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Abstract. We first propose the notion of universally anonymizable public-
key encryption. Suppose that we have the encrypted data made with
the same security parameter, and that these data do not satisfy the
anonymity property. Consider the situation that we would like to trans-
form these encrypted data to those with the anonymity property with-
out decrypting these encrypted data. In this paper, in order to formal-
ize this situation, we propose a new property for public-key encryption
called universal anonymizability. If we use a universally anonymizable
public-key encryption scheme, not only the person who made the cipher-
texts, but also anyone can anonymize the encrypted data without using
the corresponding secret key. We then propose universally anonymizable
public-key encryption schemes based on the ElGamal encryption scheme,
the Cramer-Shoup encryption scheme, and RSA-OAEP, and prove their
security.

Keywords: encryption, anonymity, key-privacy, ElGamal, Cramer-Shoup,
RSA-OAEP

1 Introduction

The classical security requirement of public-key encryption schemes is that it
provides privacy of the encrypted data. Popular formalizations such as indistin-
guishability or non-malleability, under either the chosen-plaintext or the chosen-
ciphertext attacks are directed at capturing various data-privacy requirements.

Bellare, Boldyreva, Desai, and Pointcheval [1] proposed a new security re-
quirement of encryption schemes called “key-privacy” or “anonymity.” It asks
that an encryption scheme provides (in addition to privacy of the data being en-
crypted) privacy of the key under which the encryption was performed. That is,
if an encryption scheme provides the key-privacy, then the receiver is anonymous
from the point of view of the adversary.

In addition to the notion of key-privacy, they provided the RSA-based anony-
mous encryption scheme, RSA-RAEP, which is a variant of RSA-OAEP (Bel-
lare and Rogaway [2], Fujisaki, Okamoto, Pointcheval, and Stern [7]). Recently,
Hayashi, Okamoto, and Tanaka [10] proposed the RSA-based anonymous encryp-
tion scheme by using the RSACD function. Hayashi and Tanaka [11] constructed



RSA-OAEP Sampling Twice [11] RSA-RAEP [1] RSACD [10] Expanding

anonymity No Yes Yes Yes Yes

# of mod. exp. to encrypt
(average / worst)

1 / 1 2 / 2 1.5 / k1 1.5 / 2 1 / 1

# of random bits to encrypt
(average / worst)

k0
2k0 + k + 3
/ 2k0 + k + 3

1.5k0 / k1k0 1.5k0 / 1.5k0
k0 + 160
/ k0 + 160

size of ciphertexts k k k k k + 160

Fig. 1. The costs of the encryption schemes.

the RSA-based anonymous encryption scheme by using the sampling twice tech-
nique. In [11], they also mentioned the scheme with the expanding technique for
comparison, however, there is no security proof.

With respect to the discrete-log based schemes, Bellare, Boldyreva, Desai,
and Pointcheval [1] proved that the ElGamal and the Cramer-Shoup encryption
schemes provide the anonymity property when all of the users use a common
group.

In this paper, we consider the following situation. In order to send e-mails,
all members of the company use the encryption scheme which does not provide
the anonymity property. They consider that e-mails sent to the inside of the
company do not have to be anonymized and it is sufficient to be encrypted the
data. However, when e-mails are sent to the outside of the company, they want
to anonymize them for preventing the eavesdropper on the public network.

A trivial answer for this problem is that all members use the encryption
scheme with the anonymity property. However, generally speaking, we require
some computational costs to create ciphertexts with the anonymity property.
In fact, the RSA-based anonymous encryption schemes proposed in [1, 10, 11],
which are based on RSA-OAEP, are not efficient with respect to the encryption
cost or the size of ciphertexts, compared with RSA-OAEP (See Figure 1. Here,
k, k0, k1 are security parameters and we assume that N is uniformly distributed
in (2k−1, 2k).). Since the members do not require to anonymize the e-mails, it
would be better to use the standard encryption scheme within the company.

We propose another way to solve this. Consider the situation that not only
the person who made the ciphertexts, but also anyone can transform the en-
crypted data to those with the anonymity property without decrypting these
encrypted data. If we have this situation, we can make an e-mail gateway which
can transform encrypted e-mails to those with the anonymity property with-
out using the corresponding secret key when they are sent to the outside of the
company.

Furthermore, we can use this e-mail gateway in order to guarantee the
anonymity property for e-mails sent to the outside of the company. The president
of the company may consider that all e-mails sent to the outside of the company
should be anonymized. In this case, even if someone tries to send e-mails to the
outside of the company without anonymization, the e-mails passing through the
e-mail gateway are always anonymized.



In this paper, in order to formalize this idea, we propose a special type of
public-key encryption scheme called a universally anonymizable public-key en-
cryption scheme. A universally anonymizable public-key encryption scheme con-
sists of a standard public-key encryption scheme PE and two additional algo-
rithms, that is, an anonymizing algorithm UA and a decryption algorithm DA
for anonymized ciphertexts. We can use PE as a standard encryption scheme
which is not necessary to have the anonymity property. Furthermore, in this
scheme, by using the anonymizing algorithm UA, anyone who has a standard
ciphertext can anonymize it with its public key whenever she wants to do that.
The receiver can decrypt the anonymized ciphertext by using the decryption
algorithm DA for anonymized ciphertexts. Then, the adversary cannot know
under which key the anonymized ciphertext was created.

To formalize the security properties for universally anonymizable public-key
encryption, we define three requirements, the key-privacy, the data-privacy on
standard ciphertexts, and that on anonymized ciphertexts.

We then propose the universally anonymizable public-key encryption schemes
based on the ElGamal encryption scheme, the Cramer-Shoup encryption scheme,
and RSA-OAEP, and prove their security.

We show the key-privacy property of our schemes by applying an argument
in [1] with modification. The argument in [1] for the discrete-log based scheme
depends heavily on the situation where all of the users employ a common group.
However, in our discrete-log based schemes, we do not use the common group
for obtaining the key-privacy property. Therefore, we cannot straightforwardly
apply their argument to our schemes. To prove the key-privacy property of our
schemes, we employ the idea described in [5] by Cramer and Shoup, where we
encode the elements of QRp (a group of quadratic residues modulo p) where
p = 2q+1 and p, q are prime to those of Zq. This encoding plays an important role
in our schemes. We also employ the expanding technique. With this technique,
if we get the ciphertext, we expand it to the common domain. This technique
was proposed by Desmedt [6]. In [8], Galbraith and Mao used this technique for
the undeniable signature scheme. In [13], Rivest, Shamir, and Tauman also used
this technique for the ring signature scheme.

The organization of this paper is as follows. In Section 2, we review the defi-
nitions of the Decisional Diffie-Hellman problem, the families of hash functions,
and the RSA family of trap-door permutations. In Section 3, we formulate the
notion of universally anonymizable public-key encryption and its security prop-
erties. We propose the universally anonymizable public-key encryption scheme
based on the ElGamal encryption scheme in Section 4, that based on the Cramer-
Shoup encryption scheme in Section 5, and that based on RSA-OAEP in Sec-
tion 6.

2 Preliminaries

2.1 The Decisional Diffie-Hellman Problem

In this section, we review the decisional Diffie-Hellman Problem.



Definition 1 (DDH). Let G be a group generator which takes as input a secu-
rity parameter k and returns (q, g) where q is a k-bit integer and g is a generator
of a cyclic group Gq of order q. Let D be an adversary. We consider the following
experiments:

Experiment Expddh-real
G,D (k) Experiment Expddh-rand

G,D (k)

(q, g) ← G(k); x, y
R← Zq (q, g) ← G(k); x, y

R← Zq

X ← gx; Y ← gy; T ← gxy X ← gx; Y ← gy; T
R← Gq

d ← D(q, g, X, Y, T ) d ← D(q, g, X, Y, T )
return d return d

The advantage of D in solving the Decisional Diffie-Hellman (DDH) problem for
G is defined by

Advddh
G,D(k) =

∣∣Pr[Expddh-real
G,D (k) = 1]− Pr[Expddh-rand

G,D (k) = 1]
∣∣.

We say that the DDH problem for G is hard if the function Advddh
G,D(k) is negli-

gible for any algorithm D whose time-complexity is polynomial in k.

The “time-complexity” is the worst case execution time of the experiment plus
the size of the code of the adversary, in some fixed RAM model of computation.

2.2 Families of Hash Functions

In this section, we describe the definitions of families of hash functions and
universal one-wayness.

Definition 2 (Families of Hash Functions). A family of hash functions H =
(GH, EH) is defined by two algorithms. A probabilistic generator algorithm GH
takes the security parameter k as input and returns a key K. A deterministic
evaluation algorithm EH takes the key K and a string M ∈ {0, 1}∗ and returns
a string EHK(M) ∈ {0, 1}k−1.

Definition 3 (Universal One-Wayness). Let H = (GH, EH) be a family of
hash functions and let C = (C1, C2) be an adversary. We consider the following
experiment:

Experiment Expuow
H,C(k)

(x0, si) ← C1(k); K ← GH(k); x1 ← C2(K,x0, si)
if ((x0 6= x1) ∧ (EHK(x0) = EHK(x1))) then return 1 else return 0

Note that si is the state information. We define the advantage of C via

Advuow
H,C(k) = Pr[Expuow

H,C(k) = 1].

We say that the family of hash functions H is universal one-way if Advuow
H,C(k)

is negligible for any algorithm C whose time-complexity is polynomial in k.



2.3 The RSA Family of Trap-Door Permutations

In this section, we describe the definitions of the RSA family of trap-door per-
mutations denoted by RSA and θ-partial one-wayness of RSA.

Definition 4 (The RSA Family of Trap-Door Permutations). The RSA
family of trap-door permutations RSA = (K,E, I) is described as follows. The key
generation algorithm K takes as input a security parameter k and picks random,
distinct primes p, q in the range 2dk/2e−1 < p, q < 2dk/2e and 2k−1 < pq < 2k.
It sets N = pq and picks e, d ∈ Z∗φ(N) such that ed = 1 (mod φ(N)). The
public key is (N, e, k) and the secret key is (N, d, k). The evaluation algorithm is
EN,e,k(x) = xe mod N and the inversion algorithm is IN,d,k(y) = yd mod N .

Definition 5 (θ-Partial One-Wayness of RSA). Let k ∈ N be a security
parameter. Let 0 < θ ≤ 1 be a constant. Let A be an adversary. We consider the
following experiment:

Experiment Expθ-pow-fnc
RSA,A (k)

((N, e, k), (N, d, k)) ← K(k); x
R← Z∗N ; y ← xe mod N

x1 ← A(pk, y) where |x1| = dθ · |x|e
if

(
(x1||x2)e mod N = y for some x2

)
return 1 else return 0

Here, “ ||” denotes concatenation. We define the advantage of the adversary via

Advθ-pow-fnc
RSA,A (k) = Pr[Expθ-pow-fnc

RSA,A (k) = 1]

where the probability is taken over K, x
R← Z∗N , and A. We say that RSA is

θ-partial one-way if the function Advθ-pow-fnc
RSA,A (k) is negligible for any adversary

A whose time complexity is polynomial in k.

Note that when θ = 1 the notion of θ-partial one-wayness coincides with the
standard notion of one-wayness. Fujisaki, Okamoto, Pointcheval, and Stern [7]
showed that the θ-partial one-wayness of RSA is equivalent to the (1-partial)
one-wayness of RSA for θ > 0.5.

3 Universally Anonymizable Public-Key Encryption

In this section, we propose the definition of universally anonymizable public-key
encryption schemes and its security properties.

3.1 The Definition of Universally Anonymizable Public-Key
Encryption Schemes

We formalize the notion of universally anonymizable public-key encryption schemes
as follows.



Definition 6. A universally anonymizable public-key encryption scheme UAPE =
((K, E ,D),UA,DA) consists of a public-key encryption scheme PE = (K, E ,D)
and two other algorithms.

– The key generation algorithm K is a randomized algorithm that takes as
input a security parameter k and returns a pair (pk, sk) of keys, a public key
and a matching secret key.

– The encryption algorithm E is a randomized algorithm that takes the public
key pk and a plaintext m and returns a standard ciphertext c.

– The decryption algorithm D for standard ciphertexts is a deterministic algo-
rithm that takes the secret key sk and a standard ciphertext c and returns the
corresponding plaintext m or a special symbol ⊥ to indicate that the standard
ciphertext is invalid.

– The anonymizing algorithm UA is a randomized algorithm that takes the pub-
lic key pk and a standard ciphertext c and returns an anonymized ciphertext
c′.

– The decryption algorithm DA for anonymized ciphertexts is a deterministic
algorithm that takes the secret key sk and an anonymized ciphertext c′ and
returns the corresponding plaintext m or a special symbol ⊥ to indicate that
the anonymized ciphertext is invalid.

We require the standard correctness condition. That is, for any (pk, sk) outputted
by K and m ∈ M(pk) where M(pk) denotes the message space of pk, we have
m = Dsk(Epk(m)) and m = DAsk(UApk(Epk(m))).

In the universally anonymizable public-key encryption scheme, we can use
PE = (K, E ,D) as a standard encryption scheme. Furthermore, in this scheme,
by using the anonymizing algorithm UA, anyone who has a standard ciphertext
can anonymize it whenever she wants to do that. The receiver can decrypt the
anonymized ciphertext by using the decryption algorithm DA for anonymized
ciphertexts.

3.2 Security Properties of Universally Anonymizable Public-Key
Encryption Schemes

We now define security properties with respect to universally anonymizable
public-key encryption schemes.

Data-Privacy We define the security property called data-privacy of universally
anonymizable public-key encryption schemes. The definition is based on the
indistinguishability for standard public-key encryption schemes.

We can consider two types of data-privacy, that is, the data-privacy on stan-
dard ciphertexts and that on anonymized ciphertexts. We first describe the def-
inition of the data-privacy on standard ciphertexts.

Definition 7 (Data-Privacy on Standard Ciphertexts). Let b ∈ {0, 1} and
k ∈ N. Let Acpa = (A1

cpa, A
2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that run in



two stages and where Acca has access to the oracles Dsk0(·), Dsk1(·), DAsk0(·),
and DAsk1(·). Note that si is the state information. It contains pk, m0, m1, and
so on. For atk ∈ {cpa, cca}, we consider the following experiment:

Experiment ExpdataS-atk-b
UAPE,Aatk

(k)
(pk, sk) ← K(k); (m0,m1, si) ← A1

atk(pk); c ← Epk(mb); d ← A2
atk(c, si)

return d

Note that m0,m1 ∈ M(pk). Above it is mandated that A2
cca never queries the

challenge c to either Dsk0(·) or Dsk1(·). It is also mandated that A2
cca never

queries either the anonymized ciphertext c̃ ∈ {UApk0(c)} to DAsk0(·) or c̃ ∈
{UApk1(c)} to DAsk1(·). For atk ∈ {cpa, cca}, we define the advantage via

AdvdataS-atk
UAPE,Aatk

(k) =
∣∣∣Pr[ExpdataS-atk-1

UAPE,Aatk
(k) = 1]− Pr[ExpdataS-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.

We say that the universally anonymizable public-key encryption scheme UAPE
provides the data-privacy on standard ciphertexts against the chosen plaintext
attack (respectively the adaptive chosen ciphertext attack) if AdvdataS-cpa

UAPE,Acpa
(k)

(resp. AdvdataS-cca
UAPE,Acca

(k)) is negligible for any adversary A whose time complexity
is polynomial in k.

In the above experiment, if the challenge is c, then anyone can compute
UApk0(c). Therefore, in the CCA setting, we restrict the oracle access to DA as
described above.

We next describe the definition of the data-privacy on anonymized cipher-
texts.

Definition 8 (Data-Privacy on Anonymized Ciphertexts). Let b ∈ {0, 1}
and k ∈ N. Let Acpa = (A1

cpa, A
2
cpa), Acca = (A1

cca, A
2
cca) be adversaries that run

in two stages and where Acca has access to the oracles Dsk0(·), Dsk1(·), DAsk0(·),
and DAsk1(·). For atk ∈ {cpa, cca}, we consider the following experiment:

Experiment ExpdataA-atk-b
UAPE,Aatk

(k)
(pk, sk) ← K(k); (m0,m1, si) ← A1

atk(pk)
c ← Epk(mb); c′ ← UApk(c); d ← A2

atk(c
′, si)

return d

Note that m0,m1 ∈ M(pk). Above it is mandated that A2
cca never queries the

challenge c′ to either DAsk0(·) or DAsk1(·). For atk ∈ {cpa, cca}, we define the
advantage via

AdvdataA-atk
UAPE,Aatk

(k) =
∣∣∣Pr[ExpdataA-atk-1

UAPE,Aatk
(k) = 1]− Pr[ExpdataA-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.

We say that the universally anonymizable public-key encryption scheme UAPE
provides the data-privacy on anonymized ciphertexts against the chosen plaintext
attack (resp. the adaptive chosen ciphertext attack) if AdvdataA-cpa

UAPE,Acpa
(k) (resp.

AdvdataA-cca
UAPE,Acca

(k)) is negligible for any adversary A whose time complexity is
polynomial in k.



Remark 1. In the CPA setting, if there exists an algorithm which breaks the
data-privacy on anonymized ciphertexts, then we can break that on standard
ciphertexts by applying the anonymizing algorithm to the standard ciphertexts
and passing the resulting anonymized ciphertexts to the adversary which breaks
the data-privacy on anonymized ciphertexts. Therefore, in the CPA setting, it is
sufficient that the universally anonymizable public-key encryption scheme pro-
vides the data-privacy of standard ciphertexts.

On the other hand, in the CCA setting, the data privacy on standard cipher-
texts does not always imply that on anonymized ciphertexts, since the oracle
access of the adversary attacking the data privacy on standard ciphertexts is
restricted more strictly than that on anonymized ciphertexts.

Key-Privacy We define the security property called key-privacy of universally
anonymizable public-key encryption schemes. If the scheme provides the key-
privacy, the adversary cannot know under which key the anonymized ciphertext
was created.

Definition 9 (Key-Privacy). Let b ∈ {0, 1} and k ∈ N. Let Acpa = (A1
cpa, A

2
cpa),

Acca = (A1
cca, A

2
cca) be adversaries that run in two stages and where Acca has ac-

cess to the oracles Dsk0(·), Dsk1(·), DAsk0(·), and DAsk1(·). For atk ∈ {cpa,
cca}, we consider the following experiment:

Experiment Expkey-atk-b
UAPE,Aatk

(k)
(pk0, sk0) ← K(k); (pk1, sk1) ← K(k)
(m0,m1, si) ← A1

atk(pk0, pk1); c ← Epkb
(mb); c′ ← UApkb

(c); d ← A2
atk(c

′, si)
return d

Note that m0 ∈ M(pk0) and m1 ∈ M(pk1). Above it is mandated that A2
cca

never queries the challenge c′ to either DAsk0(·) or DAsk1(·). For atk ∈ {cpa,
cca}, we define the advantage via

Advkey-atk
UAPE,Aatk

(k) =
∣∣∣Pr[Expkey-atk-1

UAPE,Aatk
(k) = 1]− Pr[Expkey-atk-0

UAPE,Aatk
(k) = 1]

∣∣∣.

We say that the universally anonymizable public-key encryption scheme UAPE
provides the key-privacy against the chosen plaintext attack (resp. the adaptive
chosen ciphertext attack) if Advkey-cpa

UAPE,Acpa
(k) (resp. Advkey-cca

UAPE,Acca
(k)) is neg-

ligible for any adversary A whose time complexity is polynomial in k.

Bellare, Boldyreva, Desai, and Pointcheval [1] proposed a security require-
ment of encryption schemes called “key-privacy.” Similar to the above definition,
it asks that the encryption provides privacy of the key under which the encryp-
tion was performed. In addition to the property of the universal anonymizability,
there are two differences between their definition and ours.

In [1], they defined the encryption scheme with some common-key which
contains the common parameter for all users to obtain the key-privacy property.
For example, in the discrete-log based schemes such that the ElGamal and the



Cramer-Shoup encryption schemes, the common key contains a common group
G, and the encryption is performed over the common group for all uses.

On the other hand, in our definition, we do not prepare any common key
for obtaining the key-privacy property. In the universally anonymizable public-
key encryption scheme, we can use the standard encryption scheme which is
not necessary to have the key-privacy property. In addition to it, anyone can
anonymize the ciphertext by using its public key whenever she want to do that,
and the adversary cannot know under which key the anonymized ciphertext was
created.

The definition in [1], they considered the situation that the message space
was common to each user. Therefore, in the experiment of their definition, the
adversary chooses only one message m from the common message space and
receives a ciphertext of m encrypted with one of two keys pk0 and pk1.

In our definition, we do not use common parameter and the message spaces
for users may be different even if the security parameter is fixed. In fact, in
Sections 4 and 5, we propose the encryption schemes whose message spaces for
users are different. Therefore, in the experiment of our definition, the adversary
chooses two messages m0 and m1 where m0 and m1 are in the message spaces
for pk0 and pk1, respectively, and receives either a ciphertext of m0 encrypted
with pk0 or a ciphertext of m1 encrypted with pk1. The ability of the adversary
with two messages m0 and m1 might be stronger than that with one message
m.

We say that a universally anonymizable public-key encryption scheme UAPE
is CPA-secure (resp. CCA-secure) if the scheme UAPE provides the data-privacy
on standard ciphertexts, that on anonymized ciphertexts, and the key-privacy
against the chosen plaintext attack (resp. the adaptive chosen ciphertext attack).

4 ElGamal and its Universal Anonymizability

In this section, we propose a universally anonymizable ElGamal encryption
scheme.

4.1 The ElGamal Encryption Scheme

Definition 10 (ElGamal). The ElGamal encryption scheme PEEG = (KEG, EEG,
DEG) is as follows. Note that Q is a QR-group generator with a safe prime which
takes as input a security parameter k and returns (q, g) where q is k-bit prime,
p = 2q + 1 is prime, and g is a generator of a cyclic group QRp (a group of
quadratic residues modulo p) of order q.

Algorithm KEG(k) Algorithm EEG
pk (m) Algorithm DEG

sk (c1, c2)

(q, g) ← Q(k) r
R← Zq m ← c2 · c−x

1

x
R← Zq; y ← gx c1 ← gr return m

return pk = (q, g, y) and sk = x c2 ← m · yr

return (c1, c2)



The ElGamal encryption scheme is secure in the sense of IND-CPA if the
DDH problem for Q is hard.

4.2 Universal Anonymizability of the ElGamal Encryption Scheme

We now consider the situation that there exists no common key, and in the above
definition of the ElGamal encryption scheme, each user chooses an arbitrary
prime q where |q| = k and p = 2q + 1 is also prime, and uses a group of
quadratic residues modulo p. Therefore, each user Ui uses a different groups Gi

for her encryption scheme and if she publishes the ciphertext directly (without
anonymization) then the scheme does not provide the key-privacy. In fact, the
adversary simply checks whether the ciphertext y is in the group Gi, and if
y 6∈ Gi then y was not encrypted by Ui. To anonymize the standard ciphertext
of the ElGamal encryption scheme, we consider the following strategy in the
anonymizing algorithm.

1. Compute a ciphertext c over each user’s prime-order group.
2. Encode c to an element c̄ ∈ Zq (the encoding function).
3. Expand c̄ to the common domain (the expanding technique).

We describe the encoding function and the expanding technique.

The Encoding Function Generally speaking, it is not easy to encode the
elements of a prime-order group of order q to those of Zq. We employ the idea
described in [5] by Cramer and Shoup. We can encode the elements of QRp

where p = 2q + 1 and p, q are prime to those of Zq.
Let p be safe prime (i.e. q = (p − 1)/2 is also prime) and QRp ⊂ Z∗p a

group of quadratic residues modulo p. Then we have |QRp| = q and QRp =
{12 mod p, 22 mod p, · · · , q2 mod p}. It is easy to see that QRp is a cyclic group
of order q, and each g ∈ QRp\{1} is a generator of QRp.

We now define a function Fq : QRp → Zq as

Fq(x) = min
{
±x

p−1
4 mod p

}
.

Noticing that ±x
p−1
4 mod p are the square roots of x modulo p, the function

Fq is bijective and we have F−1
q (y) = y2 mod p. We call the function Fq an

encoding function. We also define a t-encoding function F̄q,t : (QRp)t → (Zq)t.
F̄q,t takes as input (x1, · · · , xt) ∈ (QRp)t and returns (y1, · · · , yt) ∈ (Zq)t where
yi = Fq(xi) for each i ∈ {1, · · · , t}. It is easy to see that F̄q,t is bijective and we
can define F̄−1

q,t .

The Expanding Technique This technique was proposed by Desmedt [6].
In [8], Galbraith and Mao used this technique for the undeniable signature
scheme. In [13], Rivest, Shamir, and Tauman also used this technique for the
ring signature scheme.



In the expanding technique, we expand c̄ ∈ Zq to the common domain

{0, 1}k+kb . In particular, we choose t
R← {0, 1, 2, · · · , b(2k+kb − c̄)/qc} and set

c′ ← c̄ + tq.
Then, for any q where |q| = k, if c̄ is uniformly chosen from Zq, then the

statistical distance between the distribution of the output c′ by the expanding
technique and the uniform distribution over {0, 1}k+kb is less than 1/2kb−1. In
the following, we set kb = 160.

Our Scheme We now propose our universally anonymizable ElGamal encryp-
tion scheme. Our scheme provides the key-privacy against the chosen plaintext
attack even if each user chooses an arbitrary prime q where |q| = k and p = 2q+1
is also prime, and uses a group of quadratic residues modulo p.

Definition 11. Our universally anonymizable ElGamal encryption scheme UAPEEG

= ((KEG, EEG,DEG), UAEG,DAEG) consists of the ElGamal encryption scheme
PEEG = (KEG, EEG,DEG) and two algorithms described as follows.

Algorithm UAEG
pk (c1, c2) Algorithm DAEG

sk (c′1, c
′
2)

(c̄1, c̄2) ← F̄q,2(c1, c2) c̄1 ← c′1 mod q; c̄2 ← c′2 mod q

t1
R← {0, 1, 2, · · · , b(2k+160 − c̄1)/qc} (c1, c2) ← F̄−1

q,2 (c̄1, c̄2)

t2
R← {0, 1, 2, · · · , b(2k+160 − c̄2)/qc} m ← DEG

sk (c1, c2)
c′1 ← c̄1 + t1q; c′2 ← c̄2 + t2q return m
return (c′1, c

′
2)

4.3 Security

In this section, we prove that our universally anonymizable ElGamal encryption
scheme UAPEEG is CPA-secure assuming that the DDH problem for Q is hard.

We can easily see that our scheme provides the data-privacy on standard
ciphertexts against the chosen plaintext attack if the DDH problem for Q is
hard. More precisely, we can prove that if there exists a CPA-adversary attacking
the data-privacy on standard ciphertexts of our scheme with advantage ε, then
there exists a CPA-adversary attacking the indistinguishability of the ElGamal
encryption scheme with the same advantage ε.

Note that this implies our scheme provides the data-privacy on anonymized
ciphertexts against the chosen plaintext attack if the DDH problem for Q is
hard.

We now prove our scheme provides the key-privacy against the chosen plain-
text attack. To prove this, we use the idea of Halevi [9].

Lemma 1 (Halevi [9]). Let PE = (K, E ,D) be a (standard) encryption scheme
that is CCA secure (resp. CPA secure) for the indistinguishability (data-privacy).
Then a sufficient condition for PE to be also CCA secure (resp. CPA secure) for



the key-privacy (defined by Bellare, Boldyreva, Desai, and Pointcheval) if the
statistical distance between the two distributions

D0 = {(pk0, pk1, Epk0(m)) : (pk0, sk0), (pk1, sk1) ← K(k); m
R←M(pk0)}

D1 = {(pk0, pk1, Epk1(m)) : (pk0, sk0), (pk1, sk1) ← K(k); m
R←M(pk1)}

is negligible.

This lemma shows the relation between the indistinguishability and the key-
privacy for standard encryption scheme. We can apply this lemma to our univer-
sally anonymizable encryption scheme. That is, if the universally anonymizable
encryption scheme UAPE = ((K, E ,D),UA,DA) provides the data-privacy on
anonymized ciphertexts against CCA (resp. CPA) and the statistical distance
between the two distributions

D′
0 = {(pk0, pk1,UApk0(Epk0(m))) : (pk0, sk0), (pk1, sk1) ← K(k); m

R←M(pk0)}
D′

1 = {(pk0, pk1,UApk1(Epk1(m))) : (pk0, sk0), (pk1, sk1) ← K(k); m
R←M(pk1)}

is negligible, then UAPE provides the key-privacy against CCA (resp. CPA).
By using this, in order to prove that our scheme provides the key-privacy

against the chosen plaintext attack, all we have to do is to see that the two
distributions D′

0 and D′
1 derived by our scheme satisfy the property defined

above. It is easy to see that the statistical distance between D′
0 and D′

1 is less
than 2× (1/2159)2.

In conclusion, our universally anonymizable ElGamal encryption scheme is
CPA-secure assuming that the DDH problem for Q is hard.

5 Cramer-Shoup and its Universal Anonymizability

In this section, we propose a universally anonymizable Cramer-Shoup encryption
scheme.

5.1 The Cramer-Shoup Encryption Scheme

Definition 12 (Cramer-Shoup). The Cramer-Shoup encryption scheme PECS =
(KCS, ECS, DCS) is defined as follows. Let H = (GH, EH) be a family of hash
functions. Note that Q is a QR-group generator with a safe prime.

Algorithm KCS(k) Algorithm ECS
pk (m) Algorithm DCS

sk (u1, u2, e, v)

(q, g) ← Q(k); K ← GH(k) r
R← Zq α ← EHK(u1, u2, e)

g1 ← g; g2
R← QRp u1 ← gr

1; u2 ← gr
2 if (ux1+y1α

1 ux2+y2α
2 = v)

x1, x2, y1, y2, z
R← Zq e ← hrm then m ← e/uz

1

c ← gx1
1 gx2

2 ; d ← gy1
1 gy2

2 α ← EHK(u1, u2, e) else m ←⊥
h ← gz

1 v ← crdrα return m
pk ← (q, g1, g2, c, d, h, K) return (u1, u2, e, v)
sk ← (x1, x2, y1, y2, z)
return (pk, sk)



Cramer and Shoup [5] proved that the Cramer-Shoup encryption scheme is
secure in the sense of IND-CCA2 assuming that H is universal one-way and
the DDH problem for Q is hard. Lucks [12] recently proposed a variant of the
Cramer-Shoup encryption scheme for groups of unknown order. This scheme is
secure in the sense of IND-CCA2 assuming that the family of hash functions in
the scheme is universal one-way, and both the Decisional Diffie-Hellman problem
in QRN (a set of quadratic residues modulo N) and factoring N are hard.

5.2 Universal Anonymizability of the Cramer-Shoup Encryption
Scheme

We propose our universally anonymizable Cramer-Shoup encryption scheme. Our
scheme provides the key-privacy against the adaptive chosen ciphertext attack
even if each user chooses an arbitrary prime q where |q| = k and p = 2q + 1 is
also prime, and uses a group of quadratic residues modulo p.

Note that in our scheme we employ the encoding function and the expanding
technique appeared in Section 4.

Definition 13. Our universally anonymizable Cramer-Shoup encryption scheme
UAPECS = ((KCS, ECS, DCS),UACS,DACS) consists of the Cramer-Shoup en-
cryption scheme PECS = (KCS, ECS,DCS) and two algorithms described as fol-
lows.

Algorithm UACS
pk(u1, u2, e, v) Algorithm DACS

sk (u′1, u
′
2, e

′, v′)
(ū1, ū2, ē, v̄) ← F̄q,4(u1, u2, e, v) ū1 ← u′1 mod q; ū2 ← u′2 mod q

t1
R← {0, 1, 2, · · · , b(2k+160 − ū1)/qc} ē ← e′ mod q; v̄ ← v′ mod q

t2
R← {0, 1, 2, · · · , b(2k+160 − ū2)/qc} (u1, u2, e, v) ← F̄−1

q,4 (ū1, ū2, ē, v̄)

t3
R← {0, 1, 2, · · · , b(2k+160 − ē)/qc} m ← DCS

sk (u1, u2, e, v)
t4

R← {0, 1, 2, · · · , b(2k+160 − v̄)/qc} return m
u′1 ← ū1 + t1q; u′2 ← ū2 + t2q
e′ ← ē + t3q; v′ ← v̄ + t4q
return (u′1, u

′
2, e

′, v′)

5.3 Security

In this section, we prove that our universally anonymizable Cramer-Shoup en-
cryption scheme UAPEEG is CCA-secure assuming that the DDH problem for
Q is hard and H is universal one-way.

We can prove that our scheme provides the data-privacy on standard cipher-
texts against the adaptive chosen ciphertext attack if the DDH problem for Q
is hard and H is universal one-way. More precisely, we can prove that if there
exists a CCA-adversary A attacking the data-privacy on standard ciphertexts of
our scheme with advantage ε, then there exists a CCA2-adversary B attacking
the indistinguishability of the Cramer-Shoup encryption scheme with the same
advantage ε. In the reduction of the proof, we have to simulate the decryption or-
acles for anonymized ciphertexts for A. If A makes a query c′ = (u′1, u

′
2, e

′, v′) to



DAsk0(·), we simply compute c = (u′1 mod q0, u
′
2 mod q0, e

′ mod q0, v
′ mod q0)

and decrypt c by using the decryption algorithm Dsk0(·) for standard ciphertexts
for B. We can simulate DAsk1(·) in a similar way.

In order to prove that our scheme provides the key-privacy and the data-
privacy on anonymized ciphertexts against the adaptive chosen ciphertext at-
tack, we need restriction as follows.

We define the set of ciphertexts ECCS((u′1, u
′
2, e

′, v′), pk) called “equivalence
class” as
ECCS((u′1, u

′
2, e

′, v′), pk) = {(ǔ1, ǔ2, ě, v̌) ∈ ({0, 1}k+160)4|
ǔ1 = u′1 (mod q) ∧ ǔ2 = u′2 (mod q) ∧ ě = e′ (mod q) ∧ v̌ = v′ (mod q)}.

If c′ = (u′1, u
′
2, e

′, v′) ∈ ({0, 1}k+160)4 is an anonymized ciphertext of m under
pk = (q, g1, g2, c, d, h, K) then any element č = (ǔ1, ǔ2, ě, v̌) ∈ ECCS(c′, pk) is
also an anonymized ciphertext of m under pk. Therefore, when c′ is a challenge
anonymized ciphertext, the adversary can ask an anonymized ciphertext č ∈
ECCS(c′, pk0) to the decryption oracle DACS

sk0
for anonymized ciphertexts, and

if the answer of DACS
sk0

is m0 then the adversary knows that c′ is encrypted by
pk0 and the plaintext of c′ is m0.

Furthermore, the adversary can ask (u′1 mod q0, u
′
2 mod q0, e

′ mod q0, v
′ mod

q0) to the decryption oracle DCS
sk0

for standard ciphertexts. If the answer of DCS
sk0

is m0, then the adversary knows that c′ is encrypted by pk0 and the plaintext
of c′ is m0.

To prevent these attacks, we add some natural restriction to the adversaries
in the definitions of the key-privacy and the data-privacy on anonymized ci-
phertexts. That is, it is mandated that the adversary never queries either č ∈
ECCS(c′, pk0) to DACS

sk0
or č ∈ ECCS(c′, pk1) to DACS

sk1
. It is also mandated that

the adversary never queries either (u′1 mod q0, u
′
2 mod q0, e

′ mod q0, v
′ mod q0)

to DCS
sk0

or (u′1 mod q1, u
′
2 mod q1, e

′ mod q1, v
′ mod q1) to DCS

sk1
.

We think these restrictions are natural and reasonable. Actually, in the case of
undeniable and confirmer signature schemes, Galbraith and Mao [8] defined the
anonymity on undeniable signature schemes with the above restriction. In [11],
Hayashi and Tanaka also employed the same restriction in order to prove the
anonymity of their encryption scheme. Incidentally, Canetti, Krawczyk, and
Nielsen [4] proposed a relaxed notion of CCA security, called Replayable CCA
(RCCA). In their security model, the schemes which require restriction such
as equivalence class for proving their CCA security satisfy a variant of RCCA,
pd-RCCA (publicly-detectable replayable-CCA) secure.

If we add these restrictions then we can prove that our scheme provides the
data-privacy on anonymized ciphertexts against the adaptive chosen ciphertext
attack if the DDH problem for Q is hard and H is universal one-way. More
precisely, we can prove that if there exists a CCA-adversary attacking the data-
privacy on anonymized ciphertexts of our scheme with advantage ε, then there
exists a CCA-adversary attacking the data-privacy on standard ciphertexts of
our scheme with the same advantage ε.

We now prove our scheme provides the key-privacy against the adaptive
chosen ciphertext attack. If we add the restrictions described above, we can



prove this in a similar way as that for our universally anonymizable ElGamal
encryption scheme. Note that the statistical distance between D′

0 and D′
1 (See

Section 4.3.) is less than 2× (1/2159)4.
In conclusion, our universally anonymizable Cramer-Shoup encryption scheme

is CCA-secure assuming that the DDH problem for Q is hard and H is universal
one-way.

6 RSA-OAEP and its Universal Anonymizability

In this section, we propose a universally anonymizable RSA-OAEP scheme.

6.1 RSA-OAEP

Definition 14 (RSA-OAEP). RSA-OAEP PERO = (KRO, ERO,DRO) is as
follows. Let k, k0 and k1 be security parameters such that k0 + k1 < k. This de-
fines an associated plaintext-length n = k−k0−k1. The key generation algorithm
KRO takes as input a security parameter k and runs the key generation algorithm
of RSA to get N, e, d. It outputs the public key pk = (N, e) and the secret key
sk = d. The other algorithms are depicted below. Let G : {0, 1}k0 → {0, 1}n+k1

and H : {0, 1}n+k1 → {0, 1}k0 be hash functions. Note that [x]` denotes the `
most significant bits of x, and [x]`′ denotes the `′ least significant bits of x.

Algorithm ERO
pk (m) Algorithm DRO

sk (c)

r
R← {0, 1}k0 s ← [cd mod N ]n+k1 ; t ← [cd mod N ]k0

s ← (m||0k1)⊕G(r) r ← t⊕H(s)
t ← r ⊕H(s) m ← [s⊕G(r)]n; p ← [s⊕G(r)]k1

c ← (s||t)e mod N if (p = 0k1) z ← m else z ←⊥
return c return z

Fujisaki, Okamoto, Pointcheval, and Stern [7] proved that OAEP with partial
one-way permutations is secure in the sense of IND-CCA2 in the random oracle
model. They also showed that RSA is one-way if and only if RSA is θ-partial
one-way for θ > 0.5. Thus, RSA-OAEP is secure in the sense of IND-CCA2 in
the random oracle model assuming RSA is one-way.

6.2 Universal Anonymizability of RSA-OAEP

A simple observation that seems to be folklore is that if one publishes the ci-
phertext of the RSA-OAEP scheme directly (without anonymization) then the
scheme does not provide the key-privacy. Suppose an adversary knows that the
ciphertext c is created under one of two keys (N0, e0) or (N1, e1), and suppose
N0 ≤ N1. If c ≥ N0 then the adversary bets it was created under (N1, e1), else
the adversary bets it was created under (N0, e0). It is not hard to see that this
attack has non-negligible advantage.

To anonymize ciphertexts of RSA-OAEP, we do not have to employ the
encoding function and we only use the expanding technique.



Definition 15. Our universally anonymizable RSA-OAEP scheme UAPERO =
((KRO, ERO,DRO),UARO, DARO) consists of RSA-OAEP PERO = (KRO, ERO,DRO)
and two algorithms described as follows.

Algorithm UARO
pk (c) Algorithm DARO

sk (c′)

α
R← {0, 1, 2, · · · , b(2k+160 − c)/Nc} c ← c′ mod N

c′ ← c + αN z ← DRO
sk (c)

return c′ return z

6.3 Security

In this section, we prove that our universally anonymizable RSA-OAEP scheme
UAPERO is CCA-secure in the random oracle model assuming RSA is one-way.

We can prove that our scheme provides the data-privacy on standard cipher-
texts against the adaptive chosen ciphertext attack in the random oracle model
assuming RSA is θ-partial one-way for θ > 0.5. More precisely, if RSA-OAEP is
secure in the sense of IND-CCA2 then our scheme provides the data-privacy on
standard ciphertexts against the adaptive chosen ciphertext attack. The proof
is similar to that for our universally anonymizable Cramer-Shoup encryption
scheme.

In order to prove that our scheme provides the key-privacy and the data-
privacy on anonymized ciphertexts against the adaptive chosen ciphertext at-
tack, we need the restrictions similar to those for our universally anonymizable
Cramer-Shoup encryption scheme. We define the equivalence class for our uni-
versally anonymizable RSA-OAEP scheme as

ECRO(c′, pk) = {č ∈ {0, 1}k+160|č = c′ (mod N)}

where pk = (N, e) and it is mandated that the adversary never queries either
č ∈ ECRO(c′, pk0) to DARO

sk0
or č ∈ ECRO(c′, pk1) to DARO

sk1
. It is also mandated

that the adversary never queries either c′ mod N0 to DRO
sk0

or c′ mod N1 to DRO
sk1

.
If we add these restrictions then we can prove that our scheme provides the

data-privacy on anonymized ciphertexts against the adaptive chosen ciphertext
attack in the random oracle model assuming RSA is θ-partial one-way for θ >
0.5 in a similar way as that for our universally anonymizable Cramer-Shoup
encryption scheme.

Furthermore, if we add the restrictions described above, then we can prove
that our scheme provides the key-privacy against the adaptive chosen ciphertext
attack in the random oracle model assuming RSA is θ-partial one-way for θ > 0.5.
More precisely, we show the following theorem 1.

Theorem 1. For any adversary A attacking the key-privacy of our scheme un-
der the adaptive chosen ciphertext attack, and making at most qdec queries to
decryption oracle for standard ciphertexts, q′dec queries to decryption oracle for
1 Halevi [9] noted that we cannot apply Lemma 1 directly to the schemes analyzed in

the random oracle model.



anonymized ciphertexts, qgen G-oracle queries, and qhash H-oracle queries, there
exists a θ-partial inverting adversary B for RSA, such that for any k, k0, k1, and
θ = k−k0

k ,

Advkey-cca
UAPERO,A

(k) ≤ 8qhash · ((1− ε1) · (1− ε2))
−1 ·Advθ-pow-fnc

RSA,B (k)

+qgen · (1− ε2)−1 · 2−k+2

where ε1 = 2
2k/2−3−1

+ 1
2159 , ε2 = 2qgen+qdec+q′dec+2qgen(qdec+q′dec)

2k0
+ 2(qdec+q′dec)

2k1
+

2qhash
2k−k0

, and the running time of B is that of A plus qgen · qhash ·O(k3).

In conclusion, since RSA is θ-partial one-way if and only if RSA is one-way
for θ > 0.5, our universally anonymizable RSA-OAEP scheme is CCA-secure in
the random oracle model assuming RSA is one-way.

6.4 Proof of Theorem 1

The proof is similar to that for RSA-RAEP. We construct the partial inverting
algorithm M for the RSA function using a CCA-adversary A attacking the key-
privacy of our encryption scheme. We describe the partial inverting algorithm
M for RSA using a CCA-adversary A attacking the anonymity of our encryption
scheme. M is given pk = (N, e, k) and a point y ∈ Z∗N where |y| = k = n+k0+k1.
Let sk = (N, d, k) be the corresponding secret key. The algorithm is trying to
find the n + k1 most significant bits of the e-th root of y modulo N .

1) M picks µ
R← {0, 1, 2, . . . , b(2k+160 − y)/Nc} and sets Y ← y + µN .

2) M runs the key generation algorithm of RSA with security parameter k to
obtain pk′ = (N ′, e′, k) and sk′ = (N ′, d′, k). Then it picks a bit b

R← {0, 1},
and sets pkb ← (N, e) and pk1−b ← (N ′, e′). If the above y does not satisfy
y ∈ (Z∗N0

∩ Z∗N1
) then M outputs Fail and halts; else it continues.

3) M initializes four lists, called G-list, H-list, Y0-list, and Y1-list to empty. It
then runs A as follows. Note that M simulates A’s oracles G, H, Dsk0 , and
Dsk1 as described below.

3-1) M runs A1(pk0, pk1) and gets (m0,m1, si) which is the output of A1.
3-2) M runs A2(Y, si) and gets a bit d ∈ {0, 1} which is the output of A2.

4) M chooses a random element on the H-list and outputs it as its guess for
the n + k1 most significant bits of the e-th root of y modulo N .

M simulates A’s oracles G, H, Dsk0 , and Dsk1 as follows:

– When A makes an oracle query g to G, then for each (h,Hh) on the H-
list, M builds z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and
yh,g,1 = ze1 mod N1. For i ∈ {0, 1}, M checks whether y = yh,g,i. If for some
h and i such a relation holds, then we have inverted y under pki, and we can
still correctly simulate G by answering Gg = h ⊕ (mi||0k1). Otherwise, M
outputs a random value Gg of length n + k1. In both cases, M adds (g, Gg)
to the G-list. Then, for all h, M checks if the k1 least significant bits of
h⊕Gg are all 0. If they are, then it adds yh,g,0 and yh,g,1 to the Y0-list and
the Y1-list, respectively.



– When A makes an oracle query h to H, M provides A with a random string
Hh of length k0 and adds (h,Hh) to the H-list. Then for each (g, Gg) on the
G-list, M builds z = h||(g ⊕ Hh), and computes yh,g,0 = ze0 mod N0 and
yh,g,1 = ze1 mod N1. M checks if the k1 least significant bits of h ⊕ Gg are
all 0. If they are, then it adds yh,g,0 and yh,g,1 to the Y0-list and the Y1-list,
respectively.

– When for i ∈ {0, 1}, A makes an oracle query ŷ ∈ Z∗Ni
to Dski

, M checks if
there exists some yh,g,i in the Yi-list such that ŷ = yh,g,i. If there is, then it
returns the n most significant bits of h ⊕ Gg to A. Otherwise it returns ⊥
(indicating that ŷ is an invalid ciphertext).

– When for i ∈ {0, 1}, A makes an oracle query Ŷ ∈ {0, 1}k+160 to DAski
, M

checks if there exists some yh,g,i in the Yi-list such that Ŷ mod Ni = yh,g,i. If
there is, then it returns the n most significant bits of h⊕Gg to A. Otherwise
it returns ⊥ (indicating that Ŷ is an invalid anonymized ciphertext).

In order to analyze the advantage of M , we define some events. For i ∈ {0, 1},
let wi = ydi mod Ni, si = [wi]n+k1 , and ti = [wi]k0 .

– DSBad denotes the event that
• A Dsk0 query is not correctly answered, or
• A Dsk1 query is not correctly answered.

– DABad denotes the event that
• A DAsk0 query is not correctly answered, or
• A DAsk1 query is not correctly answered.

– DBad = DSBad ∨ DABad.
– YBad denotes the event that y 6∈ (Z∗N0

∩ Z∗N1
).

– AskR denotes the event that (r0, Gr0) or (r1, Gr1) is on the G-list at the end
of step 3-2.

– AskS denotes the event that (s0,Hs0) or (s1,Hs1) is on the H-list at the end
of step 3-2.

We let Pr[·] denote the probability distribution in the game defining advan-
tage and Pr1[·] the probability distribution in the simulated game where ¬YBad
occurs. We can bound Pr1[AskS] in a similar way as in the proof of the anonymity
for RSA-RAEP [1], and we have

Pr1[AskS] ≥ 1
2
· Pr1[AskR ∧ AskS|¬DBad] · Pr1[¬DBad|¬AskS].

We next bound Pr1[AskR ∧ AskS|¬DBad]. Let ε = Advkey-cca
UAPERO,A

(k). The
proof of the following lemma is similar to that for RSA-RAEP.
Lemma 2.

Pr1[AskR ∧ AskS|¬DBad] ≥ ε

2
· (1− 2qgen · 2−k0 − 2qhash · 2−n−k1

)− 2qgen · 2−k.

We next bound Pr1[¬DBad|¬AskS]. It is easy to see that Pr1[¬DBad|¬AskS] ≤
Pr1[¬DSBad|¬AskS]+Pr1[¬DABad|¬AskS], and the proof of the following lemma
is similar to that for RSA-RAEP.



Lemma 3.

Pr1[DSBad|¬AskS] ≤ qdec ·
(
2 · 2−k1 + (2qgen + 1) · 2−k0

)
,

Pr1[DABad|¬AskS] ≤ q′dec ·
(
2 · 2−k1 + (2qgen + 1) · 2−k0

)
.

By applying Lemmas 2 and 3, we can bound Pr1[AskS] as

Pr1[AskS]
≥ 1

2 ·
(

ε
2 ·

(
1− 2qgen

2k0
− 2qhash

2n+k1

)
− 2qgen

2k

)
·
(
1− (qdec + q′dec) ·

(
2

2k1
+ 2qgen+1

2k0

))

≥ ε
4 ·

(
1− 2qgen+qdec+q′dec+2qgen(qdec+q′dec)

2k0
− 2(qdec+q′dec)

2k1
− 2qhash

2k−k0

)
− qgen

2k .

We next bound the probability that ¬YBad occurs.
Lemma 4.

Pr[YBad] ≤ 2
2k/2−3 − 1

+
1

2159
.

Proof (Lemma 4). Let N = pq and N ′ = p′q′. We define a set S[N ] as {Ỹ |Ỹ ∈
[0, 2k+160) ∧ (Ỹ mod N) ∈ Z∗N}. Then, we have

Pr[YBad]
= Pr[y R← Z∗N ; µ

R← {0, 1, 2, . . . , b(2k+160 − y)/Nc}; Y ← y + µN : Y 6∈ S[N ′]]
≤ Pr[Y ′ R← S[N ] : Y ′ 6∈ S[N ′]] + 1/2159

since the distribution of Y ′ is statistical indistinguishable from that of Y , and
the statistically distance is less than 1/2159.

Since 2160 · φ(N) ≤ |S[N ]| ≤ 2k+160, we have

Pr[Y ′ R← S[N ] : Y ′ 6∈ S[N ′]] ≤ 2k+160−|S[N ′]|
|S[N ]| ≤ 2k+160−|S[N ′]|

2160·φ(N) .

Furthermore, we have

2k+160 − |S[N ′]| = ∣∣{Y ′|Y ′ ∈ [0, 2k+160) ∧ (Y ′ mod N ′) 6∈ Z∗N ′}
∣∣

≤
∣∣{Y ′|Y ′ ∈ [0, 2N ′ · 2160) ∧ (Y ′ mod N ′) 6∈ Z∗N ′}

∣∣
= 2161 × |{Y ′|Y ′ ∈ [0, N ′) ∧ Y ′ 6∈ Z∗N ′}|
= 2161(N ′ − φ(N ′)).

Noticing that 2dk/2e−1 < p, q, p′, q′ < 2dk/2e and 2k−1 < N, N ′ < 2k, we have

Pr[Y ′ R← S[N ] : Y ′ 6∈ S[N ′]]
≤ 2161(N ′−φ(N ′))

2160·φ(N) ≤ 2(p′+q′)
N−p−q ≤ 2(2dk/2e+2dk/2e)

2k−1−2dk/2e−2dk/2e ≤ 2
2k/2−3−1

.

Assuming ¬YBad occurs, we have by the random choice of b and symmetry,
that the probability of M outputting s is at least 1

2qhash
· Pr1[AskS]. Thus,

Advθ-pow-fnc
RSA,B (k) ≥ (1− Pr[YBad]) ·

(
Pr1[AskS]

2qhash

)
.



Substituting the bounds for the above probabilities and re-arranging the terms,
we get the claimed result.

Finally, we estimate the time complexity of M . It is the time complexity of A
plus the time for simulating the random oracles. In the random oracle simulation,
for each pair ((g, Gg), (h,Hh)), it is sufficient to compute yh,g,0 = ze0 mod N0

and yh,g,1 = ze1 mod N1. Therefore, the time complexity of M is that of A plus
qgen · qhash ·O(k3).
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