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Abstract. In this paper, we discuss non-interactive updating of decryp-
tion keys in identity-based encryption (IBE). In practice, key revocation
is a necessary and inevitable process and IBE is no exception when it
comes to having to manage revocation of decryption keys without losing
its merits in efficiency. Our main contribution of this paper is to pro-
pose novel constructions of IBE where a decryption key can be renewed
without having to make changes to its public key, i.e. user’s identity. We
achieve this by extending the hierarchical IBE (HIBE). Regarding se-
curity, we address semantic security against adaptive chosen ciphertext
attacks for a very strong attack environment that models all possible
types of key exposures in the random oracle model. In addition to this,
we show method of constructing a partially collusion resistant HIBE from
arbitrary IBE in the random oracle model. By combining both results,
we can construct an IBE with non-interactive key update from only an
arbitrary IBE.

1 Introduction

Background. As to our best of knowledge, current public key infrastructures
involve complex construction of certification authorities (CA), consequently re-
quiring expensive communication and computation costs for certificate verifi-
cation. In 1984, Shamir introduced an innovative concept called identity-based
encryption (IBE) [25](later actualized in [7]) where any public key is determined
as an arbitrary string, e.g. user’s name, e-mail address, etc. which simplifies
certificate management in public key infrastructures. In this paper, we address
non-interactive updating of user’s decryption key in IBE. Revocation and re-
newal of decryption key is a necessary process carried out in practice, and so,
designing of IBE which allows renewal and updating of decryption keys without



losing its merits in efficiency will have considerable implications in the practical
crypto-infrastructure. One application of IBE is of a mobile phone scenario, in
which case, phone number represents the user identity. It will be both simple and
convenient for the mobile phone users to be able to communicate and identify
each other by their phone numbers only. The users will also want to keep their
phone numbers as fixed identities, and therefore, it is necessary to be able to
renew and update the decryption key in a way its corresponding public key will
be unchanged. As you can see, in practical situations as seen in this scenario,
such problem of IBE can be critical. Our main objective is to solve this problem.

Our Results. Our main contribution of this paper is to propose novel con-
structions of IBE where a decryption key can be renewed without having to
make changes to its public key, i.e. user’s identity. We start by discussing the
impossibility of dealing with such a problem in the conventional IBE model, fol-
lowed by introducing a new IBE model which makes this possible. Based on the
new model, we construct a new IBE in which a decryption key can be updated
“non-interactively”, that is, allow user to renew and update his decryption key
without any help from the central authority, and most importantly, without hav-
ing to change his identity. In our scheme, similar to [13], we assume a private
device (PD). PD is not connected to the network except at each fixed time period
when the decryption key is updated. A helper key stored in the PD generates a
key-update information which is used to update the decryption key. All secret
operations are done by the user alone. Our scheme can be regarded as the first
construction of an identity-based version of strongly secure key insulated encryp-
tion [13]. Here, we mean “strongly” by a system whose security is guaranteed
even when its PD is physically compromised. Our scheme is different from [13] in
a way that the PD is divided into multiple levels forming a hierarchical structure
improving its security.

In brief, our proposed schemes are constructed by extending the hierarchi-
cal identity-based encryption schemes (HIBE) [24, 22]. Straightforward exten-
sion of HIBE, however, will be completely vulnerable for our attack model. Our
major contribution of this paper is the proposal of two secure constructions
of IBE that can renew and update the decryption key non-interactively: (1) a
generic construction based on any HIBE, and (2) a specific construction based
on Gentry-Silverberg HIBE [22]. In the generic construction, only an arbitrary
(chosen plaintext secure) HIBE is used to build a chosen ciphertext secure IBE
with non-interactive key update. The merit of such scheme is the flexibility it
has in selecting the underlying assumption which can be determined depending
on the requirement of the system. As a by-product, the same method used in
the generic construction can also be used to build a (standard) strongly secure
key-insulated encryption from an arbitrary (H)IBE and a standard public key en-
cryption. On the other hand, the specific construction is constructed by directly
extending the Gentry-Silverberg HIBE [22]. Although being more efficient than
the generic scheme, the specific scheme is based on the bilinear Diffie-Hellman
(BDH) assumption [7, 8] and flexibility may become a concern when designing
new constructions in terms of security. In addition to our main contribution, we



also show a construction of a partially collusion resistant HIBE built from only
an arbitrary IBE. This can be applied to the above result (i.e. generic scheme)
to give a construction of IBE with non-interactive key update built from only an
arbitrary IBE. Note that we mean “partial collusion resistant” in a sense that
we argue based on the security definition in [24] and not in [22]. Security of our
schemes is proved in the random oracle model.

Applications: Mobile Phone Scenario. Now let’s consider the suitability of
introducing a private device (PD) in the mobile phone scenario (see also Back-
ground.). At first glance, it seems like a hassle to having to use the PD whenever
you need to update your decryption key, although, it is not as you might think
so. As a mobile phone user, it is your routine job to re-charge your battery every
now and then. Now, assume a PD-BC (i.e. a private device that can function
also as a battery charger). PD-BC can provide a convenient mean to update
the decryption key since updating can be done at the same time you re-charge
the battery (which you have to do it anyways). The security of the system is
also guaranteed even if the PD-BC is compromised. Here, we introduced a mo-
bile phone scenario, but this is just one of many attractive applications of IBE.
Whoever is in high risk of losing the decryption key (e.g. laptop PC user) can
benefit from this system. To further improve the security, PD can be stratified
into multiple levels. Each level has its own device which updates the device of
a level below, each level with varying updating periods. We let the lowest level
PD be the least secure device (i.e. PD-BC) of which the keys are updated more
frequently than the ones in the higher levels. Security of the devices in each
level also increases as the level of the hierarchy goes higher. As an example, the
least secure device, PD-BC, updates the decryption key everyday and the helper
key stored in the PD-BC is updated (using the PD of a level higher) every 2-3
months. Since lower level PDs are used more frequently, they must be kept in
places more handy (e.g. at home or work place) and higher level PDs which are
used not as frequently be kept somewhere not as convenient but physically safer
(e.g. safe). Our IBE system can guarantee the security even if any level PD is
compromised even of the highest one.

Related Works. The problem of revocability of private keys in identity-based
schemes was initially discussed by Shinozaki, Itoh, Fujioka and Tsujii [26]. Baek
and Zheng [2] showed an application of threshold decryption method to IBE. It
does decrease the possibility of getting the keys to be exposed in the first place,
however, it does not deal with what it can do after key exposure has actually
occured. In [16], Dodis and Yung proposed an interesting idea that refreshes
the private keys in HIBE. Their scheme provides a solution to the problem of
gradual key exposure in which the private key is assumed to slowly compromise
over time. Boneh and Franklin in their paper ([7], Section 1.1.1) showed the
first generalized method for key revocation in IBE schemes. In their scheme, a
privileged Private Key Generator (PKG) generates each user’s decryption key
where its corresponding public key is set to be the concatenation of user iden-
tity and fixed length of time the key is available, e.g. “recipient@xxx.xxx ||
2005.01.01-2005.12.31”. In such a setting, the public key, despite of whether



it is revoked or not, is renewed regularly by the PKG, and also, the renewal
interval must be set short (e.g. per day) to alleviate the damage caused by
key exposures. Therefore, having to set the interval short and require frequent
contacts with the PKG implies increase in the total communication and compu-
tation cost, consequently, losing one of primary advantages of IBE (i.e. low costs
in communication and computation). Further, it needs to work out a way to
establish a secure channel between the PKG and the user. For instance, it needs
to compensate for additional transmission for key issuing and also has to deal
with complicated transactions if the secret information used to setup the secure
channel is exposed. Moreover, forward security must be considered. It is, hence,
not desirable to have to require frequent communication via secure channel with
the PKG in IBE as it implicates loss of primary advantages of IBE.

While, on the other hand, as a solution to key exposure and revocation
problem in conventional public key systems, Dodis, Katz, Xu and Yung [13]
proposed a scheme called key-insulated encryption. As said earlier, this scheme
also assumes a PD in which it stores the helper key. The helper key assists
the user to renew his decryption key by generating secrets necessary to update
the key. Here, the public key is fixed. In [14, 15], Dodis, Franklin, Katz, Miyaji
and Yung further improved [13] with an additional property, forward security.
Notice that being able to renew the decryption key without having to make
any changes to the corresponding public key as in the key-insulated encryption
scheme, is the very technique, desired in IBE. Possible harmonization of the
advantages of the two schemes; an identity-based version of a (strongly secure)
key-insulated encryption scheme has never been constructed before. Also, there
has never been a construction built of a hierarchical version of key-insulated
encryption where the PD is organized in a hierarchical tree structure. Besides
the related works shown so far, there are other interesting researches done on
the topic of key exposure and revocation as well, for example, [21, 1], but both
are looked from a non identity-based perspective.

We mentioned earlier that our IBE with non-interactive key update is con-
structed by extending the HIBE [24, 22]. HIBE is a powerful cryptographic tool
and also forms the basis of various cryptographic techniques, e.g. [11]. However,
all methods known to construct HIBE [24, 22, 11, 4, 6] require specific assump-
tions in elliptic curve cryptography, e.g. the BDH problem [7, 8] as the underlying
assumption and therefore lacks flexibility in selecting the underlying assumption.
(While for IBE, besides BDH, there is also a construction based on quadratic
residuosity problem [10].) There is also an open problem for a generic construc-
tion of HIBE based on arbitrary IBE and is one of important research topics in
this area.

2 Model and Definitions

Overview of the Model. Before we start discussing the details of the actual
construction of our IBE scheme, recall earlier how we said it was impossible to
construct an IBE that allows an essential property as key revocation if based
on the model of conventional IBE. To be more specific, it is impossible, based



on the conventional IBE model, for the user to immediately revoke and renew
his decryption key only at times he needs to renew the decryption key without
losing the advantage of IBE in terms of communication cost, since in the con-
ventional IBE, a public parameter distributed at system set up phase and the
user’s identity are the only parameters used to encrypt a message.

Recall that we said earlier, [7] showed the first generalized method for key re-
vocation based on the conventional IBE model. Their scheme, however, required
to establish a secure channel between a user and a PKG which also needed to
be available at all times. Moreover, the burden on the PKG was heavy which
required the PKG to periodically renew the users’ decryption keys at fixed and
frequent time intervals. Their model is simple and generally does not have any
problem using it and may be practical for some applications. However, there are
other situations where their assumption is neither preferred nor available.

We introduce a new model of IBE that can renew and update the decryp-
tion keys non-interactively (i.e without any loss in communication cost). We
introduce a private device (PD) which stores the helper key used to renew the
decryption key at regular time intervals without requiring interactions with other
entities. We further improve the security by giving hierarchical construction in
the PD, letting the keys of each level be renewed using the devices of a level
higher (See Applications: Mobile Phone Scenario in Sec. 1.). Our model can
be regarded as both hierarchical and identity-based extension of key-insulated
encryption [13]. Similar to [13], we address random-access key-update, namely,
allowing one-step renewal of current decryption key to any of the decryption
keys of any time period (even the past keys). Random-access key-update lets
any ciphertext of any time period to be decrypted at any time.

Model. In our model, private devices are structured hierarchically into �-levels,
and for i = 1, · · · , �, i-th level helper key is stored in the i-th level device. Decryp-
tion key is stored in the 0-level PD (i.e. mobile phone). Key-update information
is generated using the i-th level helper key which is used to renew the (i− 1)-th
level helper key for i = 2, · · · , �. Decryption key is renewed using the helper key
of the 1st-level PD (i.e. PD-BC). To make things simple, we consider � = 2: 1st-
and 2nd-level PD corresponds to PD-BC and PD that updates PD-BC helper
key, respectively. (Note that this can be generalized for arbitrary � ≥ 1.)

Now, let T0(·) and T1(·) map time to corresponding time periods for de-
cryption key and 1st-level helper key, respectively. For example, assuming that
decryption key and 1st-level helper key is updated every day and every 2-3
months, respectively, we have T0(2005/Aug./26th/17 : 00) = 2005/Aug./26th
and T1(2005/Aug./26th/17 : 00) = 2005/Jul.-Sep.. In addition, we let T2(·) be
a function such that for all time, T2(time) = 0. At time, time, user updates his
decryption key if 1st-level helper key is valid for the time period T1(time), and a
1st-level helper key can be updated at any time. Def. 1 formally addresses this.

Definition 1 (IKE) A 2-level identity-based key-insulated encryption scheme
(IKE) IKE consists of 8 algorithms: IKE = (PGenIKE,GenIKE,Δ-Geni

IKE,Updi
IKE (i =

1, 2),EncIKE,DecIKE) and each are described as follows.
PGenIKE. The public-parameter generation algorithm PGenIKE(1k) where k is the



security parameter and outputs a master key s and a public parameter p. Note
that PGenIKE and GenIKE are used by the PKG only.
GenIKE. The user-secret generation algorithm GenIKE takes s, p and user’s identity
U as inputs, and outputs U ’s initial private keys (d0

0, d
1
0, d

2
0) where d0

0 is the U ’s
initial decryption key, and di

0 (i = 1, 2) are stored in U ’s i-th level PD as initial
i-th helper key.
Δ-Geni

IKE. A helper key stored in the 1st-level PD and Δ-Gen1
IKE are used to gener-

ate the key-update information required to renew the decryption key. Similarly, a
helper key stored in the 2nd-level PD and Δ-Gen2

IKE are used to generate the key-
update information required to renew the 1st-level helper key. More specifically,
for i = 1, 2, the key-update information generation algorithm Δ-Geni

IKE takes di
t,

p, U and time as inputs, and outputs key-update information δi−1
Ti−1(time) only if

t = Ti(time).
Updi

IKE. U ’s decryption key, key-update information δ0T0(time)
and Upd1

IKE are used
to generate U ’s decryption key for time. Similarlly, U ’s 1st-level helper key, key-
update information δ1T1(time)

and Upd2
IKE are used to generate U ’s 1st-level helper

key for time. More specifically, for i = 1, 2, the key-update information gener-
ation algorithm Updi

IKE takes di−1
t , p and δi−1

Ti−1(time)
as inputs for any t, and

outputs a new key di−1
Ti−1(time) for time period Ti−1(time).

EncIKE. The encryption algorithm EncIKE inputs m, U , p and time where m is
a plaintext, U is the user identity and time indicates the time at which m is
encrypted, and outputs ciphertext 〈c, time〉.
DecIKE. The decryption algorithm DecIKE inputs 〈c, time〉, d0

t and p, and outputs
m or ⊥ where ⊥ indicates failure. DecIKE correctly recovers the plaintext only if
t = T0(time).

Security Definition. Security of IKE is based on the assumption that adversary
does not (illegally) obtain all of the target user’s keys all at once. Recall that
helper keys of different levels in the hierarchy are managed differently (most
likely stored at different places). It is unlikely for such an event to occur, i.e. an
adversary to obtain all of the keys of all levels all at once, considering that PDs
are disconnected from the network most of the time. We also like to remind that
it gets much harder to steal the keys as the levels in the hierarchy increase this
is because PDs in the higher levels are connected to the network less frequently
and also managed in places physically much safer.

We consider an attack model based on the standard IND-ID-CCA setting in
[7, 8] plus the next case: when an adversary is allowed access to any of target
user’s keys and also the helper keys but excluding the combinations of keys that
can trivially lead to the target key from the definition of IKE. Next, we give
some examples of key exposures for our security definition.

Examples of Key Exposures. We consider a 2-level IKE: decryption key is
renewed every day, 1st-level helper key is renewed every three months and 2nd-
level helper key is never updated. Then, any ciphertext for 2005/Dec./31st should
not be decrypted by dishonest means even for the following cases:



1. Exposures of the victim’s 1st-level helper keys for 2005/Jan.-Mar., · · · , 2005/
Jul.-Sep. and decryption keys for 2005/Jan./1st, · · · , 2005/Dec./30th

2. Exposures of the victim’s 2nd-level helper key and decryption keys for 2005/
Jan./1st, · · · , 2005/Dec./30th

3. Exposures of the victim’s 2nd-level helper key and 1st-level helper keys for
2005/Jan.-Mar., · · · , 2005/Oct.-Dec.

Again, we exclude the combinations of keys that can trivially determine the
target key, for example, exposures of both the victim’s 1st-level helper key for
2005/Oct.-Dec. and decryption key for 2005/Dec./30th. It is obvious that a de-
cryption key for 2005/Dec./31st is easily computable from the definition of IKE.
We do not consider these cases.

Next, we formally address the security definition. In our attack model, ad-
versary is allowed access to the following four types of oracles: (1) key gener-
ation oracle KG(·, s, p), which on input U , returns U ’s initial decryption keys
(d0

0, d
1
0, d

2
0) and (2) left-or-right encryption oracle LR(·, ·, ·, ·, p, b) [3], which for

given U , time and equal length messages m0,m1, returns challenge ciphertext
c := EncIKE(mb, U, p, time) where b ∈R {0, 1}, and models encryption requests of
an adversary of a user identity and a message pair of his choice. The third is a
(3) decryption oracle D(·, ·, s, p) which on input U and 〈c, time〉, returns decryp-
tion result of c with the corresponding decryption key d0

t where t = T0(time).
This models chosen ciphertext attack. With these three oracles, KG, LR and D,
the standard IND-ID-CCA setting can be modeled. In addition to the above, we
introduce a (4) key issue oracle KI(·, ·, ·, s, p) which on input i, U and time, re-
turns di

t where t = Ti(time). This models partial exposure of honest user’s keys
including the victim’s keys. The adversary may query the four oracles adaptively
in any order he wants subject to the restriction that he makes only one query to
LR. Let U∗ be the user’s identifier of this query, and let 〈c∗, time∗〉 denote the
challenge ciphertext returned by LR in response to this query. Also, the adver-
sary is not allowed to ask KG and KI for queries which can trivially determine
U∗’s decryption key for time∗ from the definition of IKE. The adversary succeeds
the attack by guessing the value b, and the scheme is considered to be secure
if any probabilistic polynomial time adversary has success probability negligibly
close to 1/2.

Definition 2 (KE-CCA security) Let IKE be a 2-level identity-based key-
insulated encryption scheme. Define adversary A’s succeeding probability as:

SuccA,IKE := Pr[(s, p)← PGenIKE(1k); b ∈R {0, 1};
b′ ← AKG(·,s,p),LR(·,·,·,·,p,b),D(·,·,s,p),KI(·,·,·,s,p) : b′ = b]

where U∗ is never asked to KG(·, s, p) and (U∗, 〈c∗, time〉) is never asked to
D(·, ·, s, p) such that T0(time) = T0(time∗). A can ask KI for any keys of any
users if there exists a “special level” j ∈ {0, 1, 2} such that

– KI(j, U∗, time, s, p) is never asked for any time, and



– KI(i, U∗, time, s, p) is never asked for any (i, time) such that i < j and
Ti(time) = Ti(time∗).

Then, IKE is KE-CCA secure (KE-CCA stands for key exposure & chosen cipher-
text attack) if, for any probabilistic polynomial time adversary A, |SuccsA,IKE −
1/2| is negligible. (Note that a “special level” is a level in which the PD of U∗ is
not compromised. Also, recall 0-level PD is the user’s terminal, i.e. the mobile
phone.)
Exposure of Key-Update Information. If we look closer into the security
of IKE, it can be realized that exposure of key-update information should also
be considered in addition to the above discussion. Although, we can also see
that it is obvious that if δi

Ti(time)
can be computed from di

Ti(time)
and di

t for any
time and t, then, exposure of key-update information can be simulated by using
KI. Hence, if this property holds, then the security definition so far discussed
will be sufficient (by itself) even when exposure of the key-update information
is considered. As a matter of fact all of our constructions satisfy this property.

3 Straightforward IKE from HIBE is Insecure

Although HIBE and IKE are alike in some sense, it is not as simple as bringing
HIBE as building blocks to construct KE-CCA secure IKE. We give further
discussion on this later, but first, we clarify the relation between HIBE and
IKE.

Brief Review of HIBE. HIBE distributes the workload of the PKG in IBE
by organizing the PKGs in a hierarchical tree structure. Security definition of
an HIBE follows. This definition runs parallel with [22] which is the hierarchical
extension of Boneh and Franklin’s IBE [7, 8]. Note that 1-level HIBE refers to a
standard IBE. A user in an HIBE hierarchy is defined as a tuple of identities:
(Dt−1.Dt−2. · · · .D0) where t denotes depth of the hierarchy. The user’s ancestors
in the hierarchy tree include the root-PKG and users/sub-PKGs whose identities
are {(Dt−1.Dt−2. · · · .Di : 0 ≤ i ≤ t− 1)}.
Definition 3 (HIBE) A t-level hierarchical identity-based encryption (HIBE)
HIBE consists of 3+t algorithms: HIBE = (PGenHIBE,Geni

HIBE (1 ≤ i ≤ t),EncHIBE,
DecHIBE) and are defined as follows:
PGenHIBE. The public-parameter generation algorithm PGenHIBE(1k) where k is
the security parameter, outputs root-master key s and public parameter p.
PGenHIBE is used only by the root-PKG.
Geni

HIBE. The user-secret generation algorithm Gent
HIBE inputs Dt−1, s and p,

and outputs Dt−1’s key sDt−1 . Similarly, Gent−i+1
HIBE takes Dt−1.Dt−2. · · · .Dt−i,

sDt−1.Dt−2.···.Dt−i+1 and p as inputs, and outputs Dt−1.Dt−2. · · · .Dt−i’s key
sDt−1.Dt−2.···.Dt−i for 2 ≤ i ≤ t. Here, for 1 ≤ i ≤ t − 1, sDt−1.Dt−2.···.Dt−i is
the sub-master key which enables Dt−1.Dt−2. · · · .Dt−i to generate his descen-
dant’s keys, and sDt−1.Dt−2.···.D0 is the decryption key of Dt−1.Dt−2. · · · .D0.
EncHIBE. The encryption algorithm EncHIBE takes m, Dt−1.Dt−2. · · · .D0 and p as
inputs where m is a plaintext and Dt−1.Dt−2. · · · .D0 is the receiver’s identity,



and outputs a ciphertext c.
DecHIBE. The decryption algorithm DecHIBE takes c, sDt−1.Dt−2.···.D0 and p as in-
puts, and outputs m or ⊥ which means failure. DecHIBE recovers the plaintext
only if c is encrypted correctly using Dt−1.Dt−2. · · · .D0 as an encryption key.

Security of an HIBE is defined as follows. An adversary adaptively selects a target
user’s identity and equal length messages m0,m1 and submits to a left-or-right
encryption oracle LR which returns ciphertext of mb such that b ∈R {0, 1} for a
target user. The adversary also have access to a decryption oracle D which gives
decryption results of any ciphertext except for the challenge ciphertext from LR.
There is also a key generation oracle KG which exposes any user key except for
the target’s and its ancestors’. HIBE is secure if an adversary correctly deter-
mines b with probability at most 1/2 + neg where neg is negligible. HIBE is
IND-HID-CCA (resp. IND-HID-CPA) if unlimited access to D and KG (resp. only
KG) is allowed [22]. HIBE is IND-wHID-CCA (resp. IND-wHID-CPA) if unlimited
access (resp. no access) to D is allowed while the number of queries to KG is
bounded as follows [24]: unlimited access is allowed for at least one level in the
hierarchy, but for the rest of the levels, the number of queries do not exceed the
threshold value w such that w = O(poly(k)). See Appendix A for more details.

An Insecure IKE from HIBE. Consider the following (insecure) construction
of a 2-level IKE based on a 3-level HIBE: In the initial phase, PKG generates
(s, p) := PGenHIBE(1k) and user U ’s 2nd-level helper key d2

0 := Gen3
HIBE(U, s, p).

At time, U generates his 1st-level helper key d1
T1(time) := Gen2

HIBE(T1(time), d2
0, p)

and decryption key d0
T0(time)

:= Gen1
HIBE(T0(time), d1

T1(time), p). For a message m
for U at time, a ciphertext c is generated as c = EncHIBE(m,U.T1(time).T0(time), p).
Renewal of decryption keys in IBE from HIBE is described in [24] as well.

We show a straightforward construction of an IKE from HIBE which is in-
secure (i.e. not KE-CCA secure). The above (insecure) construction does not
satisfy the security of 2. and 3. of the Examples of Key Exposures. from
the previous section. Namely, if the 1st-level PD (or the PD-BC) is stolen at
2005/Oct./1st/0:00, then confidentiality of the ciphertexts generated during
period 2005/Oct.-Dec. is lost. Morover, exposure of the 2nd-level helper key can
alone compromise the security for any time period. Therefore, a straightforward
construction of IKE from HIBE is not KE-CCA secure.

4 Generic Construction

Basic Idea. As shown in the previous section, straightforward construction of
an IKE from HIBE is vulnerable, and for such a system, loss of only one of
users’ PDs implies compromisation of the entire system. In this section, we show
a generic construction of a secure IKE built from three distinct HIBEs. Here’s
the general idea: each of three HIBEs each plays a part to mutually secure the
different types of key exposures, consequently, protecting the system totally,
guaranteeing its security even if a PD is compromised. We extend a technique
called multiple encryption proposed in [28] to construct a KE-CCA secure IKE
from HIBE. It is important to note that the original [28] scheme is applied only



PGenIKE(1
k): GenIKE(s, p, U):

(sh, ph)← PGenHIBEh
(1k), 1 ≤ h ≤ 3 parse s = (s1, s2, s3)

choose Hh, 1 ≤ h ≤ 3 sh,U ← Genh
HIBEh

(U, sh, ph), 1 ≤ h ≤ 3

return s := (s1, s2, s3) d0
0 := (s1,U , ·, ·), d1

0 := (s2,U , ·), d2
0 := s3,U

p := (p1, p2, p3, H1, H2, H3) return (d0
0, d

1
0, d

2
0)

Δ-Gen1
IKE(d1

t , p, U, time): Δ-Gen2
IKE(d2

0, p, U,time):

parse d1
t = (σ2, σ3) parse d2

0 = σ3(= s3,U )

σ′
h ← Gen1

HIBEh
(T0(time), σh, ph), h = 2, 3 σ′

3 ← Gen2
HIBE3

(T1(time), σ3, p3)

return δ0
T0(time) := (σ′

2, σ
′
3) return δ1

T1(time) := σ′
3

Upd1
IKE(d

0
t , p, δ0

T0(time)): Upd2
IKE(d

1
t , p, δ1

T1(time)):

parse d0
t = (σ1, σ2, σ3) parse d1

t = (σ2, σ3)

parse δ0
T0(time) = (σ′

2, σ
′
3) parse δ1

T1(time) = σ′
3

return d0
T0(time) := (σ1, σ

′
2, σ

′
3) return d1

T1(time) := (σ2, σ
′
3)

EncIKE(m, U, p, time):

m1, m2 ∈R {0, 1}n, m3 := m⊕m1 ⊕m2

r1, r2, r3 ∈R {0, 1}k1

Rh := Hh(m, mh, r1, r2, r3), 1 ≤ h ≤ 3

U1 := U , U2 := U.T0(time), U3 := U.T1(time).T0(time)

ch := EncHIBEh (mh||rh, Uh, ph; Rh), 1 ≤ h ≤ 3

return 〈c, time〉 := 〈(c1, c2, c3), time〉
DecIKE(〈c′, time〉, d0

t , p):

output ⊥ and halt if t 	= T0(time)

parse c′ = (c′1, c
′
2, c

′
3)

parse d0
t = (σ1, σ2, σ3)

(m′
h||r′h)← DecHIBEh (c′h, σh, ph), 1 ≤ h ≤ 3

m′ := ⊕1≤h≤3m
′
h

validity check by re-encryption

return m′

Fig. 1. Generic Construction of KE-CCA Secure IKE from IND-HID-CPA HIBE.

to standard public key encryption, so, straightforward adoption of this scheme,
again, does not immediately imply a secure IKE.

Construction. Fig. 1 shows a generic construction of KE-CCA secure IKE from
any HIBE where each of HIBEs has only chosen plaintext security, i.e. IND-HID-
CPA (See Appendix A). Here, we give supplementary explanation of the Fig. 1
and give discussion on our generic construction in more details.

Let HIBEh = (PGenHIBEh
,Geni

HIBEh
(1 ≤ i ≤ h),EncHIBEh

,DecHIBEh
) be h-level

HIBE for 1 ≤ h ≤ 3 and construct a 2-level IKE IKE = (PGenIKE,GenIKE,Δ-Geni
IKE,

Updi
IKE (i = 1, 2),EncIKE,DecIKE) as follows.

PGenIKE sets up the master keys and public parameters of HIBEh and cryp-
tographic hash functions Hh : {0, 1}2n+3k1 → COIN for 1 ≤ h ≤ 3 where n
denotes the size of a message of IKE. COIN is the internal coin-flipping space of



EncHIBEh
assuming that n+ k1 is the size of a message in HIBEh.1 The security

analysis will view Hh as random oracles. GenIKE generates U ’s secrets of HIBEh

for 1 ≤ h ≤ 3 as U ’s initial key for IKE. Δ-Gen1
IKE generates decryption keys

of HIBE2 and HIBE3 for identities U.T0(time) and U.T1(time).T0(time), respec-
tively, as the “differential” of the U ’s previous key and of the next renewed key
at time. Then, Upd1

IKE generates U ’s decryption key of IKE for time by com-
bining the differential with the U ’s previous key. Similarly, Δ-Gen2

IKE generates
a sub-master key of HIBE3 for U.T1(time), and Upd2

IKE generates U ’s 1st-level
helper key of IKE for time by combining U ’s previous key and Δ-Gen2

IKE’s out-
put. EncIKE securely integrates the three encryption algorithms of h-level HIBE
for 1 ≤ h ≤ 3. First, a plaintext m is divided into three shares m1,m2,m3,
and each mh (1 ≤ h ≤ 3) is encrypted by h-level HIBE HIBEh for identity
Uh where U1 := U , U2 := U.T0(time) and U3 := U.T1(time).T0(time). Here,
the technique in [28] is applied (but not straightforwardly, as mentioned earlier)
to securely integrating the three underlying HIBEs. DecIKE recovers each of the
three shares and composes them to recover the plaintext. It also checks the valid-
ity of the ciphertext by re-encryption. Namely, R′

h := Hh(m′,m′
h, r

′
1, r

′
2, r

′
3) and

νh ← EncHIBEh
(m′

h||r′h, Uh, ph;R′
h) are computed for 1 ≤ h ≤ 3, unless νh = c′h,

for all h, output ⊥, otherwise output m′. This scheme can easily be generalized
to an �-level IKE for arbitrary � ≥ 1.

Definition 4 (γ-uniformity [20]) Let HIBE = (PGenHIBE,Geni
HIBE (1 ≤ i ≤

t),EncHIBE,DecHIBE) be t-level HIBE. For given Dt−1.Dt−2. · · · .D0, x, y and z,
define

γ(Dt−1.Dt−2. · · · .D0, x, y, z)
:= Pr[r ←R COIN : z = EncHIBE(x,Dt−1.Dt−2. · · · .D0, y; r)],

where COIN is the internal coin-flipping space for EncHIBE. We say that HIBE
is γ-uniform if γ(Dt−1.Dt−2. · · · .D0, x, y, z) ≤ γ for any Dt−1.Dt−2. · · · .D0, x,
y and z.

Theorem 1 The above scheme is a KE-CCA secure 2-level IKE in the random
oracle model, assuming that HIBEh (1 ≤ h ≤ 3) are IND-HID-CPA HIBEs. More
precisely, suppose there is an adversary A who can break the above scheme with
probability 1/2 + εA with run time at most tA. Suppose A makes at most qKG,
qKI, qD, qH1 , qH2 , qH3 queries to KG, KI, D, H1, H2, H3, respectively. Then,
there is another adversary B who can break at least one of HIBEh (1 ≤ h ≤ 3)
in the sense of IND-HID-CPA with probability 1/2 + εB, and running time tB is:

εB ≥ 1
3
εA − 1

3
qH1 + qH2 + qH3

2k1
− 1

6
qDγmax,

tB ≤ tA + 2τENC + (2qKG + 5qKI)τGEN

+qD((qH1 + qH2 + qH3)τENC + qH1qH2qH3 ·O(k)),
1 For simplicity, we assume for all HIBEh, spaces of coin-flipping and messages to be
COIN and {0, 1}n+k1 , respectively.



assuming that γmax = max(γ1, γ2, γ3), HIBEi is γi-uniform, and running time
of Geni

HIBEh
and EncHIBEh

are at most τGEN and τENC , respectively, for any h
and i.

Proof. See Appendix B. 
�
Random Oracle. If we want to eliminate random oracle, multiple encryption
technique in [12] can be extended instead of the one we used of [28] to construct
a KE-CCA secure IKE, assuming that underlying HIBEs are all IND-HID-CCA
in the standard model, e.g. [11, 4–6, 27], while the above construction using [28]
requires only IND-HID-CPA HIBEs. Furthermore, by applying a similar method
to our proposed scheme, we can construct another KE-CCA secure IKE from
HIBE with only one-wayness under chosen plaintext attacks.

“Standard” Strongly Key-Insulated Encryption. By extending the multi-
ple encryption technique mentioned in the above, we can construct a generic con-
struction of a strongly secure key-insulated encryption [13] from a chosen plain-
text secure IBE and a chosen plaintext secure standard public key encryption.
This method can also be applied to the Cocks IBE [10] to construct a strongly
secure key-insulated encryption. (The Boneh-Franklin IBE based scheme was
proposed earlier in [9]).

5 Efficient Construction from Bilinear Mapping

Basic Idea. In the previous section, we showed a construction of KE-CCA secure
IKE using HIBE as a black-box. Here, we propose a construction of KE-CCA
secure IKE by directly extending Gentry-Silverberg HIBE (GS-HIBE) [22] and
Fujisaki-Okamoto conversion [19, 20]. The major difference between our two con-
struction is as follows: in our specific construction, h-level HIBEs for 1 ≤ h ≤ 3
are being integrated using a homomorphic property of pairing, while our generic
construction is based on multiple encryption [28]. Our specific construction is
more efficient than the generic construction. Note that since our specific con-
struction is based on a specific assumption, i.e. BDH assumption, it may lack
flexibility in designing new construction in terms of security.

Construction. As shown in Fig. 2, a 2-level IKE IKE = (PGenIKE,GenIKE,Δ-Geni
IKE,

Updi
IKE (i = 1, 2),EncIKE, DecIKE) can be constructed using bilinear mapping.

Here, we give supplementary explanation of the Fig. 2 and give discussion on
our specific construction in more details.

PGenIKE generates two cyclic groups G1 and G2 of prime order q and an effi-
ciently computable mapping ê : G1 ×G1 → G2 such that ê(aP, bQ) = ê(P,Q)ab

for all P,Q ∈ G1 and any positive integers a, b. This does not send all pairs in
G1 ×G1 to the identity in G2. Also, PGenIKE chooses cryptographic hash func-
tions H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}n+k1 and H3 : {0, 1}n×{0, 1}k1 → Zq,
where n denotes the size of the message space. The security analysis will view
H1, H2, H3 as random oracles. It further generates master key s and its corre-
sponding public paramter Q. GenIKE, Δ-Geni

IKE and Updi
IKE (i = 1, 2) are the

same as in the generic construction based on [22]. Based on the homomorphic



PGenIKE(1
k): GenIKE(s, p, U):

set up G1, G2, ê, P ∈ G1 PU := H1(U) ∈ G1

s0
1, s

1
2, s

2
3 ∈R Zq S0

1 := s0
1PU , S1

2 := s1
2PU , S2

3 := s2
3PU

Q := (s0
1 + s1

2 + s2
3)P d0

0 := (S0
1 , (·, ·), (·, ·, ·))

choose H1, H2, H3 d1
0 := (S1

2 , (·, ·))
return s := (s0

1, s
1
2, s

2
3) d2

0 := S2
3

p := (G1, G2, ê, P, Q, H1, H2, H3) return (d0
0, d

1
0, d

2
0)

Δ-Gen1
IKE(d

1
t , p, U, time): Δ-Gen2

IKE(d
2
0, p, U, time):

parse d1
t = (S1

2 , (S1
3 , Q1

3)) parse d2
0 = S2

3

s0
2, s

0
3 ∈R Zq s1

3 ∈R Zq

Pt0 := H1(U.T1(time).T0(time)) Pt1 := H1(U.T1(time))

Ŝ0
h := S1

h + s0
hPt0 , Q̂0

h := s0
hP , h = 2, 3 Ŝ1

3 := S2
3 + s1

3Pt1 , Q̂1
3 := s1

3P

return δ0
T0(time) := ((Ŝ0

2 , Q̂0
2), (Ŝ

0
3 , Q̂0

3, Q
1
3)) return δ1

T1(time) := (Ŝ1
3 , Q̂1

3)

Upd1
IKE(d

0
t , p, δ0

T0(time)): Upd2
IKE(d

1
t , p, δ1

T1(time)):

parse d0
t = (S0

1 , (S0
2 , Q0

2), (S
0
3 , Q0

3, Q
1
3)) parse d1

t = (S1
2 , (S1

3 , Q1
3))

parse δ0
T0(time) = ((Ŝ0

2 , Q̂0
2), (Ŝ

0
3 , Q̂0

3, Q̂
1
3)) parse δ1

T1(time) = (Ŝ1
3 , Q̂1

3)

return d0
t := (S0

1 , (Ŝ0
2 , Q̂0

2), (Ŝ
0
3 , Q̂0

3, Q̂
1
3)) return d1

T1(time) := (S1
2 , (Ŝ1

3 , Q̂1
3))

EncIKE(m, U, p, time):

PU := H1(U), Pt1 := H1(U.T1(time)), Pt0 := H1(U.T1(time).T0(time))

μ ∈R {0, 1}n, r := H3(μ, m), g := ê(Q, PU )

c := 〈rP, rPt1 , rPt0 , (m||μ)⊕H2(g
r)〉

return 〈c, time〉
DecIKE(〈c′, time〉, d0

t , p):

parse c′ = 〈V, Vt1 , Vt0 , W 〉
parse d0

t = (S0
1 , (S0

2 , Q0
2), (S

0
3 , Q0

3, Q
1
3))

(m′||μ′) := W ⊕H2(
ê(S0

1+S0
2+S0

3 ,V )

ê(Q0
2+Q0

3,Vt0 )ê(Q1
3,Vt1 )

)

validity check by re-encryption

return m′

Fig. 2. KE-CCA Secure IKE from Bilinear Mapping.

property of pairing, EncIKE and DecIKE integrates three HIBE encryptions into
one. Although, not mentioned in Fig. 2, to protect from active attacks, DecIKE

outputs ⊥ and halts if (i) t �= T0(time) or (ii) (V, Vt1 , Vt0 ,W ) �∈ G1
3×{0, 1}n+k1

or (iii) re-encryption of m′ for U , time and μ′ is not identical to 〈c′, time〉.

Theorem 2 The above scheme is a KE-CCA secure 2-level IKE in the random
oracle model assuming that a computational BDH (CBDH) problem [7, 8] is hard
to solve. More precisely, we suppose there is an adversary A who breaks the
above scheme with probability 1/2 + εA with run time at most tA. Also, suppose
that A makes at most qKG, qKI, qD, qH2 , qH3 queries to KG, KI, D, H2, H3,
respectively. Then, there is another adversary who can solve the CBDH problem



with probability εcbdh and running time tcbdh where

εcbdh ≥ 6
e3qH2(3 + qKG + qKI)3

· (εA − qH3

2k1
− qD

2q
),

tcbdh ≤ O(tA + (2qKG + 5qKI)τEXP + qD(τê + qH3τEXP + qH2qH3 ·O(k))),

assuming time for exponentiation over G1 is at most τEXP , and time for pairing
computation is at most τê.

Proof of the theorem is given in the full version of this paper [23].

Efficiency. In a pairing based scheme, the dominant factor that decides its to-
tal computation cost is the number of pairing computation carried out. For the
above construction of KE-CCA secure IKE from bilinear mapping, only one and
three pairing computations are required for encryption and decryption, respec-
tively. On the other hand, for the generic construction (shown in the previous
section) using [22] as the underlying HIBE, the numbers of pairing computation
for encryption and decryption are three and six, respectively.

6 Generic HIBE from Any IBE

As seen from our discussion given so far, HIBE serves as important role as build-
ing blocks of various cryptographic schemes including the ones that we have pro-
posed. In this section, we show a generic construction of HIBE from arbitrary
IBE that also provides a partial solution to an open problem of HIBE. We can,
for example, bring the Cocks IBE [10] to construct an HIBE, also implying that
hereafter a new construction of an IBE is ever proposed, it can also be converted
to construct an HIBE. For the security definition, we introduce partial collusion
resistance (i.e. IND-wHID-CCA) [24] instead of full collusion resistance (i.e. IND-
HID-CCA) [22]. The security definition is more relaxed but our contribution is
significant as this is the first generic HIBE construction built from an arbitrary
IBE. In this section, for simplicity, we show a construction of a 2-level HIBE,
but it can also be extended for a t-level HIBE for t > 2.

Security Definition. Our construction of a generic HIBE proposed here is
based on the security definition of [24]. Particularly, for our 2-level construc-
tion of HIBE, it is collusion free for the users (in the lower domain), but has
polynomial-sized collusion threshold w for the sub-PKGs (in the higher domain),
where w = O(poly(k)) and k is a security parameter.

Cover Free Family. We use cover free family (CFF) [17] as a building block,
similar to the generic construction of key-insulated encryption [13]. Reminding
that, method used in [13] only addresses chosen plaintext security, and cannot
be applied straightforwardly to construct a chosen ciphertext secure HIBE.

Definition 5 (CFF) Let L := {�1, �2, · · · , �u} and F = {F1, · · · , Fv} be a fam-
ily of subsets of L. We call (L, F ) an (u, v, w)-cover free family (CFF) if for all
Fi ∈ F , Fi �⊂ Fj1 ∪ · · · ∪ Fjw for any Fjκ(�= Fi) ∈ F , κ ∈ {1, ..., w}.



PGenHIBE(1
k):

generate (u, v,w)-CFF (L, F )

(si, pi)← PGenIBE(1
k), 1 ≤ i ≤ u

choose H : {0, 1}∗ → F and Hi : {0, 1}2n+ûk1 → COIN , 1 ≤ i ≤ u

return s := {si}1≤i≤u and p := (H, {pi, Hi}1≤i≤u)

Gen2
HIBE(D

1, s, p): Gen1
HIBE(D1.D0, sD1 , p):

parse s = {si}1≤i≤u parse sD1 = {si}i∈F
D1

FD1 := H(D1) ∈ F si,D1.D0 ← GenIBE(D
1.D0, si, pi), i ∈ FD1

return sD1 := {si}i∈F
D1 return sD1.D0 := {si,D1.D0}i∈F

D1

EncHIBE(m, D0.D1, p):

FD1 := H(D1) ∈ F

mi ∈R {0, 1}n, i ∈ FD1 such that ⊕i∈F
D1 mi = m

ri ∈R {0, 1}k1 , i ∈ FD1

ci ← EncIBE(mi||ri, D
0.D1, pi; Hi(m,mi, R)), i ∈ FD1

return c := {ci}i∈F
D1

DecHIBE(c
′, sD1.D0 , p):

parse c′ = {c′i}i∈F
D1

parse sD1.D0 = {si,D1.D0}i∈F
D1

(m′
i||r′i)← DecIBE(c

′
i, si,D1.D0 , pi), i ∈ FD1

m′ := ⊕i∈F
D1 m′

i

validity check by re-encryption

return m′

Fig. 3. Generic Construction of Partially Collusion Resistant HIBE.

It should be noted that there exist nontrivial constructions of CFF with u =
O(w2 log v) and #Fi = O(w log v) (1 ≤ i ≤ v). In the following, we assume
#F1 = #F2 = · · · = #Fv = û for some û and #{Fi|�j ∈ Fi ∈ F} ≥ [vû/u] for
all �j ∈ L. Concrete methods for generating CFF are given in [18].

Construction. Fig. 3 shows a generic construction of a chosen ciphertext secure
2-level HIBE with partial collusion resistance from an arbitrary IND-ID-CPA
IBE using CFF. Here, we give supplementary explanation of the Fig. 3 and give
discussion on our generic construction of HIBE in more details.

Let IBE = (PGenIBE,GenIBE,EncIBE,DecIBE) be standard IBE (i.e. 1-level
HIBE). Then, 2-level HIBE HIBE = (PGenHIBE,Geni

HIBE (i = 1, 2),EncHIBE,DecHIBE)
can be constructed as follows.

PGenHIBE generates (u, v, w)-CFF (L, F ) and u pairs of master key and public
parameter of IBE where L = {1, · · · , u}, u = O(poly(k)), v = O(exp(k)) and
w = O(poly(k)). For hash functions, n denotes the size of a message of HIBE,
and COIN represents the internal coin-flipping space of EncIBE, assuming that
n + k1 is the size of a message in IBE. The security analysis will view H and
Hi (1 ≤ i ≤ u) as random oracles. Gen2

HIBE picks master keys corresponding to
FD1 . Gen1

HIBE generates IBE decryption keys by using sD1 = {si}i∈FD1 . EncHIBE

encrypts m with encryption algorithms which correspond to FD1 where R is a



concatenation of all ri arranged in increasing order of i for i ∈ FD1 . DecHIBE

decrypts all c′i for i ∈ FD1 . Then, it re-encrypts m′ with m′
i and r′i. Unless the

encryption result is identical to c′, DecHIBE outputs ⊥, otherwise, outputs m′.

Theorem 3 The above scheme is IND-wHID-CCA in the random oracle model,
with a restriction that an adversary is allowed to query sub-PKGs’ keys at most
w times, assuming that IBE is IND-ID-CPA. More precisely, assume an adversary
A who breaks the above scheme with probability 1/2 + εA with run time at most
tA and that A makes at most qKG, qD, qHi queries to KG, D, Hi (1 ≤ i ≤ u),
respectively. Then, there is another adversary B who can break IBE in the sense
of IND-ID-CPA with probability 1/2 + εB and running time tB where

εB ≥ û

u2
(εA − qall

2k1
− γqD

2
),

tB ≤ tA + ûτENC + qKGûτGEN + qD(qΣτENC + qΠ ·O(k)),

and qall :=
∑

1≤i≤u qHi , qΣ := max{i1,···,iû}⊆{1,···,u}(
∑

i∈{i1,···,iû} qHi) and qΠ :=
max{i1,···,iû}⊆{1,···,u}(

∏
i∈{i1,···,iû} qHi), assuming that IBE is γ-uniform, and run-

ning time of GenIBE and EncIBE is at most τGEN and τENC, respectively.

Proof of the theorem is given in the full version of this paper [23].
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Appendix A: Formal Security Definitions for HIBE

Here, we give a formal security definition of hierarchical identity-based encryp-
tion (HIBE). The definition runs parallel with [22] and [24] which is the hierar-
chical extension of Boneh and Flanklin’s IBE [7, 8].

Regarding chosen ciphertext attacks, we address the following three types of
oracles: First, is a key generation oracle KG which on input Dt−1.Dt−2. · · · .Di,



returns Dt−1.Dt−2. · · · .Di’s secret sDt−1.Dt−2.···.Di for 0 ≤ i ≤ t − 1. Next, is a
left-or-right encryption oracle LR which for a given user D∗,t−1.D∗,t−2. · · · .D∗,0

and equal length messages m0,m1, picks b ∈R {0, 1} and returns a challenge ci-
phertext c := EncHIBE(D∗,t−1.D∗,t−2. · · · .D∗,0,mb, p). This models an encryption
request of an adversary who can pick a target’s identity and a message pair of his
choice. Finally, the adversary is allowed access to a decryption oracle D, which on
inputDt−1.Dt−2. · · · .D0 and a ciphertext c, returns a decryption result of c using
sDt−1.Dt−2.···.D0 . This models the chosen ciphertext attack. Also, if considering
only chosen plaintext attacks, any access to D is prohibited while accesses to KG
and LR remain permitted. An adversary may query the three oracles adaptively
in any order he wants, subject to the restriction that he makes only one query
to the left-or-right oracle. Let D∗,t−1.D∗,t−2. · · · .D∗,0 be the user’s identifier of
this query and let c∗ denote the challenge ciphertext returned by the left-or-right
oracle in response to this query. The adversary succeeds by guessing the value
b. A HIBE is considered secure, if any probabilistic polynomial time adversary
has success probability negligibly close to 1/2.

Definition 6 Let HIBE = (PGenHIBE,Geni
HIBE (1 ≤ i ≤ t),EncHIBE,DecHIBE) be

a hierarchical identity-based encryption scheme. Define adversary A’s succeeding
probability in the above chosen ciphertext attack game as:

SuccA,HIBE := Pr[(s, p)← PGenHIBE(1k); b ∈R {0, 1};
b′ ← AKG(·,s,p),LR(·,·,·,s,p),D(·,·,s,p) : b′ = b],

where any element in {(D∗,t−1.D∗,t−2. · · · .D∗,i : 0 ≤ i ≤ t − 1)} is never asked
to KG and A is not allowed to query D(D∗,t−1.D∗,t−2. · · · .D∗,0, c∗, s, p) if c∗ is
returned by LR. Then, HIBE is

– IND-HID-CCA if |SuccA,HIBE − 1/2| is negligible for any probabilistic polyno-
mial time adversary A (particularly, we call IND-ID-CCA if t = 1),

– IND-HID-CPA if |SuccA,HIBE − 1/2| is negligible for any probabilistic polyno-
mial time adversary A who is not allowed to submit any query to D at all
(particularly, we call IND-ID-CPA if t = 1),

– IND-wHID-CCA if |SuccA,HIBE − 1/2| is negligible for any probabilistic poly-
nomial time adversary A who is allowed to submit queries to KG at most w
times for given layers in the hierarchy (A is also allowed to submit unlimited
number of queries to KG for at least one layer),

– IND-wHID-CPA if |SuccA,HIBE − 1/2| is negligible for any probabilistic poly-
nomial time adversary A who is allowed to submit queries to KG at most w
times for given layers in the hierarchy, but no query to D is permitted (A is
also allowed to submit unlimited number of queries to KG for at least one
layer).

Next, we give concrete examples for the above IND-wHID-CCA and IND-wHID-
CPA. Suppose we have a 2-level HIBE which includes a root-PKG layer, a sub-
PKG layer and a user layer. The sub-PKG layer is set as the special layer in



which the number of queries from the adversary is bounded. In the IND-wHID-
CCA (or IND-wHID-CPA) setting, an adversary is allowed to ask the sub-PKGs’
keys for at most w times while allowing unlimited number of user’s decryption
keys to be exposed. In addition to KG, the adversary is allowed access to D also
when considering the IND-wHID-CCA setting.

Appendix B: Proof of Theorem 1

Here, we prove KE-CCA security for our generic construction. We construct an
adversary B who can break at least one of underlying HIBEs in the sense of IND-
HID-CPA by using another adversary A who is able to break KE-CCA security
of the proposed IKE.

For given public parameters ph (1 ≤ h ≤ 3) which corresponds to HIBEh,
respectively, B chooses i′ ∈ {0, 1, 2} and computes PGenHIBEh

(1k) = (s′h, p
′
h) for

1 ≤ h ≤ 3, h �= i′ + 1. Also, B sets (p1, p
′
2, p

′
3), (p′1, p2, p

′
3) and (p′1, p

′
2, p3) for

i′ = 0, 1 and 2, respectively, as (part of) public parameter of IKE and sends it
to A. On A’s requests for the oracles, B answers to them following the next
simulation:

Simulation of LR. For an LR oracle query U∗, time∗,m0,m1 from A, B simu-
lates IKE’s LR oracle as follows. First, B sets a = i′+1. For all h (1 ≤ h ≤ 3, h �=
a), B picks mh ∈R {0, 1}n and rh ∈R {0, 1}k1 such that ⊕1≤h≤3,h �=amh = α for
α ∈R {0, 1}n. Also, B sets ma,0 = m0 ⊕ α and ma,1 = m1 ⊕ α. Then, B
picks ra,j ∈R {0, 1}k1 for j = 0, 1, and sets U∗

1 = U∗, U∗
2 = U∗.T0(time∗) and

U∗
3 = U∗.T1(time∗).T0(time∗). Also, B sends U∗

a , (ma,0||ra,0), (ma,1||ra,1) to
B’s own LR oracle which corresponds to HIBEa, and the oracle returns challenge
ciphertext c∗a. Next, B encrypts (mh||rh) by the encryption algorithm of HIBEh

with p′h and U∗
h , and produces challenge ciphertexts c∗h for 1 ≤ h ≤ 3, h �= a.

Finally, B returns 〈(c∗1, c∗2, c∗3), time∗〉 to A. Note that B’s goal is to distinguish
the underlying plaintext of c∗a.

Simulation of Hh. For Hh (1 ≤ h ≤ 3) oracle queries, B returns random val-
ues if the query has never been asked before, otherwise B returns the same value
as before. If a Hh query is identical to (mb′ ,mh, ω1, ω2, ω3) such that ωa = ra,b′

and ωh = rh (1 ≤ h ≤ 3, h �= a) for some b′ ∈ {0, 1} (here, ma means ma,b′), B
outputs 〈b′, a〉 and halts.

Simulation of KG. It is clear that for any of the KG queries, B can answer it
perfectly by asking B’s own KG oracles. More precisely, on A’s request for a KG
oracle query U(�= U∗), B can ask U to B’s KG oracle corresponding to HIBEa,
as well as run user-secret generation algorithms of HIBEh with master key s′h for
1 ≤ h ≤ 3, h �= a. Then, B produces di

0 for 0 ≤ i ≤ 2 by using these results and
return (d0

0, d
1
0, d

2
0).

Simulation of KI. Interestingly, answers to A’s KI oracle query can be perfectly
simulated by B when i′ is the “special level” (see Def. 2) chosen by A. Namely,
B can perfectly answer any KI oracle query by using B’s own KG oracles which
corresponds to HIBEa and master keys s′h (1 ≤ h ≤ 3, h �= a) which correspond
to HIBEh. It should be noticed that the simulation is perfect even if U = U∗.



Simulation of D. On A’s D query for U and 〈c, time〉, B searches for the
combinations of A’s previous queries made to H1, H2, H3 such that each of the
combinations consists of the next three queries ψ1, ψ2, ψ3, where for 1 ≤ i ≤ 3,
query ψi is asked to Hi and ψi forms (m,mi, r1, r2, r3) for some n-bit strings
m, mi and k1-bit strings r1, r2, r3 such that ⊕1≤i≤3mi = m (note that m, r1, r2
and r3 are common for all ψ1, ψ2 and ψ3). If there exists such a combination
whose corresponding ciphertext (for U and time) is identical to 〈c, time〉, then
B returns m. Otherwise, B returns ⊥.

When A outputs b′, B also outputs 〈b′, a〉 as an answer for the IND-HID-CPA
game for HIBEa.

Now, we estimate B’s succeeding probability. Simulations of LR, Hh (1 ≤
h ≤ 3), and KG are perfect. Simulation of KI fails only when i′ is not the special
level chosen by A. Therefore, if we let 1/2 + εA be the succeeding probability of
A, then B’s succeeding probability can be estimated to be 1/2 + εB where

εB ≥ 1
3
(
1
2

+ εA − Pr[H-Ask]) · Pr[¬D-Fail] +
2
3
· 1
2
− 1

2
,

where H-Ask denotes an event that (mb,mh, ω1, ω2, ω3) such that ωa = ra,b and
ωj = rj (j �= a) is asked to Hh for some h, and D-Fail denotes an event that B
rejects a D query which should not be rejected.

Since it is informtion-theoretically impossible to find ra,b, we have Pr[H-Ask] ≤
1 − (1 − 1/2k1)qH1+qH2+qH3 where qHi (1 ≤ i ≤ 3) are the numbers of queries
made to Hi. Simulation of D fails only when A submits a ciphertext which
should not be rejected, but its corresponding Hi oracle query is not asked.
Therefore, Pr[¬D-Fail] ≥ (1− γmax)qD where qD is the number of queries for D,
γmax = max(γ1, γ2, γ3) assuming that HIBEi is γi-uniform.

Hence, we have

εB ≥ 1
3
(
1
2

+ εA − (1− (1− 1
2k1

)qH1+qH2+qH3 ))(1− γmax)qD +
2
3
· 1
2
− 1

2

≥ 1
3
εA − 1

3
qH1 + qH2 + qH3

2k1
− 1

6
qDγmax.

Also, if letting tA be A’s running time, then B’s running time can be estimated
to be tB, where

tB ≤ tA + 2τENC + (2qKG + 5qKI)τGEN

+qD((qH1 + qH2 + qH3)τENC + qH1qH2qH3O(k)),

assuming that the number of queries made to KG and KI is qKI and qKI, respec-
tively, and running time of Geni

HIBEh
and EncHIBEh

are at most τGEN and τENC ,
respectively, for any h and i. Therefore, εA is negligible if εB, 1/2k1 and γmax are
all negligible, and hence, our proposed generic construction of IKE is KE-CCA
secure. 
�


