decryption protocol: from the result of the protocol and the key shares of the
t corrupted parties, the adversary could compute the key shares of the honest
parties on its own. Therefore the protocol leaks zero knowledge about the key
shares of the honest parties.

The communication complexity is seen to be O(nκ) per output gate and party
to learn the output. If all parties are to learn the output, the communication
complexity is O(n2κ) per output gate.

If only one party is to learn the output and the output should be private,
the decryption shares sent to Pj should be sent over private channels. This does
not affect the order of the communication complexity.

Addition gates
For an addition gate G where the input gates of G has associated ciphertexts
M1 and M2, the associated ciphertext of G is set to be MG = M1 ⊕M2. As the
⊕-operator is deterministic, all parties agree on the encryption MG, and by the
homomorphic properties of ⊕ it holds that D(MG) = D(M1) + D(M2).

Multiplication gates
For a multiplication gate G where the two input gates have associated ciphertexts
M1 and M2, the associated ciphertext MG of G is computed as follows:

1. Every party Pi ∈ P picks the prepared triple (A, B, C) that is associated with
the gate.

2. Every party Pi ∈ P computes D = A ⊕ M1 and E = B ⊕ M2.
3. Every party Pi ∈ P invokes the decryption protocol from Section 3.4 on D

and E. Denote the results by d respectively e.
4. Every party sets MG = (eM1) � (dB) ⊕ C.



The above way to use a prepared triple is from [Bea91a].
We argue that the protocol maintains agreement on the associated cipher-

texts. Assume that the parties agree on M1 and M2. By the fact that ⊕ is a
function, the parties will agree on D and E. Therefore the decryption protocol
will return correct and consistent d and e values to the parties. Using that �
and ⊕ are functions it then follows that the parties will agree on MG.

We then argue the correctness of the protocol. By the correctness of the
decryption protocol and the homomorphic properties of ⊕ and � we have that
D(MG) = em1−db+c = (b+m2)m1−(a+m1)b+ab = m1m2, where m1 = D(M1)
and m2 = D(m2).

For the privacy, the only values that are revealed are d and e. However, since
a and b are independent, uniformly random elements from M unknown to any
adversary which inspects at most t parties, it follows that d and e are uniformly
random and independent of m1 and m2 in the view of the adversary. Therefore
the protocol leaks zero knowledge about m1 and m2.

The communication complexity per gate is that of two invocations of the
decryption protocol, i.e. O(n2κ).

Randomizing gates

When the circuit is evaluated, the randomizing gates should be initialized by
uniformly random values. To reflect the ideal evaluation the random values used
for initialization should be unknown to all parties. Therefore, to every random
gate, one random encrypted value R(i) is associated.

3.5 Complexity analysis

In this section we consider the complexity of the active-secure protocol. Sum-
ming the complexities stated in the presentation of the protocol gives us a total
complexity of O(((cM + cR)n2κ+nB(κ))+ cIB(κ)+ cOn2κ+ cMn2κ), where cM

denotes the number of multiplication gates, cR denotes the number of randomiz-
ing input gates, cI denotes the number of input gates, and cO denotes the number
of output gates. This is seen to be O((cM + cR + cO)n2κ + nB(κ) + cIB(κ)).

In the synchronous model with t < n/2, broadcasting (and/or doing BA on) a
total of � bits can be done with complexity O(n2� + n3κ) under the strong RSA
assumption and the assumption the RSA signatures are secure (c.f. [Nie03]).
We have n + cI broadcasts of κ-bit messages, giving � = (n + cI)κ and (a
bit informally) nB(κ) + cIB(κ) = O(n2(n + cI)κ + n3κ) = O(cIn

2κ + n3κ).
This immediately gives us the bound O((cM + cR + cO + cI)n2κ + n3κ) on the
communication complexity of the overall protocol.

Theorem 1. Under the QR assumption (or the DCR assumption), the strong
RSA assumption and the assumption that RSA signatures are secure, O(cn2κ)
is an upper bound on the communication complexity of an active-secure protocol
with resilience t < n/2 for evaluating an n-party function with arithmetic circuit
complexity c ≥ n.



3.6 Ongoing computations
The result for active security assumes that the size of the circuit is known before
the computation starts, to allow for a preparation phase. For an on-going reactive
computation, even the circuit might be specified as the computation unfolds and
in particular the length of the computation might not be specified on beforehand.
Our result can be extended to such a setting. We simply hold a pool of prepared
triples, and each time it dries out we prepare at least twice as many triples as last
time. After polynomially many activations, this gives a maximum of O(log(κ))
runs of the preparation phase and prepares at most twice as many triples as
needed. This gives the bound O(cn2κ + n3κ log(κ)).

3.7 Boolean circuits
The proposed protocol evaluates a circuit of arithmetic gates, where the under-
lying ring is the message space of the encryption scheme. We can extend the
protocol to evaluate a Boolean circuit, even when the message space of the en-
cryption scheme is larger (e.g., when using Paillier encryption). In the sequel,
we present the necessary modifications for Boolean circuits over AND and NOT
gates. The protocol for Boolean circuits has the same communication complexity
as the protocol for arithmetic circuits.

Input gates. In the input protocol, the player providing input must prove that
the input is in {0, 1}. Therefore, the zero-knowledge proof for proving plaintext
knowledge is augmented by a zero-knowledge proof for proving that the plaintext
is either 0 or 1.

AND-gates. As it is guaranteed that all wires are encryptions of either 0 or 1,
AND-gates can be realized as multiplication gates.

NOT-gates. A NOT-gates can be computed by using the homomorphism of the
encryption scheme. Given an encrypted bit B, its negation can be computed
as E(1) � B. Every player can compute the encrypted value of a negation gate
locally, without communicating with other players.

Randomizing gates. It must also be ensured that the output of randomizing gates
are in {0, 1}. If M > 2 (as is the case for Paillier’s cryptosystem), and we want
to stay within the new upper bound, a new protocol is needed for this.
0. Let �R(0) = E(�0, �e) be a constant vector of length cR, where each element is

the constant encryption E(0, e). Let Pok = P , let Pdone = ∅, let iprev = 0, let
inext = 1 and let Prev be an empty stack.

1. Pinext computes �R(inext) from �R(iprev) as follows: For each element R(iprev) in
�R(iprev), pick α ∈R R and b ∈R {0, 1} and, if b = 0, let R(inext) = E(0, α) ⊕
R(iprev), and if b = 1, let �R(inext) = E(1, α) � R(iprev).

2. Pinext broadcasts the hash value hi = H(�R(inext)) among all players in P .

3. Pinext sends �R(inext) to every player Pj ∈ P , and gives to Pj (for each element
R(iprev)) a non-malleable zero-knowledge proof of knowledge of α for which
either R(inext) = E(0, α) ⊕ R(iprev) or R(inext) = E(1, α) � R(iprev).



4. The parties P enter a BA on whether to accept the proofs given by Pinext :
Each party Pj ∈ P enters with bj = 1 iff in the above step it received �R(inext)

such that hi = H(�R(inext)) and the bilateral proof from Pinext to Pj was
accepted.

5. – If the outcome of the BA is b = 0, then all parties in P set Pok =
Pok \ {inext} and set inext to be the smallest i ∈ Pok \ Pdone.

– If the outcome of the BA is b = 1, then all parties in P set Pdone =
Pdone ∪ {inext}, push iprev on Prev, let iprev = inext and set inext to be
the smallest i ∈ Pok \ Pdone.

In both cases, if Pok \ Pdone = ∅, then go to Step 8.
6. The party Pinext broadcasts a bit b ∈ {0, 1}, where b = 0 iff iprev �= 0 and

Pinext never received �R(iprev) such that hiprev = H(�R(iprev)) (in Step 3).
7. – If iprev = 0 or Pinext broadcast 1, then all parties in P go to Step 1.

– If iprev �= 0 and Pinext broadcast 0, then all parties set Pok = Pok \
{iprev, inext}. Then iprev is set to be the top of Prev (which is then popped)
and inext is set to be the smallest i ∈ Pok \Pdone (if Pok \Pdone = ∅, then
go to Step 8.) Then all parties in P go to Step 6.

8. All parties in P which knows �R(iprev) such that hiprev = H(�R(iprev)) sends
�R(iprev) to all parties.

9. All parties in P waits for a value �R(iprev) for which hiprev = H(�R(iprev)) to
arrive and outputs �R(iprev).

We first argue termination and agreement: It is straight-forward to verify that
the procedure reaches Step 8. Since at this point Piprev at some point broadcast
hiprev and had its proof accepted by a majority of the parties in P , at least
one honest party must have received �R(iprev) such that hiprev = H(�R(iprev)). At
least that party will echo �R(iprev) in Step 8 and thus all parties will terminate in
Step 9. Since hiprev is a broadcast value, all parties will output the same value
�R(iprev) unless a collision under H is found.

We then argue that �R(iprev) is a vector of encryptions of random bits of
which the adversary has zero knowledge. At termination we clearly have that
Pok ⊆ Pdone. Furthermore, at termination Pok will contain a majority of honest
parties and there exists a sequence i0 = 0 < i1 < · · · < il−1 < il ≤ n such that
Pok = {i1, . . . , il} and for m = 1, . . . , l, the vector �R(im) was computed by Pim

from �R(im−1) as specified in Step 1. Since the proof of knowledge ensures that
each party “flips” the encryptions independently and at least one party in Pok

is honest it follows that �R(il) is a vector of encryptions of independent random
bits unknown to the adversary.

Each party broadcasts (at most) κ bits in Step 2 and one bit in Step 6.
Besides this n BAs are executed and each party Pinext sends the vector �R(inext)

to all parties and gives the non-malleable zero-knowledge proofs of knowledge
in Step 3. Assuming that B(k) dominates the cost of one Byzantine agreement,
the total communication complexity of this is O(cRn2κ + nB(κ)), as desired.



The above protocol can be seen as a strengthening of the protocol used in the
original preparation phase to deal with large values being build sequentially from
large contributions from all parties. Similar protocols can be used to prepare
c gates for the Mix-and-Match protocol in [JJ00] with complexity O(cn2κ +
nB(κ)) and for mixing c ciphertext in anonymizing networks and voting (with n
servers) with complexity O(cn2κ + nB(κ)). In both cases an optimization over
Θ(cnB(κ)) = Θ(cn3κ).

4 Passive-secure MPC protocol for t < n

In this section we present an upper bound on the communication complexity of
a passive secure MPC protocol. Again the upper bound is given by a protocol.
As opposed to the active secure protocol, the passive protocol is not based on
novel technical contributions but rather a neat observation.

The essential observation is that from the threshold homomorphic encryp-
tion based MPC protocol of [CDN01] each gate has a short publicly known
representation, namely the associated encryption. This is opposed to e.g. secret
sharing based protocols, where the representation is exactly shared among the
parties and therefore inherently large (Θ(nκ)). This observation allows to des-
ignate some party Pking which drives the protocol and evaluates the circuit gate
by gate, with help of the other parties.

The protocol proceeds along the lines of the active protocol, though no prepa-
ration phase is needed anymore. The details are given below.

Setup phase. In the setup phase the setup function s generates a random key
pair (Z, z), splits z into (z1, . . . , zn) with threshold t = n − 1, sets p = Z and
sets si = zi for i = 1, . . . , n. Furthermore one designated party Pking is chosen,
called the king, e.g. Pking = P1.

Input gates.When a party Pi is to provide the input vi ∈ M, the parties proceed
as follows:
1. Pi selects αi ∈R R, computes and sends Vi = E(vi, αi) to Pking.
2. Pking sends Vi to all parties.

The privacy of the protocol follows from the semantic security of the encryp-
tion scheme.

Output gates.The value of some gate G with associated ciphertext M is revealed
as follows:

1. Every party Pi computes and sends mi = SDzi(M) to Pking.
2. Pking computes m = C(m1, . . . , mn) and sends it to all parties.

The security of this protocol is argued along the lines of the active-secure
protocol. The communication complexity is O(nκ).

If the value is to be revealed privately to only one party Pj , then the
parties send their decryption shares mi privately to Pj , who computes m =
C(m1, . . . , mn).



Addition gates. The king computes the value of addition gates using the homo-
morphism of the encryption scheme.

Multiplication gates.For a multiplication gate G where the two input gates have
associated ciphertexts M1 and M2, the associated ciphertext MG of G is com-
puted as follows:
1. Every party Pi ∈ P selects ai ∈R M, αi, βi ∈R R, computes Ai = E(ai, αi)

and Ci = R(aiM2, βi), and sends Ai and Ci to Pking.
2. Pking computes A = M1

⊕
Pi∈P Ai and C =

⊕
Pi∈P Ci and sends A and C

to all parties,
3. Every party Pi ∈ P computes its decryption share ai = SDzi(A) and sends

it to Pking.
4. Pking decrypts a = C(a1, . . . , an), computes GM = aM2 � C and send it to

all parties.
The security is argued as for the active-secure protocol. The communication

complexity is O(nκ).

Randomizing gates. An encryption of a random value m, unknown to the adver-
sary, is computed as follows:
1. Every party Pi ∈ P selects ai ∈ M, αi ∈ R, computes Ai = E(ai, αi) and

sends it to Pking.
2. Pking computes A =

⊕
Pi∈P Ai and sends it to all parties.

Complexity analysis. It is straight forward to verify that the total number of bits
sent by the parties is O((cI + cM + cO + cR)nκ).

Theorem 2. Under the QR assumption (or the DCR assumption), O(cnκ) is an
upper bound on the communication complexity of a passive secure protocol with
resilience n − 1 for evaluating an n-party randomized function with arithmetic
circuit complexity c.

5 Conclusions and open problems

We presented new upper bounds on the communication complexity of optimally
resilient active-secure MPC and optimally resilient passive-secure MPC. In both
cases we improved the previously best bounds by a factor n. The improvement of
the bound for active security was based on a combination of previous techniques
for efficient MPC along with several novel technical contributions, as opposed to
the improvement of the bound for passive security, which was based on a simple
observation.

Our bounds were based either on the DCR assumption or on the QR as-
sumption (in both cases requiring, additionally the strong RSA assumption and
the assumption that RSA signatures are secure for active security). Even though
these assumptions are standard assumptions, they are very specific. It is an in-
teresting open problem to achieve the same bounds under general assumptions,
as e.g. the existence of one-way functions. One approach would be to investi-
gate the efficiency of active-secure information-theoretic MPC with t < n/2. It



is known that the player elimination framework does not apply to this thresh-
old [HMP00,HM01]. The ideas presented here might however allow to obtain
similar results in this model. The new upper bound for passive security however
seems very challenging to obtain under general assumptions.

It is an interesting open problem to obtain the new bound for also adaptive
security. In [DN03] an adaptively secure version of the protocol from [CDN01]
was presented. However, the techniques from [DN03] do not allow to make our
protocol here adaptive secure while staying within the bound O(cn2κ + n3κ).
We stress that although our protocol cannot be proven adaptively secure (we
cannot construct a simulator), there is no obvious way for an adaptive adversary
to violate the correctness or the security of the computation. This is in contrast
to some folklore trick for improving efficiency, namely to have the players agree
on a small random subset of players, who then perform the whole protocol.7

In this approach, an adaptive adversary can trivially violate both privacy and
correctness of the protocol, simply by corrupting the majority (or even all) of
the players in the subset, once this is randomly chosen.

Another interesting open problem is to prove non-trivial lower bounds on the
communication complexity of secure MPC.
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