Identity-Based Hierarchical Strongly Key-Insulated Encryption and Its Application

Yumiko Hanaoka¹, Goichiro Hanaoka², Junji Shikata³, and Hideki Imai^{2,4}

NTT DoCoMo, Inc. yamamotoyumi@nttdocomo.co.jp
² Research Center for Information Security,
National Institute of Advanced Industrial Science and Technology hanaoka-goichiro@aist.go.jp
³ Graduate School of Environment and Information Sciences, Yokohama National University shikata@mlab.jks.ynu.ac.jp
⁴ Institute of Industrial Science, University of Tokyo imai@iis.u-tokyo.ac.jp

Abstract. In this paper, we discuss non-interactive updating of decryption keys in identity-based encryption (IBE). In practice, key revocation is a necessary and inevitable process and IBE is no exception when it comes to having to manage revocation of decryption keys without losing its merits in efficiency. Our main contribution of this paper is to propose novel constructions of IBE where a decryption key can be renewed without having to make changes to its public key, i.e. user's identity. We achieve this by extending the hierarchical IBE (HIBE). Regarding security, we address semantic security against adaptive chosen ciphertext attacks for a very strong attack environment that models all possible types of key exposures in the random oracle model. In addition to this, we show method of constructing a partially collusion resistant HIBE from arbitrary IBE in the random oracle model. By combining both results, we can construct an IBE with non-interactive key update from only an arbitrary IBE.

1 Introduction

Background. As to our best of knowledge, current public key infrastructures involve complex construction of certification authorities (CA), consequently requiring expensive communication and computation costs for certificate verification. In 1984, Shamir introduced an innovative concept called identity-based encryption (IBE) [25](later actualized in [7]) where any public key is determined as an arbitrary string, e.g. user's name, e-mail address, etc. which simplifies certificate management in public key infrastructures. In this paper, we address non-interactive updating of user's decryption key in IBE. Revocation and renewal of decryption key is a necessary process carried out in practice, and so, designing of IBE which allows renewal and updating of decryption keys without

losing its merits in efficiency will have considerable implications in the practical crypto-infrastructure. One application of IBE is of a mobile phone scenario, in which case, phone number represents the user identity. It will be both simple and convenient for the mobile phone users to be able to communicate and identify each other by their phone numbers only. The users will also want to keep their phone numbers as fixed identities, and therefore, it is necessary to be able to renew and update the decryption key in a way its corresponding public key will be unchanged. As you can see, in practical situations as seen in this scenario, such problem of IBE can be critical. Our main objective is to solve this problem.

Our Results. Our main contribution of this paper is to propose novel constructions of IBE where a decryption key can be renewed without having to make changes to its public key, i.e. user's identity. We start by discussing the impossibility of dealing with such a problem in the conventional IBE model, followed by introducing a new IBE model which makes this possible. Based on the new model, we construct a new IBE in which a decryption key can be updated "non-interactively", that is, allow user to renew and update his decryption key without any help from the central authority, and most importantly, without having to change his identity. In our scheme, similar to [13], we assume a private device (PD). PD is not connected to the network except at each fixed time period when the decryption key is updated. A helper key stored in the PD generates a key-update information which is used to update the decryption key. All secret operations are done by the user alone. Our scheme can be regarded as the first construction of an identity-based version of strongly secure key insulated encryption [13]. Here, we mean "strongly" by a system whose security is guaranteed even when its PD is physically compromised. Our scheme is different from [13] in a way that the PD is divided into multiple levels forming a hierarchical structure improving its security.

In brief, our proposed schemes are constructed by extending the hierarchical identity-based encryption schemes (HIBE) [24, 22]. Straightforward extension of HIBE, however, will be completely vulnerable for our attack model. Our major contribution of this paper is the proposal of two secure constructions of IBE that can renew and update the decryption key non-interactively: (1) a generic construction based on any HIBE, and (2) a specific construction based on Gentry-Silverberg HIBE [22]. In the generic construction, only an arbitrary (chosen plaintext secure) HIBE is used to build a chosen ciphertext secure IBE with non-interactive key update. The merit of such scheme is the flexibility it has in selecting the underlying assumption which can be determined depending on the requirement of the system. As a by-product, the same method used in the generic construction can also be used to build a (standard) strongly secure key-insulated encryption from an arbitrary (H)IBE and a standard public key encryption. On the other hand, the specific construction is constructed by directly extending the Gentry-Silverberg HIBE [22]. Although being more efficient than the generic scheme, the specific scheme is based on the bilinear Diffie-Hellman (BDH) assumption [7,8] and flexibility may become a concern when designing new constructions in terms of security. In addition to our main contribution, we

also show a construction of a partially collusion resistant HIBE built from only an arbitrary IBE. This can be applied to the above result (i.e. generic scheme) to give a construction of IBE with non-interactive key update built from only an arbitrary IBE. Note that we mean "partial collusion resistant" in a sense that we argue based on the security definition in [24] and not in [22]. Security of our schemes is proved in the random oracle model.

Applications: Mobile Phone Scenario. Now let's consider the suitability of introducing a private device (PD) in the mobile phone scenario (see also Background.). At first glance, it seems like a hassle to having to use the PD whenever you need to update your decryption key, although, it is not as you might think so. As a mobile phone user, it is your routine job to re-charge your battery every now and then. Now, assume a PD-BC (i.e. a private device that can function also as a battery charger). PD-BC can provide a convenient mean to update the decryption key since updating can be done at the same time you re-charge the battery (which you have to do it anyways). The security of the system is also guaranteed even if the PD-BC is compromised. Here, we introduced a mobile phone scenario, but this is just one of many attractive applications of IBE. Whoever is in high risk of losing the decryption key (e.g. laptop PC user) can benefit from this system. To further improve the security, PD can be stratified into multiple levels. Each level has its own device which updates the device of a level below, each level with varying updating periods. We let the lowest level PD be the least secure device (i.e. PD-BC) of which the keys are updated more frequently than the ones in the higher levels. Security of the devices in each level also increases as the level of the hierarchy goes higher. As an example, the least secure device, PD-BC, updates the decryption key everyday and the helper key stored in the PD-BC is updated (using the PD of a level higher) every 2-3 months. Since lower level PDs are used more frequently, they must be kept in places more handy (e.g. at home or work place) and higher level PDs which are used not as frequently be kept somewhere not as convenient but physically safer (e.g. safe). Our IBE system can guarantee the security even if any level PD is compromised even of the highest one.

Related Works. The problem of revocability of private keys in identity-based schemes was initially discussed by Shinozaki, Itoh, Fujioka and Tsujii [26]. Baek and Zheng [2] showed an application of threshold decryption method to IBE. It does decrease the possibility of getting the keys to be exposed in the first place, however, it does not deal with what it can do after key exposure has actually occured. In [16], Dodis and Yung proposed an interesting idea that refreshes the private keys in HIBE. Their scheme provides a solution to the problem of gradual key exposure in which the private key is assumed to slowly compromise over time. Boneh and Franklin in their paper ([7], Section 1.1.1) showed the first generalized method for key revocation in IBE schemes. In their scheme, a privileged Private Key Generator (PKG) generates each user's decryption key where its corresponding public key is set to be the concatenation of user identity and fixed length of time the key is available, e.g. "recipient@xxx.xxx || 2005.01.01-2005.12.31". In such a setting, the public key, despite of whether

it is revoked or not, is renewed regularly by the PKG, and also, the renewal interval must be set short (e.g. per day) to alleviate the damage caused by key exposures. Therefore, having to set the interval short and require frequent contacts with the PKG implies increase in the total communication and computation cost, consequently, losing one of primary advantages of IBE (i.e. low costs in communication and computation). Further, it needs to work out a way to establish a secure channel between the PKG and the user. For instance, it needs to compensate for additional transmission for key issuing and also has to deal with complicated transactions if the secret information used to setup the secure channel is exposed. Moreover, forward security must be considered. It is, hence, not desirable to have to require frequent communication via secure channel with the PKG in IBE as it implicates loss of primary advantages of IBE.

While, on the other hand, as a solution to key exposure and revocation problem in conventional public key systems, Dodis, Katz, Xu and Yung [13] proposed a scheme called key-insulated encryption. As said earlier, this scheme also assumes a PD in which it stores the helper key. The helper key assists the user to renew his decryption key by generating secrets necessary to update the key. Here, the public key is fixed. In [14, 15], Dodis, Franklin, Katz, Mivaji and Yung further improved [13] with an additional property, forward security. Notice that being able to renew the decryption key without having to make any changes to the corresponding public key as in the key-insulated encryption scheme, is the very technique, desired in IBE. Possible harmonization of the advantages of the two schemes; an identity-based version of a (strongly secure) key-insulated encryption scheme has never been constructed before. Also, there has never been a construction built of a hierarchical version of key-insulated encryption where the PD is organized in a hierarchical tree structure. Besides the related works shown so far, there are other interesting researches done on the topic of key exposure and revocation as well, for example, [21, 1], but both are looked from a non identity-based perspective.

We mentioned earlier that our IBE with non-interactive key update is constructed by extending the HIBE [24,22]. HIBE is a powerful cryptographic tool and also forms the basis of various cryptographic techniques, e.g. [11]. However, all methods known to construct HIBE [24,22,11,4,6] require specific assumptions in elliptic curve cryptography, e.g. the BDH problem [7,8] as the underlying assumption and therefore lacks flexibility in selecting the underlying assumption. (While for IBE, besides BDH, there is also a construction based on quadratic residuosity problem [10].) There is also an open problem for a generic construction of HIBE based on arbitrary IBE and is one of important research topics in this area.

2 Model and Definitions

Overview of the Model. Before we start discussing the details of the actual construction of our IBE scheme, recall earlier how we said it was impossible to construct an IBE that allows an essential property as key revocation if based on the model of conventional IBE. To be more specific, it is impossible, based

on the conventional IBE model, for the user to *immediately* revoke and renew his decryption key *only* at times he needs to renew the decryption key without losing the advantage of IBE in terms of communication cost, since in the conventional IBE, a public parameter distributed at system set up phase and the user's identity are the only parameters used to encrypt a message.

Recall that we said earlier, [7] showed the first generalized method for key revocation based on the conventional IBE model. Their scheme, however, required to establish a secure channel between a user and a PKG which also needed to be available at all times. Moreover, the burden on the PKG was heavy which required the PKG to periodically renew the users' decryption keys at fixed and frequent time intervals. Their model is simple and generally does not have any problem using it and may be practical for some applications. However, there are other situations where their assumption is neither preferred nor available.

We introduce a new model of IBE that can renew and update the decryption keys non-interactively (i.e without any loss in communication cost). We introduce a private device (PD) which stores the helper key used to renew the decryption key at regular time intervals without requiring interactions with other entities. We further improve the security by giving hierarchical construction in the PD, letting the keys of each level be renewed using the devices of a level higher (See **Applications: Mobile Phone Scenario** in Sec. 1.). Our model can be regarded as both hierarchical and identity-based extension of key-insulated encryption [13]. Similar to [13], we address random-access key-update, namely, allowing one-step renewal of current decryption key to any of the decryption keys of any time period (even the past keys). Random-access key-update lets any ciphertext of any time period to be decrypted at any time.

Model. In our model, private devices are structured hierarchically into ℓ -levels, and for $i=1,\cdots,\ell,$ i-th level helper key is stored in the i-th level device. Decryption key is stored in the 0-level PD (i.e. mobile phone). Key-update information is generated using the i-th level helper key which is used to renew the (i-1)-th level helper key for $i=2,\cdots,\ell$. Decryption key is renewed using the helper key of the 1st-level PD (i.e. PD-BC). To make things simple, we consider $\ell=2$: 1st-and 2nd-level PD corresponds to PD-BC and PD that updates PD-BC helper key, respectively. (Note that this can be generalized for arbitrary $\ell \geq 1$.)

Now, let $T_0(\cdot)$ and $T_1(\cdot)$ map time to corresponding time periods for decryption key and 1st-level helper key, respectively. For example, assuming that decryption key and 1st-level helper key is updated every day and every 2-3 months, respectively, we have $T_0(2005/\text{Aug./26th/17}:00) = 2005/\text{Aug./26th}$ and $T_1(2005/\text{Aug./26th/17}:00) = 2005/\text{Jul.-Sep.}$. In addition, we let $T_2(\cdot)$ be a function such that for all time, $T_2(\text{time}) = 0$. At time, time, user updates his decryption key if 1st-level helper key is valid for the time period $T_1(\text{time})$, and a 1st-level helper key can be updated at any time. Def. 1 formally addresses this.

Definition 1 (IKE) A 2-level identity-based key-insulated encryption scheme (IKE) IKE consists of 8 algorithms: IKE = (PGen_{IKE}, Gen_{IKE}, Δ -Genⁱ_{IKE}, Updⁱ_{IKE} (i = 1, 2), Enc_{IKE}, Dec_{IKE}) and each are described as follows.

PGen_{IKE}. The public-parameter generation algorithm PGen_{IKE} (1^k) where k is the

security parameter and outputs a master key s and a public parameter p. Note that $\mathsf{PGen}_{\mathsf{IKE}}$ and $\mathsf{Gen}_{\mathsf{IKE}}$ are used by the PKG only.

<u>Gen_{IKE}</u>. The user-secret generation algorithm Gen_{IKE} takes s, p and user's identity \overline{U} as inputs, and outputs U's initial private keys (d_0^0, d_0^1, d_0^2) where d_0^0 is the U's initial decryption key, and d_0^i (i = 1, 2) are stored in U's i-th level PD as initial i-th helper key.

 Δ -Gen $_{\mathsf{IKE}}^i$. A helper key stored in the 1st-level PD and Δ -Gen $_{\mathsf{IKE}}^1$ are used to generate the key-update information required to renew the decryption key. Similarly, a helper key stored in the 2nd-level PD and Δ -Gen $_{\mathsf{IKE}}^2$ are used to generate the key-update information required to renew the 1st-level helper key. More specifically, for i=1,2, the key-update information generation algorithm Δ -Gen $_{\mathsf{IKE}}^i$ takes d_t^i , p, U and time as inputs, and outputs key-update information $\delta_{T_{i-1}(\mathsf{time})}^{i-1}$ only if $t=T_i(\mathsf{time})$.

 $\begin{array}{l} \underline{\mathsf{Upd}}^i_{\mathsf{IKE}}.\ U\text{'s decryption key, key-update information }\delta^0_{T_0(\mathsf{time})}\ \mathrm{and}\ \mathsf{Upd}^1_{\mathsf{IKE}}\ \mathrm{are}\ \mathrm{used}\\ \mathrm{to}\ \mathrm{generate}\ U\text{'s decryption key for time. Similarlly, }U\text{'s 1st-level helper key, key-update information }\delta^1_{T_1(\mathsf{time})}\ \mathrm{and}\ \mathsf{Upd}^2_{\mathsf{IKE}}\ \mathrm{are}\ \mathrm{used}\ \mathrm{to}\ \mathrm{generate}\ U\text{'s 1st-level helper key for time. More specifically, for }i=1,2,\ \mathrm{the}\ key-update\ information\ generation\ algorithm\ \mathsf{Upd}^i_{\mathsf{IKE}}\ \mathrm{takes}\ d^{i-1}_t,\ p\ \mathrm{and}\ \delta^{i-1}_{T_{i-1}(\mathsf{time})}\ \mathrm{as\ inputs\ for\ any}\ t,\ \mathrm{and}\ \mathrm{outputs}\ \mathrm{a}\ \mathrm{new\ key}\ d^{i-1}_{T_{i-1}(\mathsf{time})}\ \mathrm{for\ time\ period}\ T_{i-1}(\mathsf{time}). \end{array}$

Enc_{IKE}. The encryption algorithm Enc_{IKE} inputs m, U, p and time where m is a plaintext, U is the user identity and time indicates the time at which m is encrypted, and outputs ciphertext $\langle c, \text{time} \rangle$.

<u>Dec_{IKE}</u>. The decryption algorithm Dec_{IKE} inputs $\langle c, \mathtt{time} \rangle$, d_t^0 and p, and outputs m or \bot where \bot indicates failure. Dec_{IKE} correctly recovers the plaintext only if $t = T_0(\mathtt{time})$.

Security Definition. Security of IKE is based on the assumption that adversary does not (illegally) obtain all of the target user's keys all at once. Recall that helper keys of different levels in the hierarchy are managed differently (most likely stored at different places). It is unlikely for such an event to occur, i.e. an adversary to obtain all of the keys of all levels all at once, considering that PDs are disconnected from the network most of the time. We also like to remind that it gets much harder to steal the keys as the levels in the hierarchy increase this is because PDs in the higher levels are connected to the network less frequently and also managed in places physically much safer.

We consider an attack model based on the standard IND-ID-CCA setting in [7,8] plus the next case: when an adversary is allowed access to any of target user's keys and also the helper keys but excluding the combinations of keys that can trivially lead to the target key from the definition of IKE. Next, we give some examples of key exposures for our security definition.

EXAMPLES OF KEY EXPOSURES. We consider a 2-level IKE: decryption key is renewed every day, 1st-level helper key is renewed every three months and 2nd-level helper key is never updated. Then, any ciphertext for 2005/Dec./31st should not be decrypted by dishonest means even for the following cases:

- 1. Exposures of the victim's 1st-level helper keys for 2005/Jan.-Mar., ..., 2005/Jul.-Sep. and decryption keys for 2005/Jan./1st, ..., 2005/Dec./30th
- 2. Exposures of the victim's 2nd-level helper key and decryption keys for 2005/ Jan./1st, \cdots , 2005/Dec./30th
- 3. Exposures of the victim's 2nd-level helper key and 1st-level helper keys for $2005/Jan.-Mar., \cdots, 2005/Oct.-Dec.$

Again, we exclude the combinations of keys that can trivially determine the target key, for example, exposures of both the victim's 1st-level helper key for 2005/Oct.-Dec. and decryption key for 2005/Dec./30th. It is obvious that a decryption key for 2005/Dec./31st is easily computable from the definition of IKE. We do not consider these cases.

Next, we formally address the security definition. In our attack model, adversary is allowed access to the following four types of oracles: (1) key generation oracle $KG(\cdot, s, p)$, which on input U, returns U's initial decryption keys (d_0^0, d_0^1, d_0^2) and (2) left-or-right encryption oracle LR $(\cdot, \cdot, \cdot, \cdot, p, b)$ [3], which for given U, time and equal length messages m_0, m_1 , returns challenge ciphertext $c := \mathsf{Enc}_{\mathsf{IKE}}(m_b, U, p, \mathsf{time})$ where $b \in_R \{0, 1\}$, and models encryption requests of an adversary of a user identity and a message pair of his choice. The third is a (3) decryption oracle $D(\cdot, \cdot, s, p)$ which on input U and $\langle c, \text{time} \rangle$, returns decryption result of c with the corresponding decryption key d_t^0 where $t = T_0(\text{time})$. This models chosen ciphertext attack. With these three oracles, KG, LR and D, the standard IND-ID-CCA setting can be modeled. In addition to the above, we introduce a (4) key issue oracle $KI(\cdot,\cdot,\cdot,s,p)$ which on input i, U and time, returns d_t^i where $t = T_i(time)$. This models partial exposure of honest user's keys including the victim's keys. The adversary may query the four oracles adaptively in any order he wants subject to the restriction that he makes only one query to LR. Let U^* be the user's identifier of this query, and let $\langle c^*, \mathsf{time}^* \rangle$ denote the challenge ciphertext returned by LR in response to this query. Also, the adversary is not allowed to ask KG and KI for queries which can trivially determine U^* 's decryption key for time from the definition of IKE. The adversary succeeds the attack by guessing the value b, and the scheme is considered to be secure if any probabilistic polynomial time adversary has success probability negligibly close to 1/2.

Definition 2 (KE-CCA security) Let IKE be a 2-level identity-based key-insulated encryption scheme. Define adversary A's succeeding probability as:

$$\begin{split} \mathsf{Succ}_{A,\mathsf{IKE}} := & \Pr[(s,p) \leftarrow \mathsf{PGen}_{\mathsf{IKE}}(1^k); b \in_R \{0,1\}; \\ & b' \leftarrow A^{\mathsf{KG}(\cdot,s,p),\mathsf{LR}(\cdot,\cdot,\cdot,p,b),\mathsf{D}(\cdot,\cdot,s,p),\mathsf{KI}(\cdot,\cdot,\cdot,s,p)} : b' = b] \end{split}$$

where U^* is never asked to $\mathsf{KG}(\cdot,s,p)$ and $(U^*,\langle c^*,\mathsf{time}\rangle)$ is never asked to $\mathsf{D}(\cdot,\cdot,s,p)$ such that $T_0(\mathsf{time}) = T_0(\mathsf{time}^*)$. A can ask KI for any keys of any users if there exists a "special level" $j \in \{0,1,2\}$ such that

- $KI(j, U^*, time, s, p)$ is never asked for any time, and

- $KI(i, U^*, time, s, p)$ is never asked for any (i, time) such that i < j and $T_i(time) = T_i(time^*)$.

Then, IKE is KE-CCA secure (KE-CCA stands for key exposure & chosen ciphertext attack) if, for any probabilistic polynomial time adversary A, $|Succs_{A,|KE} - 1/2|$ is negligible. (Note that a "special level" is a level in which the PD of U^* is not compromised. Also, recall 0-level PD is the user's terminal, i.e. the mobile phone.)

Exposure of Key-Update Information. If we look closer into the security of IKE, it can be realized that exposure of key-update information should also be considered in addition to the above discussion. Although, we can also see that it is obvious that if $\delta^i_{T_i(\texttt{time})}$ can be computed from $d^i_{T_i(\texttt{time})}$ and d^i_t for any time and t, then, exposure of key-update information can be simulated by using Kl. Hence, if this property holds, then the security definition so far discussed will be sufficient (by itself) even when exposure of the key-update information is considered. As a matter of fact all of our constructions satisfy this property.

3 Straightforward IKE from HIBE is Insecure

Although HIBE and IKE are alike in some sense, it is not as simple as bringing HIBE as building blocks to construct KE-CCA secure IKE. We give further discussion on this later, but first, we clarify the relation between HIBE and IKE.

Brief Review of HIBE. HIBE distributes the workload of the PKG in IBE by organizing the PKGs in a hierarchical tree structure. Security definition of an HIBE follows. This definition runs parallel with [22] which is the hierarchical extension of Boneh and Franklin's IBE [7,8]. Note that 1-level HIBE refers to a standard IBE. A user in an HIBE hierarchy is defined as a tuple of identities: $(D^{t-1}.D^{t-2}.....D^0)$ where t denotes depth of the hierarchy. The user's ancestors in the hierarchy tree include the root-PKG and users/sub-PKGs whose identities are $\{(D^{t-1}.D^{t-2}.....D^i: 0 \le i \le t-1)\}$.

Definition 3 (HIBE) A t-level hierarchical identity-based encryption (HIBE) HIBE consists of 3+t algorithms: HIBE = (PGen_{HIBE}, Genⁱ_{HIBE} ($1 \le i \le t$), Enc_{HIBE}, Dec_{HIBE}) and are defined as follows:

<u>PGen_{HIBE}</u>. The *public-parameter generation algorithm* PGen_{HIBE} (1^k) where k is the security parameter, outputs root-master key s and public parameter p. PGen_{HIBE} is used only by the root-PKG.

Genⁱ_{HIBE}. The user-secret generation algorithm Gen^t_{HIBE} inputs D^{t-1} , s and p, and outputs D^{t-1} 's key $s_{D^{t-1}}$. Similarly, Gen^{t-i+1}_{HIBE} takes $D^{t-1}.D^{t-2}....D^{t-i}$, $s_{D^{t-1}.D^{t-2}....D^{t-i+1}}$ and p as inputs, and outputs $D^{t-1}.D^{t-2}....D^{t-i}$'s key $s_{D^{t-1}.D^{t-2}....D^{t-i}}$ for $2 \le i \le t$. Here, for $1 \le i \le t-1$, $s_{D^{t-1}.D^{t-2}....D^{t-i}}$ is the sub-master key which enables $D^{t-1}.D^{t-2}....D^{t-i}$ to generate his descendant's keys, and $s_{D^{t-1}.D^{t-2}....D^0}$ is the decryption key of $D^{t-1}.D^{t-2}....D^0$. Enchibe. The encryption algorithm Enchibe takes m, $D^{t-1}.D^{t-2}....D^0$ and p as inputs where m is a plaintext and $D^{t-1}.D^{t-2}....D^0$ is the receiver's identity,

and outputs a ciphertext c.

<u>Dec_{HIBE}</u>. The decryption algorithm Dec_{HIBE} takes c, $s_{D^{t-1}.D^{t-2}....D^0}$ and p as inputs, and outputs m or \bot which means failure. Dec_{HIBE} recovers the plaintext only if c is encrypted correctly using $D^{t-1}.D^{t-2}....D^0$ as an encryption key.

Security of an HIBE is defined as follows. An adversary adaptively selects a target user's identity and equal length messages m_0, m_1 and submits to a left-or-right encryption oracle LR which returns ciphertext of m_b such that $b \in_R \{0,1\}$ for a target user. The adversary also have access to a decryption oracle D which gives decryption results of any ciphertext except for the challenge ciphertext from LR. There is also a key generation oracle KG which exposes any user key except for the target's and its ancestors'. HIBE is secure if an adversary correctly determines b with probability at most 1/2 + neg where neg is negligible. HIBE is IND-HID-CCA (resp. IND-HID-CPA) if unlimited access to D and KG (resp. only KG) is allowed [22]. HIBE is IND-wHID-CCA (resp. IND-wHID-CPA) if unlimited access (resp. no access) to D is allowed while the number of queries to KG is bounded as follows [24]: unlimited access is allowed for at least one level in the hierarchy, but for the rest of the levels, the number of queries do not exceed the threshold value w such that $w = O(\operatorname{poly}(k))$. See Appendix A for more details.

An Insecure IKE from HIBE. Consider the following (insecure) construction of a 2-level IKE based on a 3-level HIBE: In the initial phase, PKG generates $(s,p) := \mathsf{PGen}_{\mathsf{HIBE}}(1^k)$ and user U's 2nd-level helper key $d_0^2 := \mathsf{Gen}_{\mathsf{HIBE}}^3(U,s,p)$. At time, U generates his 1st-level helper key $d_{T_1(\mathsf{time})}^1 := \mathsf{Gen}_{\mathsf{HIBE}}^2(T_1(\mathsf{time}), d_0^2, p)$ and decryption key $d_{T_0(\mathsf{time})}^0 := \mathsf{Gen}_{\mathsf{HIBE}}^1(T_0(\mathsf{time}), d_{T_1(\mathsf{time})}^1, p)$. For a message m for U at time, a ciphertext c is generated as $c = \mathsf{Enc}_{\mathsf{HIBE}}(m, U.T_1(\mathsf{time}).T_0(\mathsf{time}), p)$. Renewal of decryption keys in IBE from HIBE is described in [24] as well.

We show a straightforward construction of an IKE from HIBE which is insecure (i.e. not KE-CCA secure). The above (insecure) construction does not satisfy the security of 2. and 3. of the <u>EXAMPLES OF KEY EXPOSURES</u>. from the previous section. Namely, if the 1st-level PD (or the PD-BC) is stolen at 2005/0ct./1st/0:00, then confidentiality of the ciphertexts generated during period 2005/0ct.-Dec. is lost. Morover, exposure of the 2nd-level helper key can alone compromise the security for any time period. Therefore, a straightforward construction of IKE from HIBE is not KE-CCA secure.

4 Generic Construction

Basic Idea. As shown in the previous section, straightforward construction of an IKE from HIBE is vulnerable, and for such a system, loss of only one of users' PDs implies compromisation of the entire system. In this section, we show a generic construction of a secure IKE built from three distinct HIBEs. Here's the general idea: each of three HIBEs each plays a part to mutually secure the different types of key exposures, consequently, protecting the system totally, guaranteeing its security even if a PD is compromised. We extend a technique called multiple encryption proposed in [28] to construct a KE-CCA secure IKE from HIBE. It is important to note that the original [28] scheme is applied only

```
\mathsf{PGen}_{\mathsf{IKE}}(1^k):
                                                                                   \mathsf{Gen}_{\mathsf{IKE}}(s, p, U):
      (s_h, p_h) \leftarrow \mathsf{PGen}_{\mathsf{HIBE}_h}(1^k), \ 1 \le h \le 3
                                                                                        parse s = (s_1, s_2, s_3)
     choose H_h, 1 \le h \le 3
                                                                                        s_{h,U} \leftarrow \mathsf{Gen}_{\mathsf{HIBE}_h}^h(U, s_h, p_h), \ 1 \le h \le 3
return s := (s_1, s_2, s_3)
                                                                                        d_0^0 := (s_{1,U}, \cdot, \cdot), d_0^1 := (s_{2,U}, \cdot), d_0^2 := s_{3,U}
                                                                                   return (d_0^0, d_0^1, d_0^2)
             p := (p_1, p_2, p_3, H_1, H_2, H_3)
    \Delta-Gen<sub>IKE</sub>(d_t^1, p, U, \text{time}):
                                                                                                  \Delta-Gen<sub>IKE</sub>(d_0^2, p, U, \text{time}):
          parse d_t^1 = (\sigma_2, \sigma_3)
                                                                                                       parse d_0^2 = \sigma_3 (= s_{3,U})
          \sigma_h' \leftarrow \mathsf{Gen}^1_{\mathsf{HIBE}_h}(T_0(\mathsf{time}), \sigma_h, p_h), \ h = 2, 3
                                                                                                       \sigma_3' \leftarrow \mathsf{Gen}^2_{\mathsf{HIBE}_3}(T_1(\mathsf{time}), \sigma_3, p_3)
     return \delta^0_{T_0(\texttt{time})} := (\sigma'_2, \sigma'_3)
                                                                                                  return \delta^1_{T_1(\texttt{time})} := \sigma'_3
    \overline{\mathsf{Upd}^1_{\mathsf{IKE}}(d^0_t, p, \delta^0_{T_0(\mathsf{time})})}:
                                                                                                  \overline{\mathsf{Upd}^2_{\mathsf{IKE}}(d^1_t, p, \delta^1_{T_1(\mathsf{time})})}:
          parse d_t^0 = (\sigma_1, \sigma_2, \sigma_3)
                                                                                                       parse d_t^1 = (\sigma_2, \sigma_3)
          parse \delta_{T_0(\text{time})}^0 = (\sigma_2', \sigma_3')
                                                                                                       parse \delta_{T_1(\text{time})}^1 = \sigma_3'
                                                                                                  return d_{T_1(\text{time})}^1 := (\sigma_2, \sigma_3')
     return d_{T_0(\text{time})}^0 := (\sigma_1, \sigma_2', \sigma_3')
                           \mathsf{Enc}_{\mathsf{IKE}}(m, U, p, \mathsf{time}):
                                \overline{m}_1, \overline{m}_2 \in_R \{0,1\}^n, \overline{m}_3 := m \oplus \overline{m}_1 \oplus \overline{m}_2
                                r_1, r_2, r_3 \in_R \{0, 1\}^{k_1}
                                 R_h := H_h(m, \overline{m}_h, r_1, r_2, r_3), \ 1 \le h \le 3
                                U_1 := U, U_2 := U.T_0(\texttt{time}), U_3 := U.T_1(\texttt{time}).T_0(\texttt{time})
                                 c_h := \mathsf{Enc}_{\mathsf{HIBE}_h}(\overline{m}_h || r_h, U_h, p_h; R_h), \ 1 \le h \le 3
                          return \langle c, \text{time} \rangle := \langle (c_1, c_2, c_3), \text{time} \rangle
                                       \mathsf{Dec}_{\mathsf{IKE}}(\langle c', \mathsf{time} \rangle, d_t^0, p):
                                             output \perp and halt if t \neq T_0(\texttt{time})
                                             parse c' = (c'_1, c'_2, c'_3)
                                             parse d_t^0 = (\sigma_1, \sigma_2, \sigma_3)
                                             (\overline{m}'_h||r'_h) \leftarrow \mathsf{Dec}_{\mathsf{HIBE}_h}(c'_h, \sigma_h, p_h), \ 1 \leq h \leq 3
                                             m' := \bigoplus_{1 \le h \le 3} \overline{m}'_h
                                             validity check by re-encryption
                                      return m'
```

Fig. 1. Generic Construction of KE-CCA Secure IKE from IND-HID-CPA HIBE.

to standard public key encryption, so, straightforward adoption of this scheme, again, does not immediately imply a secure IKE.

Construction. Fig. 1 shows a generic construction of KE-CCA secure IKE from any HIBE where each of HIBEs has only *chosen plaintext security*, i.e. IND-HID-CPA (See Appendix A). Here, we give supplementary explanation of the Fig. 1 and give discussion on our generic construction in more details.

Let $\mathsf{HIBE}_h = (\mathsf{PGen}_{\mathsf{HIBE}_h}, \mathsf{Gen}^i_{\mathsf{HIBE}_h} \ (1 \leq i \leq h), \mathsf{Enc}_{\mathsf{HIBE}_h}, \mathsf{Dec}_{\mathsf{HIBE}_h})$ be h-level HIBE for $1 \leq h \leq 3$ and construct a 2-level IKE IKE = $(\mathsf{PGen}_{\mathsf{IKE}}, \mathsf{Gen}_{\mathsf{IKE}}, \Delta\text{-}\mathsf{Gen}^i_{\mathsf{IKE}}, \mathsf{Upd}^i_{\mathsf{IKE}} \ (i = 1, 2), \mathsf{Enc}_{\mathsf{IKE}}, \mathsf{Dec}_{\mathsf{IKE}})$ as follows.

 $\mathsf{PGen}_{\mathsf{IKE}}$ sets up the master keys and public parameters of HIBE_h and cryptographic hash functions $H_h: \{0,1\}^{2n+3k_1} \to \mathcal{COIN}$ for $1 \leq h \leq 3$ where n denotes the size of a message of IKE . \mathcal{COIN} is the internal coin-flipping space of

 $\mathsf{Enc}_{\mathsf{HIBE}_h}$ assuming that $n+k_1$ is the size of a message in HIBE_h . The security analysis will view H_h as random oracles. Gen_{IKE} generates U's secrets of HIBE_h for $1 \leq h \leq 3$ as U's initial key for IKE. Δ -Gen_{IKE} generates decryption keys of HIBE₂ and HIBE₃ for identities $U.T_0(time)$ and $U.T_1(time).T_0(time)$, respectively, as the "differential" of the U's previous key and of the next renewed key at time. Then, Upd^1_{IKE} generates U's decryption key of IKE for time by combining the differential with the U's previous key. Similarly, Δ -Gen_{IKE} generates a sub-master key of HIBE₃ for $U.T_1(time)$, and Upd^2_{IKE} generates U's 1st-level helper key of IKE for time by combining U's previous key and Δ -Gen²_{IKE}'s output. Enc_{IKE} securely integrates the three encryption algorithms of h-level HIBE for $1 \leq h \leq 3$. First, a plaintext m is divided into three shares $\overline{m}_1, \overline{m}_2, \overline{m}_3$, and each \overline{m}_h (1 $\leq h \leq 3$) is encrypted by h-level HIBE HIBE_h for identity U_h where $U_1 := U$, $U_2 := U.T_0(\texttt{time})$ and $U_3 := U.T_1(\texttt{time}).T_0(\texttt{time})$. Here, the technique in [28] is applied (but not straightforwardly, as mentioned earlier) to securely integrating the three underlying HIBEs. Dec_{IKE} recovers each of the three shares and composes them to recover the plaintext. It also checks the validity of the ciphertext by re-encryption. Namely, $R'_h := H_h(m', \overline{m}'_h, r'_1, r'_2, r'_3)$ and $\nu_h \leftarrow \mathsf{Enc}_{\mathsf{HIBE}_h}(\overline{m}_h'||r_h', U_h, p_h; R_h')$ are computed for $1 \leq h \leq 3$, unless $\nu_h = c_h'$, for all h, output \perp , otherwise output m'. This scheme can easily be generalized to an ℓ -level IKE for arbitrary $\ell \geq 1$.

Definition 4 (γ -uniformity [20]) Let HIBE = (PGen_{HIBE}, Genⁱ_{HIBE} ($1 \le i \le t$), Enc_{HIBE}, Dec_{HIBE}) be t-level HIBE. For given $D^{t-1}.D^{t-2}.....D^0$, x, y and z, define

$$\begin{split} \gamma(D^{t-1}.D^{t-2}.\cdots.D^0,x,y,z) \\ &:= \Pr[r \leftarrow_{R} \mathcal{COIN}: z = \mathsf{Enc}_{\mathsf{HIBE}}(x,D^{t-1}.D^{t-2}.\cdots.D^0,y;r)], \end{split}$$

where \mathcal{COIN} is the internal coin-flipping space for Enchibe. We say that HIBE is γ -uniform if $\gamma(D^{t-1}.D^{t-2}.....D^0, x, y, z) \leq \gamma$ for any $D^{t-1}.D^{t-2}.....D^0, x, y$ and z.

Theorem 1 The above scheme is a KE-CCA secure 2-level IKE in the random oracle model, assuming that HIBE_h $(1 \le h \le 3)$ are IND-HID-CPA HIBEs. More precisely, suppose there is an adversary A who can break the above scheme with probability $1/2 + \epsilon_A$ with run time at most t_A . Suppose A makes at most q_{KG} , q_{KI} , q_{D} , q_{H_1} , q_{H_2} , q_{H_3} queries to KG, KI, D, H_1 , H_2 , H_3 , respectively. Then, there is another adversary B who can break at least one of HIBE_h $(1 \le h \le 3)$ in the sense of IND-HID-CPA with probability $1/2 + \epsilon_B$, and running time t_B is:

$$\begin{split} \epsilon_B &\geq \frac{1}{3} \epsilon_A - \frac{1}{3} \frac{q_{H_1} + q_{H_2} + q_{H_3}}{2^{k_1}} - \frac{1}{6} q_{\rm D} \gamma_{max}, \\ t_B &\leq t_A + 2 \tau_{ENC} + (2q_{\rm KG} + 5q_{\rm KI}) \tau_{GEN} \\ &+ q_{\rm D} ((q_{H_1} + q_{H_2} + q_{H_3}) \tau_{ENC} + q_{H_1} q_{H_2} q_{H_3} \cdot O(k)), \end{split}$$

¹ For simplicity, we assume for all HIBE_h , spaces of coin-flipping and messages to be \mathcal{COIN} and $\{0,1\}^{n+k_1}$, respectively.

assuming that $\gamma_{max} = \max(\gamma_1, \gamma_2, \gamma_3)$, HIBE_i is γ_i -uniform, and running time of $\mathsf{Gen}^i_{\mathsf{HIBE}_h}$ and $\mathsf{Enc}_{\mathsf{HIBE}_h}$ are at most τ_{GEN} and τ_{ENC} , respectively, for any h and i.

Proof. See Appendix B.

Random Oracle. If we want to eliminate random oracle, multiple encryption technique in [12] can be extended instead of the one we used of [28] to construct a KE-CCA secure IKE, assuming that underlying HIBEs are all IND-HID-CCA in the standard model, e.g. [11, 4–6, 27], while the above construction using [28] requires only IND-HID-CPA HIBEs. Furthermore, by applying a similar method to our proposed scheme, we can construct another KE-CCA secure IKE from HIBE with only one-wayness under chosen plaintext attacks.

"Standard" Strongly Key-Insulated Encryption. By extending the multiple encryption technique mentioned in the above, we can construct a generic construction of a strongly secure key-insulated encryption [13] from a chosen plaintext secure IBE and a chosen plaintext secure standard public key encryption. This method can also be applied to the Cocks IBE [10] to construct a strongly secure key-insulated encryption. (The Boneh-Franklin IBE based scheme was proposed earlier in [9]).

5 Efficient Construction from Bilinear Mapping

Basic Idea. In the previous section, we showed a construction of KE-CCA secure IKE using HIBE as a black-box. Here, we propose a construction of KE-CCA secure IKE by directly extending Gentry-Silverberg HIBE (GS-HIBE) [22] and Fujisaki-Okamoto conversion [19, 20]. The major difference between our two construction is as follows: in our specific construction, h-level HIBEs for $1 \le h \le 3$ are being integrated using a homomorphic property of pairing, while our generic construction is based on multiple encryption [28]. Our specific construction is more efficient than the generic construction. Note that since our specific construction is based on a specific assumption, i.e. BDH assumption, it may lack flexibility in designing new construction in terms of security.

Construction. As shown in Fig. 2, a 2-level IKE IKE = (PGen_{IKE}, Gen_{IKE}, Δ -Genⁱ_{IKE}, Updⁱ_{IKE} (i=1,2), Enc_{IKE}, Dec_{IKE}) can be constructed using bilinear mapping. Here, we give supplementary explanation of the Fig. 2 and give discussion on our specific construction in more details.

PGen_{IKE} generates two cyclic groups G_1 and G_2 of prime order q and an efficiently computable mapping $\hat{e}:G_1\times G_1\to G_2$ such that $\hat{e}(aP,bQ)=\hat{e}(P,Q)^{ab}$ for all $P,Q\in G_1$ and any positive integers a,b. This does not send all pairs in $G_1\times G_1$ to the identity in G_2 . Also, PGen_{IKE} chooses cryptographic hash functions $H_1:\{0,1\}^*\to G_1,\,H_2:G_2\to\{0,1\}^{n+k_1}$ and $H_3:\{0,1\}^n\times\{0,1\}^{k_1}\to Z_q$, where n denotes the size of the message space. The security analysis will view H_1,H_2,H_3 as random oracles. It further generates master key s and its corresponding public paramter s. Gen_{IKE}, s-Gen^s_{IKE} and Upds-IKE s-Gen s

```
\mathsf{PGen}_{\mathsf{IKE}}(1^k):
                                                                                       \mathsf{Gen}_{\mathsf{IKE}}(s, p, U):
     set up G_1, G_2, \hat{e}, P \in G_1
                                                                                            P_U := H_1(U) \in G_1
                                                                                            S_1^0 := s_1^0 P_U, S_2^1 := s_2^1 P_U, S_3^2 := s_3^2 P_U
     s_1^0, s_2^1, s_3^2 \in_R Z_q
     Q := (s_1^0 + s_2^1 + s_3^2)P
                                                                                            d_0^0 := (S_1^0, (\cdot, \cdot), (\cdot, \cdot, \cdot))
     choose H_1, H_2, H_3
                                                                                            d_0^1 := (S_2^1, (\cdot, \cdot))
return s := (s_1^0, s_2^1, s_3^2)
                                                                                            d_0^2 := S_3^2
                                                                                        return (d_0^0, d_0^1, d_0^2)
            p := (G_1, G_2, \hat{e}, P, Q, H_1, H_2, H_3)
\Delta-Gen<sup>1</sup><sub>IKF</sub>(d_t^1, p, U, \text{time}):
                                                                                       \Delta-Gen_{\mathsf{IKF}}^2(d_0^2, p, U, \mathsf{time}):
     parse d_t^1 = (S_2^1, (S_3^1, Q_3^1))
                                                                                            parse d_0^2 = S_3^2
     s_2^0, s_3^0 \in_R Z_q
                                                                                            s_3^1 \in_R Z_q
     P_{t_0} := H_1(U.T_1(\texttt{time}).T_0(\texttt{time}))
                                                                                            P_{t_1} := H_1(U.T_1(\texttt{time}))
                                                                                            \hat{S}_3^1 := S_3^2 + s_3^1 P_{t_1}, \ \hat{Q}_3^1 := s_3^1 P
     \hat{S}_h^0 := S_h^1 + s_h^0 P_{t_0}, \ \hat{Q}_h^0 := s_h^0 P, \ h = 2, 3
                                                                                       return \delta^1_{T_1(\text{time})} := (\hat{S}^1_3, \hat{Q}^1_3)
return \delta^0_{T_0(\text{time})} := ((\hat{S}^0_2, \hat{Q}^0_2), (\hat{S}^0_3, \hat{Q}^0_3, Q^1_3))
\mathsf{Upd}^1_{\mathsf{IKE}}(d^0_t, p, \delta^0_{T_0(\mathtt{time})}):
                                                                                       \mathsf{Upd}^2_{\mathsf{IKE}}(d^1_t, p, \delta^1_{T_1(\mathsf{time})}):
     parse d_t^0 = (S_1^0, (S_2^0, Q_2^0), (S_3^0, Q_3^0, Q_3^1))
                                                                                            parse d_t^1 = (S_2^1, (S_3^1, Q_3^1))
     parse \delta_{T_0(\text{time})}^0 = ((\hat{S}_2^0, \hat{Q}_2^0), (\hat{S}_3^0, \hat{Q}_3^0, \hat{Q}_3^1))
                                                                                            parse \delta_{T_1(\text{time})}^1 = (\hat{S}_3^1, \hat{Q}_3^1)
return d_t^0 := (S_1^0, (\hat{S}_2^0, \hat{Q}_2^0), (\hat{S}_3^0, \hat{Q}_3^0, \hat{Q}_3^1))
                                                                                      return d^1_{T_1(\text{time})} := (S^1_2, (\hat{S}^1_3, \hat{Q}^1_3))
         \mathsf{Enc}_{\mathsf{IKE}}(m, U, p, \mathsf{time}):
               P_U := H_1(U), P_{t_1} := H_1(U.T_1(\mathtt{time})), P_{t_0} := H_1(U.T_1(\mathtt{time}).T_0(\mathtt{time}))
              \mu \in_R \{0,1\}^n, r := H_3(\mu,m), g := \hat{e}(Q, P_U)
               c := \langle rP, rP_{t_1}, rP_{t_0}, (m||\mu) \oplus H_2(g^r) \rangle
         return \langle c, \text{time} \rangle
                                     \mathsf{Dec}_{\mathsf{IKE}}(\langle c', \mathsf{time} \rangle, d_t^0, p):
                                           parse c' = \langle V, V_{t_1}, V_{t_0}, W \rangle
                                           parse d_t^0 = (S_1^0, (S_2^0, Q_2^0), (S_3^0, Q_3^0, Q_3^1))
                                                                                         \hat{e}(S_1^0 + S_2^0 + S_3^0, V)
                                          (m'||\mu') := W \oplus H_2(\frac{\hat{e}(S_1^{\check{}} + S_2^{\check{}} + S_3, v)}{\hat{e}(Q_2^0 + Q_3^0, V_{t_0})\hat{e}(Q_3^1, V_{t_1})})
                                           validity check by re-encryption
                                     return m'
```

Fig. 2. KE-CCA Secure IKE from Bilinear Mapping.

property of pairing, $\mathsf{Enc}_{\mathsf{IKE}}$ and $\mathsf{Dec}_{\mathsf{IKE}}$ integrates three HIBE encryptions into one. Although, not mentioned in Fig. 2, to protect from active attacks, $\mathsf{Dec}_{\mathsf{IKE}}$ outputs \bot and halts if (i) $t \neq T_0(\mathsf{time})$ or (ii) $(V, V_{t_1}, V_{t_0}, W) \notin G_1^3 \times \{0, 1\}^{n+k_1}$ or (iii) re-encryption of m' for U, time and μ' is not identical to $\langle c', \mathsf{time} \rangle$.

Theorem 2 The above scheme is a KE-CCA secure 2-level IKE in the random oracle model assuming that a computational BDH (CBDH) problem [7, 8] is hard to solve. More precisely, we suppose there is an adversary A who breaks the above scheme with probability $1/2 + \epsilon_A$ with run time at most t_A . Also, suppose that A makes at most q_{KG} , q_{KI} , q_{D} , q_{H_2} , q_{H_3} queries to KG, KI, D, H_2 , H_3 , respectively. Then, there is another adversary who can solve the CBDH problem

with probability ϵ_{cbdh} and running time t_{cbdh} where

$$\begin{split} \epsilon_{cbdh} & \geq \frac{6}{e^3 q_{H_2} (3 + q_{\rm KG} + q_{\rm KI})^3} \cdot (\epsilon_A - \frac{q_{H_3}}{2^{k_1}} - \frac{q_{\rm D}}{2q}), \\ t_{cbdh} & \leq O(t_A + (2q_{\rm KG} + 5q_{\rm KI}) \tau_{EXP} + q_{\rm D} (\tau_{\hat{e}} + q_{H_3} \tau_{EXP} + q_{H_2} q_{H_3} \cdot O(k))), \end{split}$$

assuming time for exponentiation over G_1 is at most τ_{EXP} , and time for pairing computation is at most $\tau_{\hat{e}}$.

Proof of the theorem is given in the full version of this paper [23].

Efficiency. In a pairing based scheme, the dominant factor that decides its total computation cost is the number of pairing computation carried out. For the above construction of KE-CCA secure IKE from bilinear mapping, only one and three pairing computations are required for encryption and decryption, respectively. On the other hand, for the generic construction (shown in the previous section) using [22] as the underlying HIBE, the numbers of pairing computation for encryption and decryption are three and six, respectively.

6 Generic HIBE from Any IBE

As seen from our discussion given so far, HIBE serves as important role as building blocks of various cryptographic schemes including the ones that we have proposed. In this section, we show a generic construction of HIBE from arbitrary IBE that also provides a partial solution to an open problem of HIBE. We can, for example, bring the Cocks IBE [10] to construct an HIBE, also implying that hereafter a new construction of an IBE is ever proposed, it can also be converted to construct an HIBE. For the security definition, we introduce partial collusion resistance (i.e. IND-wHID-CCA) [24] instead of full collusion resistance (i.e. IND-HID-CCA) [22]. The security definition is more relaxed but our contribution is significant as this is the first generic HIBE construction built from an arbitrary IBE. In this section, for simplicity, we show a construction of a 2-level HIBE, but it can also be extended for a t-level HIBE for t > 2.

Security Definition. Our construction of a generic HIBE proposed here is based on the security definition of [24]. Particularly, for our 2-level construction of HIBE, it is collusion free for the users (in the lower domain), but has polynomial-sized collusion threshold w for the sub-PKGs (in the higher domain), where $w = O(\mathsf{poly}(k))$ and k is a security parameter.

Cover Free Family. We use cover free family (CFF) [17] as a building block, similar to the generic construction of key-insulated encryption [13]. Reminding that, method used in [13] only addresses chosen plaintext security, and cannot be applied straightforwardly to construct a chosen ciphertext secure HIBE.

Definition 5 (CFF) Let $L := \{\ell_1, \ell_2, \dots, \ell_u\}$ and $F = \{F_1, \dots, F_v\}$ be a family of subsets of L. We call (L, F) an (u, v, w)-cover free family (CFF) if for all $F_i \in F$, $F_i \not\subset F_{j_1} \cup \dots \cup F_{j_w}$ for any $F_{j_\kappa} (\neq F_i) \in F$, $\kappa \in \{1, ..., w\}$.

```
\mathsf{PGen}_{\mathsf{HIBE}}(1^k):
             generate (u, v, w)-CFF (L, F)
             (s_i, p_i) \leftarrow \mathsf{PGen}_{\mathsf{IBE}}(1^k), \ 1 \leq i \leq u
             choose H: \{0,1\}^* \to F and H_i: \{0,1\}^{2n+\hat{u}k_1} \to \mathcal{COIN}, 1 \leq i \leq u
  return s := \{s_i\}_{1 \le i \le u} and p := (H, \{p_i, H_i\}_{1 \le i \le u})
                                                \mathsf{Gen}^1_{\mathsf{HIBE}}(D^1.D^0, s_{D^1}, p):
\mathsf{Gen}^2_{\mathsf{HIBE}}(D^1,s,p):
                                                            parse s_{D^1} = \{s_i\}_{i \in F_{D^1}}
           parse s = \{s_i\}_{1 \le i \le u}
                                                            s_{i,D^1.D^0} \leftarrow \mathsf{Gen}_{\mathsf{IBE}}(\bar{D^1}.D^0, s_i, p_i), \, i \in F_{D^1}
           F_{D^1} := H(D^1) \in F
\text{return } s_{D^1} := \{s_i\}_{i \in F_{D^1}} \qquad \text{return } s_{D^1.D^0} := \{s_{i,D^1.D^0}\}_{i \in F_{D^1}}
              \mathsf{Enc}_{\mathsf{HIBE}}(m, D^0.D^1, p):
                          F_{D^1} := H(D^1) \in F
                         \overline{m}_i \in_R \{0,1\}^n, \, i \in F_{D^1} \text{ such that } \oplus_{i \in F_{D^1}} \overline{m}_i = m
                         r_i \in_R \{0,1\}^{k_1}, i \in F_{D^1}
                          c_i \leftarrow \mathsf{Enc}_{\mathsf{IBE}}(\overline{m}_i||r_i, D^0.D^1, p_i; H_i(m, \overline{m}_i, R)), i \in F_{D^1}
              return c := \{c_i\}_{i \in F_{D1}}
                       \mathsf{Dec}_{\mathsf{HIBE}}(c', s_{D^1.D^0}, p):
                                  parse c' = \{c'_i\}_{i \in F_{D^1}}
                                  parse s_{D^1,D^0} = \{s_{i,D^1,D^0}\}_{i \in F_{D^1}}
                                  (\overline{m}'_i||r'_i) \leftarrow \mathsf{Dec}_{\mathsf{IBE}}(c'_i, s_{i,D^1,D^0}, p_i), i \in F_{D^1}
                                  m' := \bigoplus_{i \in F_{D^1}} \overline{m}'_i
                                   validity check by re-encryption
                       return m'
```

Fig. 3. Generic Construction of Partially Collusion Resistant HIBE.

It should be noted that there exist nontrivial constructions of CFF with $u = O(w^2 \log v)$ and $\#F_i = O(w \log v)$ $(1 \le i \le v)$. In the following, we assume $\#F_1 = \#F_2 = \cdots = \#F_v = \hat{u}$ for some \hat{u} and $\#\{F_i | \ell_j \in F_i \in F\} \ge [v\hat{u}/u]$ for all $\ell_j \in L$. Concrete methods for generating CFF are given in [18].

Construction. Fig. 3 shows a generic construction of a chosen ciphertext secure 2-level HIBE with partial collusion resistance from an arbitrary IND-ID-CPA IBE using CFF. Here, we give supplementary explanation of the Fig. 3 and give discussion on our generic construction of HIBE in more details.

Let $\mathsf{IBE} = (\mathsf{PGen}_\mathsf{IBE}, \mathsf{Gen}_\mathsf{IBE}, \mathsf{Enc}_\mathsf{IBE}, \mathsf{Dec}_\mathsf{IBE})$ be standard IBE (i.e. 1-level HIBE). Then, 2-level HIBE HIBE = $(\mathsf{PGen}_\mathsf{HIBE}, \mathsf{Gen}^i_\mathsf{HIBE} \ (i=1,2), \mathsf{Enc}_\mathsf{HIBE}, \mathsf{Dec}_\mathsf{HIBE})$ can be constructed as follows.

PGen_{HIBE} generates (u, v, w)-CFF (L, F) and u pairs of master key and public parameter of IBE where $L = \{1, \cdots, u\}$, $u = O(\mathsf{poly}(k))$, $v = O(\mathsf{exp}(k))$ and $w = O(\mathsf{poly}(k))$. For hash functions, n denotes the size of a message of HIBE, and \mathcal{COIN} represents the internal coin-flipping space of $\mathsf{Enc}_{\mathsf{IBE}}$, assuming that $n + k_1$ is the size of a message in IBE. The security analysis will view H and H_i $(1 \le i \le u)$ as random oracles. $\mathsf{Gen}^2_{\mathsf{HIBE}}$ picks master keys corresponding to F_{D^1} . $\mathsf{Gen}^1_{\mathsf{HIBE}}$ generates IBE decryption keys by using $s_{D^1} = \{s_i\}_{i \in F_{D^1}}$. $\mathsf{Enc}_{\mathsf{HIBE}}$ encrypts m with encryption algorithms which correspond to F_{D^1} where R is a

concatenation of all r_i arranged in increasing order of i for $i \in F_{D^1}$. Dec_{HIBE} decrypts all c'_i for $i \in F_{D^1}$. Then, it re-encrypts m' with \overline{m}'_i and r'_i . Unless the encryption result is identical to c', Dec_{HIBE} outputs \bot , otherwise, outputs m'.

Theorem 3 The above scheme is IND-wHID-CCA in the random oracle model, with a restriction that an adversary is allowed to query sub-PKGs' keys at most w times, assuming that IBE is IND-ID-CPA. More precisely, assume an adversary A who breaks the above scheme with probability $1/2 + \epsilon_A$ with run time at most t_A and that A makes at most q_{KG} , q_D , q_{H_i} queries to KG, D, H_i ($1 \le i \le u$), respectively. Then, there is another adversary B who can break IBE in the sense of IND-ID-CPA with probability $1/2 + \epsilon_B$ and running time t_B where

$$\begin{split} \epsilon_B &\geq \frac{\hat{u}}{u^2} (\epsilon_A - \frac{q_{all}}{2^{k_1}} - \frac{\gamma q_{\rm D}}{2}), \\ t_B &\leq t_A + \hat{u} \tau_{ENC} + q_{\rm KG} \hat{u} \tau_{GEN} + q_{\rm D} (q_{\Sigma} \tau_{ENC} + q_{\Pi} \cdot O(k)), \end{split}$$

and $q_{all}:=\sum_{1\leq i\leq u}q_{H_i},\,q_{\varSigma}:=\max_{\{i_1,\cdots,i_{\hat{u}}\}\subseteq\{1,\cdots,u\}}(\sum_{i\in\{i_1,\cdots,i_{\hat{u}}\}}q_{H_i})\,\,and\,\,q_{\varPi}:=\max_{\{i_1,\cdots,i_{\hat{u}}\}\subseteq\{1,\cdots,u\}}(\prod_{i\in\{i_1,\cdots,i_{\hat{u}}\}}q_{H_i}),\,assuming\,\,that\,\, \mathsf{IBE}\,\,is\,\gamma\text{-}uniform,\,and\,\,running\,\,time\,\,of\,\,\mathsf{Gen}_{\mathsf{IBE}}\,\,and\,\,\mathsf{Enc}_{\mathsf{IBE}}\,\,is\,\,at\,\,most\,\,\tau_{GEN}\,\,and\,\,\tau_{ENC},\,\,respectively.$

Proof of the theorem is given in the full version of this paper [23].

Acknowledgment

We would like to thank Steven Galbraith, Craig Gentry and Phil MacKenzie for their helpful comments and discussions. We also thank anonymous reviewers for their invaluable comments.

References

- S.S. Al-Riyami and K.G. Paterson, "Certificateless public key cryptography," Proc. of Asiacrypt'03, pp.452-473, 2003.
- J. Baek and Y. Zheng, "Identity-based threshold decryption," Proc. of PKC'04, pp.262-276, 2004.
- 3. M. Bellare, A. Desai, E. Jokipii and P. Rogaway, "A concrete security treatment of symmetric encryption," Proc. of FOCS'97, pp.394-403, 1997.
- 4. D. Boneh and X. Boyen, "Efficient selective-ID secure identity-based encryption without random oracles," Proc. of Eurocrypt'04, pp.223-238, 2004.
- D. Boneh and X. Boyen, "Secure identity based encryption without random oracles," Proc. of Crypto'04, pp.443-459, 2004.
- 6. D. Boneh, X. Boyen and E.-J. Goh, "Hierarchical identity based encryption with constant size ciphertext." Proc. of Eurocyrpt'05, pp.440-456, 2005.
- D. Boneh and M. Franklin, "Identity-based encryption from the Weil pairing," Proc. of Crypto'01, pp.213-229, 2001.
- 8. D. Boneh and M. Franklin, "Identity-based encryption from the Weil pairing," SIAM J. of Computing, vol. 32, no. 3, pp.586-615, 2003 (full version of [7]).
- 9. M. Bellare and A. Palacio, "Protecting against key exposure: strongly key-insulated encryption with optimal threshold," available at http://eprint.iacr.org/2002/064/.

- C. Cocks, "An identity based encryption scheme based on quadratic residues,"
 Proc. of IMA Int. Conf. 2001, Coding and Cryptography, pp. 360-363, 2001.
- 11. R. Canetti, S. Halevi and J. Katz, "A forward secure public key encryption scheme," Proc. of Eurocrypt'03, pp.255-271, 2003.
- Y. Dodis and J. Katz, "Chosen-ciphertext security of multiple encryption," Proc. of TCC'05, pp.188-209, 2005.
- Y. Dodis, J. Katz, S. Xu and M. Yung, "Key-insulated public key cryptosystems," Proc. of Eurocrypt'02, pp.65-82, 2002.
- 14. Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, "Intrusion-resilient public-key encryption," Proc. of CT-RSA'03, pp.19-32, 2003.
- Y. Dodis, M. Franklin, J. Katz, A. Miyaji and M. Yung, "A generic construction for intrusion-resilient public-key encryption," Proc. of CT-RSA'04, pp.81-98, 2004.
- 16. Y. Dodis and M. Yung, "Exposure-resilience for free: the hierarchical ID-based encryption case," Proc. IEEE Security in Storage Workshop 2002, pp.45-52, 2002.
- P. Erdös, P. Frankl and Z. Furedi, "Families of finite sets in which no sets is covered by the union of two others," J. of Combin. Theory Ser. A 33, pp.158-166, 1982
- 18. P. Erdös, P. Frankl and Z. Furedi, "Families of finite sets in which no sets is covered by the union of r others," Israel Journal of Math., 51, pp.79-89, 1985.
- 19. E. Fujisaki and T. Okamoto, "How to enhance the security of public-key encryption at minimum cost," Proc. of PKC'99, pp.53-68, 1999.
- 20. E. Fujisaki and T. Okamoto, "Secure integration of asymmetric and symmetric encryption schemes," Proc. of Crypto'99, pp.537-554, 1999.
- C. Gentry, "Certificate-based encryption and the certificate revocation problem," Proc. of Eurocrypt'03, pp.272-293, 2003.
- C. Gentry and A. Silverberg, "Hierarchical ID-based cryptography," Proc. of Asiacrypt'02, pp.548-566, 2002.
- 23. Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, "Identity-based hierarchical strongly key-insulated encryption and its application," available at http://eprint.iacr.org/2004/338/.
- 24. J. Horwitz and B. Lynn, "Toward hierarchical identity-based encryption," Proc. of Eurocrypt'02, pp.466-481, 2002.
- A. Shamir, "Identity-based cryptosystems and signature schemes," Proc. of Crypto'84, pp.47-53, 1985.
- 26. S. Shinozaki, T. Itoh, A. Fujioka and S. Tsujii, "Provably secure key-update schemes in identity-based systems," Proc. of Eurocrypt'90, pp.16-30, 1990.
- B. Waters, "Efficient identity based encryption without random oracles," Proc. of Eurocrypt'05, pp.114-127, 2005.
- 28. R. Zhang, G. Hanaoka, J. Shikata and H. Imai, "On the security of multiple encryption or CCA-security + CCA-security = CCA-security?" Proc. of PKC'04, pp.360-374, 2004.

Appendix A: Formal Security Definitions for HIBE

Here, we give a formal security definition of hierarchical identity-based encryption (HIBE). The definition runs parallel with [22] and [24] which is the hierarchical extension of Boneh and Flanklin's IBE [7,8].

Regarding chosen ciphertext attacks, we address the following three types of oracles: First, is a key generation oracle KG which on input $D^{t-1}.D^{t-2}.....D^{i}$,

returns $D^{t-1}.D^{t-2}....D^{i}$'s secret $s_{D^{t-1}.D^{t-2}....D^{i}}$ for $0 \le i \le t-1$. Next, is a left-or-right encryption oracle LR which for a given user $D^{*,t-1}.D^{*,t-2}....D^{*,0}$ and equal length messages m_0, m_1 , picks $b \in_R \{0, 1\}$ and returns a challenge ciphertext $c := \mathsf{Enc}_{\mathsf{HIBE}}(D^{*,t-1}.D^{*,t-2}.\cdots.D^{*,0},m_b,p)$. This models an encryption request of an adversary who can pick a target's identity and a message pair of his choice. Finally, the adversary is allowed access to a decryption oracle D, which on input $D^{t-1}.D^{t-2}.....D^0$ and a ciphertext c, returns a decryption result of c using $s_{D^{t-1},D^{t-2},\dots,D^0}$. This models the chosen ciphertext attack. Also, if considering only chosen plaintext attacks, any access to D is prohibited while accesses to KG and LR remain permitted. An adversary may query the three oracles adaptively in any order he wants, subject to the restriction that he makes only one query to the left-or-right oracle. Let $D^{*,t-1}.D^{*,t-2}....D^{*,0}$ be the user's identifier of this query and let c^* denote the challenge ciphertext returned by the left-or-right oracle in response to this query. The adversary succeeds by guessing the value b. A HIBE is considered secure, if any probabilistic polynomial time adversary has success probability negligibly close to 1/2.

Definition 6 Let HIBE = (PGen_{HIBE}, Genⁱ_{HIBE} ($1 \le i \le t$), Enc_{HIBE}, Dec_{HIBE}) be a hierarchical identity-based encryption scheme. Define adversary A's succeeding probability in the above chosen ciphertext attack game as:

$$\begin{aligned} \mathsf{Succ}_{A,\mathsf{HIBE}} &:= \Pr[(s,p) \leftarrow \mathsf{PGen}_{\mathsf{HIBE}}(1^k); b \in_R \{0,1\}; \\ b' \leftarrow A^{\mathsf{KG}(\cdot,s,p),\mathsf{LR}(\cdot,\cdot,\cdot,s,p),\mathsf{D}(\cdot,\cdot,s,p)} : b' = b], \end{aligned}$$

where any element in $\{(D^{*,t-1}.D^{*,t-2}.\cdots.D^{*,i}:0\leq i\leq t-1)\}$ is never asked to KG and A is not allowed to query $\mathsf{D}(D^{*,t-1}.D^{*,t-2}.\cdots.D^{*,0},c^*,s,p)$ if c^* is returned by LR. Then, HIBE is

- <u>IND-HID-CCA</u> if $|Succ_{A,HIBE} 1/2|$ is negligible for any probabilistic polynomial time adversary A (particularly, we call IND-ID-CCA if t = 1),
- <u>IND-HID-CPA</u> if $|Succ_{A,HIBE} 1/2|$ is negligible for any probabilistic polynomial time adversary A who is not allowed to submit any query to D at all (particularly, we call IND-ID-CPA if t = 1),
- <u>IND-wHID-CCA</u> if $|Succ_{A,HIBE} 1/2|$ is negligible for any probabilistic polynomial time adversary A who is allowed to submit queries to KG at most w times for given layers in the hierarchy (A is also allowed to submit unlimited number of queries to KG for at least one layer),
- IND-wHID-CPA if $|Succ_{A,HIBE} 1/2|$ is negligible for any probabilistic polynomial time adversary A who is allowed to submit queries to KG at most w times for given layers in the hierarchy, but no query to D is permitted (A is also allowed to submit unlimited number of queries to KG for at least one layer).

Next, we give concrete examples for the above IND-wHID-CCA and IND-wHID-CPA. Suppose we have a 2-level HIBE which includes a root-PKG layer, a sub-PKG layer and a user layer. The sub-PKG layer is set as the special layer in

which the number of queries from the adversary is bounded. In the $\mathsf{IND}\text{-}w\mathsf{HID}\text{-}\mathsf{CCA}$ (or $\mathsf{IND}\text{-}w\mathsf{HID}\text{-}\mathsf{CPA}$) setting, an adversary is allowed to ask the sub-PKGs' keys for at most w times while allowing unlimited number of user's decryption keys to be exposed. In addition to KG, the adversary is allowed access to D also when considering the $\mathsf{IND}\text{-}w\mathsf{HID}\text{-}\mathsf{CCA}$ setting.

Appendix B: Proof of Theorem 1

Here, we prove KE-CCA security for our generic construction. We construct an adversary B who can break at least one of underlying HIBEs in the sense of IND-HID-CPA by using another adversary A who is able to break KE-CCA security of the proposed IKE.

For given public parameters p_h $(1 \le h \le 3)$ which corresponds to HIBE_h, respectively, B chooses $i' \in \{0,1,2\}$ and computes $\mathsf{PGen}_{\mathsf{HIBE}_h}(1^k) = (s'_h, p'_h)$ for $1 \le h \le 3$, $h \ne i' + 1$. Also, B sets (p_1, p'_2, p'_3) , (p'_1, p_2, p'_3) and (p'_1, p'_2, p_3) for i' = 0, 1 and 2, respectively, as (part of) public parameter of IKE and sends it to A. On A's requests for the oracles, B answers to them following the next simulation:

SIMULATION OF LR. For an LR oracle query U^* , $\mathsf{time}^*, m_0, m_1$ from A, B simulates IKE's LR oracle as follows. First, B sets a = i' + 1. For all h $(1 \le h \le 3, h \ne a)$, B picks $\overline{m}_h \in_R \{0,1\}^n$ and $r_h \in_R \{0,1\}^{k_1}$ such that $\bigoplus_{1 \le h \le 3, h \ne a} \overline{m}_h = \alpha$ for $\alpha \in_R \{0,1\}^n$. Also, B sets $\overline{m}_{a,0} = m_0 \oplus \alpha$ and $\overline{m}_{a,1} = m_1 \oplus \alpha$. Then, B picks $r_{a,j} \in_R \{0,1\}^{k_1}$ for j = 0,1, and sets $U_1^* = U^*, U_2^* = U^*.T_0(\mathsf{time}^*)$ and $U_3^* = U^*.T_1(\mathsf{time}^*).T_0(\mathsf{time}^*)$. Also, B sends U_a^* , $(\overline{m}_{a,0}||r_{a,0})$, $(\overline{m}_{a,1}||r_{a,1})$ to B's own LR oracle which corresponds to HIBE_a, and the oracle returns challenge ciphertext c_a^* . Next, B encrypts $(\overline{m}_h||r_h)$ by the encryption algorithm of HIBE_h with p_h' and U_h^* , and produces challenge ciphertexts c_h^* for $1 \le h \le 3$, $h \ne a$. Finally, B returns $\langle (c_1^*, c_2^*, c_3^*), \mathsf{time}^* \rangle$ to A. Note that B's goal is to distinguish the underlying plaintext of c_a^* .

SIMULATION OF H_h . For H_h $(1 \le h \le 3)$ oracle queries, B returns random values if the query has never been asked before, otherwise B returns the same value as before. If a H_h query is identical to $(m_{b'}, \overline{m}_h, \omega_1, \omega_2, \omega_3)$ such that $\omega_a = r_{a,b'}$ and $\omega_h = r_h$ $(1 \le h \le 3, h \ne a)$ for some $b' \in \{0, 1\}$ (here, \overline{m}_a means $\overline{m}_{a,b'}$), B outputs $\langle b', a \rangle$ and halts.

SIMULATION OF KG. It is clear that for any of the KG queries, B can answer it perfectly by asking B's own KG oracles. More precisely, on A's request for a KG oracle query $U(\neq U^*)$, B can ask U to B's KG oracle corresponding to HIBE_a , as well as run user-secret generation algorithms of HIBE_h with master key s_h' for $1 \leq h \leq 3, \ h \neq a$. Then, B produces d_0^i for $0 \leq i \leq 2$ by using these results and return (d_0^0, d_0^1, d_0^2) .

SIMULATION OF KI. Interestingly, answers to A's KI oracle query can be perfectly simulated by B when i' is the "special level" (see Def. 2) chosen by A. Namely, B can perfectly answer any KI oracle query by using B's own KG oracles which corresponds to HIBE $_a$ and master keys s_h' $(1 \le h \le 3, \ h \ne a)$ which correspond to HIBE $_h$. It should be noticed that the simulation is perfect even if $U = U^*$.

SIMULATION OF D. On A's D query for U and $\langle c, \mathsf{time} \rangle$, B searches for the combinations of A's previous queries made to H_1, H_2, H_3 such that each of the combinations consists of the next three queries ψ_1, ψ_2, ψ_3 , where for $1 \leq i \leq 3$, query ψ_i is asked to H_i and ψ_i forms $(m, \overline{m}_i, r_1, r_2, r_3)$ for some n-bit strings m, \overline{m}_i and k_1 -bit strings r_1, r_2, r_3 such that $\bigoplus_{1 \leq i \leq 3} \overline{m}_i = m$ (note that m, r_1, r_2 and r_3 are common for all ψ_1, ψ_2 and ψ_3). If there exists such a combination whose corresponding ciphertext (for U and time) is identical to $\langle c, \mathsf{time} \rangle$, then B returns m. Otherwise, B returns \bot .

When A outputs b', B also outputs $\langle b', a \rangle$ as an answer for the IND-HID-CPA game for HIBE_a .

Now, we estimate B's succeeding probability. Simulations of LR, H_h ($1 \le h \le 3$), and KG are perfect. Simulation of KI fails only when i' is not the special level chosen by A. Therefore, if we let $1/2 + \epsilon_A$ be the succeeding probability of A, then B's succeeding probability can be estimated to be $1/2 + \epsilon_B$ where

$$\epsilon_B \geq \frac{1}{3}(\frac{1}{2} + \epsilon_A - \Pr[H-Ask]) \cdot \Pr[\neg \mathsf{D}\text{-}Fail] + \frac{2}{3} \cdot \frac{1}{2} - \frac{1}{2},$$

where H-Ask denotes an event that $(m_{\overline{b}}, \overline{m}_h, \omega_1, \omega_2, \omega_3)$ such that $\omega_a = r_{a,\overline{b}}$ and $\omega_j = r_j$ $(j \neq a)$ is asked to H_h for some h, and D-Fail denotes an event that B rejects a D query which should not be rejected.

Since it is informtion-theoretically impossible to find $r_{a,\overline{b}}$, we have $\Pr[H-Ask] \leq 1-(1-1/2^{k_1})^{q_{H_1}+q_{H_2}+q_{H_3}}$ where q_{H_i} $(1\leq i\leq 3)$ are the numbers of queries made to H_i . Simulation of D fails only when A submits a ciphertext which should not be rejected, but its corresponding H_i oracle query is not asked. Therefore, $\Pr[\neg \text{D-}Fail] \geq (1-\gamma_{max})^{q_{\text{D}}}$ where q_{D} is the number of queries for D, $\gamma_{max} = \max(\gamma_1, \gamma_2, \gamma_3)$ assuming that HIBE_i is γ_i -uniform.

Hence, we have

$$\begin{split} \epsilon_{B} &\geq \frac{1}{3}(\frac{1}{2} + \epsilon_{A} - (1 - (1 - \frac{1}{2^{k_{1}}})^{q_{H_{1}} + q_{H_{2}} + q_{H_{3}}}))(1 - \gamma_{max})^{q_{\mathsf{D}}} + \frac{2}{3} \cdot \frac{1}{2} - \frac{1}{2} \\ &\geq \frac{1}{3}\epsilon_{A} - \frac{1}{3}\frac{q_{H_{1}} + q_{H_{2}} + q_{H_{3}}}{2^{k_{1}}} - \frac{1}{6}q_{\mathsf{D}}\gamma_{max}. \end{split}$$

Also, if letting t_A be A's running time, then B's running time can be estimated to be t_B , where

$$t_B \le t_A + 2\tau_{ENC} + (2q_{KG} + 5q_{KI})\tau_{GEN} + q_D((q_{H_1} + q_{H_2} + q_{H_3})\tau_{ENC} + q_{H_1}q_{H_2}q_{H_3}O(k)),$$

assuming that the number of queries made to KG and KI is q_{KI} and q_{KI} , respectively, and running time of $\mathsf{Gen}^i_{\mathsf{HIBE}_h}$ and $\mathsf{Enc}_{\mathsf{HIBE}_h}$ are at most τ_{GEN} and τ_{ENC} , respectively, for any h and i. Therefore, ϵ_A is negligible if ϵ_B , $1/2^{k_1}$ and γ_{max} are all negligible, and hence, our proposed generic construction of IKE is KE-CCA secure.