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Abstract. In this paper, we propose a efficient and secure point mul-
tiplication algorithm, based on double-base chains. This is achieved by
taking advantage of the sparseness and the ternary nature of the so-
called double-base number system (DBNS). The speed-ups are the re-
sults of fewer point additions and improved formulæ for point triplings
and quadruplings in both even and odd characteristic. Our algorithms
can be protected against simple and differential side-channel analysis
by using side-channel atomicity and classical randomization techniques.
Our numerical experiments show that our approach leads to speed-ups
compared to windowing methods, even with window size equal to 4, and
other SCA resistant algorithms.

1 Introduction

Elliptic curve cryptography (ECC) [24, 21] has rapidly received a lot of atten-
tion because of its small key-length and increased theoretical robustness (there is
no known subexponential algorithm to solve the ECDLP problem, which is the
foundation of ECC). The efficiency of an ECC implementation mainly depends
on the way we implement the scalar or point multiplication; i.e., the compu-
tation of the point kP = P + · · · + P (k times), for a given point P on the
curve. A vast amount of research has been done to accelerate and secure this
operation, using various representations of the scalar k (binary, ternary, non-
adjacent form (NAF), window methods (w-NAF) , Frobenius expansion,. . . ),
various systems of coordinates (affine, projective,. . . ) and various randomiza-
tion techniques. See [15, 4, 1] for complete presentations.

In this paper, we propose new scalar multiplication algorithms based on a
representation of the multiplier as a sum of mixed powers of 2 and 3, called the
double-base number system (DBNS). The inherent sparseness of this represen-
tation scheme leads to fewer point additions than other classical methods. For
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example, if k is a randomly chosen 160-bit integer, then one needs only about 22
summands to represent it, as opposed to 80 in standard binary representation
and 53 in the non-adjacent form (NAF).

In order to best exploit the sparse and ternary nature of the DBNS, we also
propose new formulæ for point tripling and quadrupling for curves defined over
binary fields and points in affine coordinates; and for prime fields using Jacobian
coordinates. Our algorithms can be protected against side-channel attacks (SCA)
by using side-channel atomicity [5] for simple analysis, and, in the odd case, using
a point randomization method proposed by Joye and Tymen [20] for differential
analysis.

2 Background

In this section, we give a brief overview of elliptic curve cryptography (see [1, 3,
4, 15] for more details) and the double-base number system.

2.1 Elliptic Curve Cryptography

Definition 1. An elliptic curve E over a field K is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

where a1, a2, a3, a4, a6 ∈ K, and ∆ 6= 0, where ∆ is the discriminant of E.

In practice, the Weierstrass equation (1) can be greatly simplified by applying
admissible changes of variables. If the characteristic of K is not equal to 2 and
3, then (1) rewrites

y2 = x3 + ax + b, (2)

where a, b ∈ K, and ∆ = 4a3 + 27b2 6= 0.
When the characteristic of K is equal to 2, we use the non-supersingular

form of an elliptic curve, given for a 6= 0 by

y2 + xy = x3 + ax2 + b, (3)

where a, b ∈ K and ∆ = b 6= 0.
The set E(K) of rational points on an elliptic curve E defined over a field

K is an abelian group, where the operation (generally denoted additively) is
defined by the well-known law of chord and tangent, and the identity element is
the special point O, called point at infinity.

If the points on the curve are represented using affine coordinates, as P =
(x, y), both the point addition (ADD) and point doubling (DBL) involve an
expensive field inversion (to compute the slope of the chord or the tangent).
To avoid these inversions, several projective systems of coordinates have been
proposed in the literature. The choice of a coordinates system has to be made
according to the so-called [i]/[m] ratio between one field inversion and one field
multiplication. It is generally assumed that 3 ≤ [i]/[m] ≤ 10 for binary fields [8,
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14] and 30 or more for prime fields [12]. In this paper we consider affine (A)
coordinates for curves defined over binary fields and Jacobian (J ) coordinates,
where the point P = (X, Y, Z) corresponds to the point (X/Z2, Y/Z3) on the
elliptic curve for curves defined over fields of odd characteristic.

As we shall see, our DBNS-based point multiplication algorithms use sev-
eral primitives. In the following lines, we give a very brief description and the
complexities of some previously published point arithmetic algorithms. We also
propose improved primitives and new formulæ in Section 4.

In the following, we will use [i], [s] and [m] to denote the cost of one inversion,
one squaring and one multiplication respectively. We shall always leave out the
cost of field additions. In binary fields, we assume that squarings are free (if
normal bases are used) or of negligible cost (linear operation). Moreover, for
curves defined over large prime fields, we will assume that [s] = 0.8[m]. Note
that our algorithm can be protected against SCA (see Section 2.2) using side-
channel atomicity [5], which we have shown in the case of prime fields. In this
case, squarings and multiplications must be performed using the same multiplier
in order to be indistinguishable, and we must consider [s] = [m].

For fields of even characteristic, we use affine coordinates and we consider
doublings (DBL), triplings (TPL) and quadruplings (QPL) as well as the com-
bined double-and-add (DA), triple-and-add (TA) and quadruple-and-add (QA).
It is easy to verify that ADD and DBL can be computed in 1[i] + 1[s] + 2[m].
In [11], K. Eisenträger et al. have proposed efficient algorithms for DA, TPL
and TA. By trading some inversions for a small number of multiplications, these
results have been further improved when [i]/[m] > 6 in [6]. In Table 1 below,
we give the complexities of each of these primitives. We also give the break-even
points between the different formulæ.

Table 1. Costs comparisons and break-even points for DA, T and TA over binary
fields using affine coordinates

Operation [11] [6] break-even point

2P ±Q 2[i] + 2[s] + 3[m] 1[i] + 2[s] + 9[m] [i]/[m] = 6
3P 2[i] + 2[s] + 3[m] 1[i] + 4[s] + 7[m] [i]/[m] = 4
3P ±Q 3[i] + 3[s] + 4[m] 2[i] + 3[s] + 9[m] [i]/[m] = 5

When Jacobian coordinates are used and the curve is defined over a prime
field (or a field of odd characteristic > 3), the addition and doubling operations,
that we will denote ADDJ and DBLJ in this paper, require 12[m] + 4[s] and
4[m] + 6[s] respectively. The cost of DBLJ can be reduced to 4[m] + 4[s] when
a = −3 in (2). Also, if the base point is given in affine coordinates (Z = 1), then
the cost of the so-called mixed addition (J + A → J ) reduces to 8[m] + 3[s].
When several doublings have to be computed, as for the computation of 2wP ,
the algorithm proposed by Itoh et al. in [16] is more efficient than w invocations
of DBLJ . In the general case (a 6= −3) it requires 4w[m]+(4w+2)[s]. In Table 2,
we summarize the complexity of these different elliptic curve primitives.
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Table 2. Complexity of several elliptic curve operations in Jacobian coordinates for
fields of odd characteristic 6= 3

Curve operation Complexity # Registers

DBLJ 4[m] + 6[s] 6
DBLJ , a=−3 4[m] + 4[s] 5
ADDJ 12[m] + 4[s] 7
ADDJ+A 8[m] + 3[s] 7
w-DBLJ 4w[m] + (4w + 2)[s] 7

2.2 Preventing side-channel analysis

Side-channel attacks (SCA) are one of the most serious threat to ECC implemen-
tations. Discovered by Kocher et al. [23, 22], these attacks can reveal a secret
information by sampling and analyzing various side-channel information (e.g.
timing, power consumption, electromagnetic radiations) of a device. SCA can
be divided into two types: simple attacks which observe only one trace given
by a single execution of the algorithm, and differential attacks which use many
observations and try to reveal the secret using statistical tools. Protecting ECC
implementations against SCA has itself become an interesting area of research
and several countermeasures have been proposed. Interested readers can refer
to [4, 1] for details.

In the current work we will use a solution proposed by Chavalier-Mames
et al. in [5] to protect against simple attacks, called side-channel atomicity.
The countermeasure is based on the simple observation that some elementary
operations are side-channel equivalent in the sense that they are indistinguishable
(or can be made so by clever software implementation) from the side-channel.

2.3 Double-Base Number System

The double-base number system (DBNS) [10] is a representation scheme in which
every positive integer k is represented as the sum or difference of {2, 3}-integers
(i.e., numbers of the form 2b3t) as

k =
m∑

i=1

si 2bi3ti , with si ∈ {−1, 1}, and bi, ti ≥ 0 . (4)

Clearly, this number representation scheme is highly redundant. If one considers
the DBNS with only positive signs (si = 1), then certain interesting numerical
and theoretical results can be proved. For instance, 10 has exactly five differ-
ent DBNS representations, 100 has exactly 402 different DBNS representations
and 1000 has exactly 1 295 579 different DBNS representations. Probably, the
most important theoretical result about the double-base number system is the
following theorem from [9].

Theorem 1. Every positive integer k can be represented as the sum of at most

O

(
log k

log log k

)
{2, 3}-integers.
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The proof is based on Baker’s theory of linear forms of logarithms and more
specifically on a result by R. Tijdeman [25].

Some of these representations are of special interest, most notably the ones
that require the minimal number of {2, 3}-integers; i.e., an integer can be rep-
resented as the sum of m terms ({2, 3}-integers), but cannot be represented as
the sum of m− 1 or less. These representations, called canonic representations,
are extremely sparse. Some numerical facts provide a good impression about
the sparseness of the DBNS. The smallest integer requiring three {2, 3}-integers
in its canonic DBNS representations is 23. The next smallest integers requiring
4-to-7 {2, 3}-integers are 431, 18 431, 3 448 733 and 1 441 896 119 respectively.
In all of the above results we have assumed only positive (+1) values for the
si’s. If one considers both signs, then the theoretical difficulties in establishing
the properties of this number system dramatically increase. To wit, it is pos-
sible to prove that the smallest integer that cannot be represented as the sum
or difference of two {2, 3}-integers is 103. The next limit is conjectured to be
4985, but to prove it rigorously, one has to prove that the Diophantine equations
±2a3b ± 2c3d ± 2e3f = 4985 do not have solutions in integers.

Finding one of the canonic DBNS representations, especially for very large
integers, seems to be a very difficult task. Fortunately, one can apply a greedy
algorithm to find a fairly sparse representation very quickly: given k > 0, find
the largest number of the form z = 2b3t less than or equal to k, and apply the
same procedure with k − z until reaching zero. Although the greedy algorithm
sometimes fails in finding a canonic representation4, it is very easy to implement
and it guarantees a representation satisfying the asymptotic bound given by
Theorem 1 (see [9]).

In this paper, we will use a slightly modified version of the greedy algorithm
in order to find a DBNS representation of the scalar k of particular form, well
adapted to fast and secure elliptic curve point multiplication. In the next section,
we introduce the concept of double-base chains and the corresponding scalar
multiplication algorithms.

3 Double-Base Chain and Point Multiplication

Let E be an elliptic curve defined over K, and let P 6= O be a point on E(K).
Assuming k is represented in DBNS, our new scalar multiplication algorithm
computes the new point kP ∈ E(K), by using the so-called double-base chain
as defined below.

Definition 2 (Double-Base Chain). Given k > 0, a sequence (Cn)n>0 of
positive integers satisfying:

C1 = 1, Cn+1 = 2u3vCn + s, with s ∈ {−1, 1} (5)

4 The smallest example is 41; the canonic representation is 32+9, whereas the greedy
algorithm returns 41 = 36 + 4 + 1



6 Vassil Dimitrov, Laurent Imbert, and Pradeep Kumar Mishra

for some u, v ≥ 0, and such that Cm = k for some m > 0, is called a double-
base chain for k. The length m of a double-base chain is equal to the number of
{2, 3}-integers in (4) used to represent k.

Let k > 0 be an integer represented in DBNS as k =
∑m

i=1 si 2bi3ti , with
si ∈ {−1, 1}, where the bi’s and ti’s form two decreasing sequences; i.e., b1 ≥
b2 ≥ · · · ≥ bm ≥ 0 and t1 ≥ t2 ≥ · · · ≥ tm ≥ 0. These particular DBNS
representations allow us to expand k in a Horner-like fashion such that all partial
results can be reused.

We first remark that such a representation always exists (e.g., the binary
representation is a special case). In fact, this particular DBNS representation
is also highly redundant. Counting the exact number of DBNS representations
which satisfy these conditions is indeed a very interesting problem, but the only
partial results we have at the moment are beyond the scope of this paper.

If necessary, such a particular DBNS representation for k can be computed
using Algorithm 1 below, which is a modified version of the greedy algorithm
briefly described in Section 2.3. Two important parameters of this algorithm are

Algorithm 1 Conversion to DBNS with restricted exponents
Input k, a n-bit positive integer; bmax, tmax > 0, the largest allowed binary and

ternary exponents
Output The sequence (si, bi, ti)i>0 such that k =

Pm
i=1 si 2bi 3ti , with b1 ≥ · · · ≥

bm ≥ 0 and t1 ≥ · · · ≥ tm ≥ 0
1: s← 1
2: while k > 0 do
3: define z = 2b3t, the best approximation of k with 0 ≤ b ≤ bmax and 0 ≤ t ≤ tmax

4: print (s, b, t)
5: bmax ← b, tmax ← t
6: if k < z then
7: s← −s
8: k ← |k − z|

the upper bounds for the binary and ternary exponents in the expansion of k,
called bmax and tmax respectively. Clearly, we have bmax < log2(k) < n and
tmax < log3(k) ≈ 0.63n. We noticed that using these utmost values for bmax and
tmax do not result in short expansion. Instead, we consider the following heuristic
which leads to very good results: if k = (kn−1 . . . k1k0)2 is a randomly chosen n-
bit integer (with kn−1 6= 0), we initially set bmax = x and tmax = y, where 2x3y

is a very good, non-trivial (with y 6= 0) approximation of 2n. (Specific values are
given in Table 7 for n = 160.) Then, in order to get decreasing sequences for bi’s
and ti’s, the new largest exponents are updated according to the values of b and
t obtained in Step 3.

The complexity of Algorithm 1 mainly depends on the way we implement
Step 3; finding the best approximation of k of the form z = 2b3t. If we can afford
the storage of all the mixed powers of 2 and 3, this can be implemented very
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easily using a search over an ordered table of precomputed values. Otherwise, we
can use an efficient solution recently proposed in [2] based on continued fractions
and Ostrowski’s number system. In both cases, the complexity of the conversion
is negligible compared to the cost of the scalar multiplication. However, it is
important to remark that, in most cases, the conversion into DBNS might not
be needed. Indeed, in most ECC protocols, the multiplier k is a randomly chosen
integer. We can thus directly generate a random DBNS number in the required
form. Also, when k is part of a secret key, the conversion into DBNS can be done
offline and even further optimized, when computation time is not an issue.

In the next sections, we present two versions of the DBNS-based point multi-
plication algorithm. We shall refer to the even case for curves defined over binary
fields, when affine coordinates are used; and to the odd case for curves defined
over large prime fields (or more generally any field of odd characteristic greater
than 3), when Jacobian coordinates are preferred.

3.1 Point Multiplication in Even Characteristic

In even characteristic, i.e., with P ∈ E(F2n) and k defined as above, Algorithm 2
below, computes the new point kP . We remark that although m−1 additions are

Algorithm 2 Double-Base Scalar Multiplication in even characteristic
Input An integer k =

Pm
i=1 si 2bi3ti , with si ∈ {−1, 1}, and such that b1 ≥ b2 ≥ · · · ≥

bm ≥ 0, and t1 ≥ t2 ≥ · · · ≥ tm ≥ 0; and a point P ∈ E(K)
Output the point kP ∈ E(K)
1: Z ← s1P
2: for i = 1, . . . , m− 1 do
3: u← bi − bi+1

4: v ← ti − ti+1

5: if u = 0 then
6: Z ← 3(3v−1Z) + si+1P
7: else
8: Z ← 3vZ
9: Z ← 4b(u−1)/2cZ

10: if u ≡ 0 (mod 2) then
11: Z ← 4Z + si+1P
12: else
13: Z ← 2Z + si+1P
14: Return Z

required to compute kP , we never actually use the addition operation (ADD);
simply because we combine each addition with either a doubling (Step 13), a
tripling (Step 6) or a quadrupling (Step 11), using the DA, TA and QA prim-
itives. Note also that the TA operation for computing 3P ± Q is only used in
Step 6, when u = 0. Another approach of similar cost is to start with all the
quadruplings plus one possible doubling when u is odd, and then perform v − 1
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triplings followed by one final triple-and-add. We present new algorithms for 4P
and 4P ±Q in Section 4.

In order to evaluate the complexity of Algorithm 2, we have to count the
number of curve operations; i.e., the number of DBL, DA, TPL, TA, QPL,
QA, which clearly depends on the DBNS representation of the scalar k. In fact,
Algorithm 2 gives us a double-base chain for k, say Km, that we can use to
determine the number of curve operations required to evaluate kP . Let us define
Wn as the number of curve operations required to compute KnP from Kn−1P .
We have K1 = 1 and W1 = 0 (in Step 1, we set Z to P or −P at no cost). Then,
for n > 1 we have

Wn+1 = δu,0 ((v − 1) T + TA)

+ (1− δu,0)
(

v T +
⌊

u− 1
2

⌋
Q + δ|u|2,0 QA + δ|u|2,1 DA

)
, (6)

where δi,j is the Kronecker delta such that δi,j = 1 if i = j and δi,j = 0 if i 6= j,
and |u|2 denotes u mod 2 (the remainder of u in the division by 2). The total
cost for computing kP from the input point P is thus given by

Wm =
m∑

i=1

Wi . (7)

In Section 5, we illustrate the efficiency of this algorithm by providing com-
parisons with classical methods and a recently proposed ternary/binary ap-
proach [6].

3.2 Point multiplication in Odd Characteristic

For fields of odd characteristic > 3, when primitives in Jacobian coordinates are
more efficient, Algorithm 3 below is used to compute kP . It takes advantage of
the known w-DBLJ and ADDJ+A formulæ recalled in Section 2.1 and the new
TPLJ , w-TPLJ and w-TPLJ /w′-DBLJ proposed in Section 4. Its complexity

Algorithm 3 Double-Base Scalar Multiplication in Odd Characteristic > 3
Input An integer k =

Pm
i=1 si 2bi3ti , with si ∈ {−1, 1}, and such that b1 ≥ b2 ≥ · · · ≥

bm ≥ 0, and t1 ≥ t2 ≥ · · · ≥ tm ≥ 0; and a point P ∈ E(K)
Output the point kP ∈ E(K)
1: Z ← s1P
2: for i = 1, . . . , m− 1 do
3: u← bi − bi+1, v ← ti − ti+1

4: Z ← 3vZ
5: Z ← 2uZ
6: Z ← Z + si+1P
7: Return Z
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depends on the number of doublings, triplings and mixed additions that have
to be performed. Clearly, the total number of (mixed) additions is equal to the
length m of the double-base chain for k, or equivalently the number of {2, 3}-
integers in its DBNS representation. Also, the number of doublings and triplings
are equal to b1 ≤ bmax and t1 ≤ tmax respectively. However, the field cost can be
more precisely evaluated if one considers the exact complexity of each iteration,
by counting the exact number of field multiplications and squarings required in
Steps 4 and 5 by the consecutive calls to v-TPL and u-DBL. In Section 5, we
make this complexity analysis more precise and we compare our new approach
with several previous algorithms recognized for their efficiency.

4 New Point Arithmetic Algorithms

In this section we present new formulæ for point quadrupling (QPL) and com-
bined quadruple-and-add (QA) in even characteristic, and for triplings (TPLJ ,
w-TPLJ and w-TPLJ /w′-DBLJ ) in odd characteristic, to be used in conjunc-
tion with the proposed point multiplication algorithms.

4.1 New algorithms for 4P and 4P ± Q in Even Characteristic

We remark that the trick used in [11] by Eisenträger et al., which consists in
evaluating only the x-coordinate of 2P when computing 2P ± Q, can also be
applied to speed-up the quadrupling (QPL) primitive. Indeed, given P = (x1, y1),
where P 6= −P , we have 2P = (x3, y3), where

λ1 = x1 +
y1

x1
, x3 = λ2

1 + λ1 + a, y3 = λ1(x1 + x3) + x3 + y1,

and 4P = 2(2P ) = (x4, y4), where

λ2 = x3 +
y3

x3
, x4 = λ2

2 + λ2 + a, y4 = λ2(x1 + x4) + x4 + y1 .

We observe that the computation of y3 can be avoided by evaluating λ2 as

λ2 =
x2

1

x3
+ λ1 + x3 + 1 . (8)

As a result, computing 4P over binary fields requires 2[i]+3[s]+3[m]. Compared
to two consecutive doublings, it saves one field multiplication at the extra cost
of one field squaring. Note that we are working in characteristic two and thus
squarings are free (normal basis) or of negligible cost (linear operation in binary
fields).

For the QA operation, we evaluate 4P ±Q, as 2(2P )±Q using one doubling
(DBL) and one double-and-add (DA), resulting in 3[i] + 3[s] + 5[m]. This is
always better than applying the previous trick one more time by computing
(((P +Q)+P )+P )+P ) in 4[i] + 4[s] + 5[m]; or evaluating 3P +(P +Q) which
requires 4[i] + 4[s] + 6[m].
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In [6], Ciet et al. have improved an algorithm by Guajardo and Paar [13]
for the computation of 4P ; their new method requires 1[i] + 5[s] + 8[m]. Based
on their costs, QA is best evaluated as (4P )±Q using one quadrupling (QPL)
followed by one addition (ADD) in 2[i] + 6[s] + 10[m]. In Table 3 below, we
summarize the costs and break-even points between our new formulæ and the
algorithms proposed in [6].

Table 3. Costs comparisons and break-even points for QPL and QA in even charac-
teristic using affine coordinates

Operation present work [6] break-even point

4P 2[i] + 3[s] + 3[m] 1[i] + 5[s] + 8[m] [i]/[m] = 5
4P ±Q 3[i] + 3[s] + 5[m] 2[i] + 6[s] + 10[m] [i]/[m] = 5

4.2 New Point Tripling Formula in Odd Characteristic

In order to best exploit the ternary nature of the DBNS representation we also
propose new point tripling algorithms in Jacobian coordinates, for curves defined
over fields of odd characteristic (6= 3).

To simplify, let us first consider affine coordinates. Let P = (x1, y1) ∈ E(K)
be a point on an elliptic curve E defined by (2). By definition, we have 2P =
(x2, y2), where

λ1 =
3x2

1 + a

2y1
, x2 = λ2

1 − 2x1, y2 = λ1(x1 − x2)− y1 . (9)

We can compute 3P = 2P + P = (x3, y3), by evaluating λ2 (the slope of the
chord between the points 2P and P ) as a function of x1 and y1 only. We have

λ2 =
y2 − y1

x2 − x1

= −λ1 −
2y1

x2 − x1

= −3x2
1 + a

2y1
− 8y3

1

(3x2
1 + a)2 − 12x1y2

1

.

(10)

We further remark that

x3 = λ2
2 − x1 − x2

= λ2
2 − x1 − λ2

1 + 2x1

= (λ2 − λ1)(λ2 + λ1) + x1,

(11)

and

y3 = λ2(x1 − x3)− y1

= −λ2(λ2 − λ1)(λ2 + λ1)− y1 .
(12)
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Thus 3P = (x3, y3) can be computed directly from P = (x1, y1), without evalu-
ating the intermediate values x2 and y2.

By replacing x1 and y1 by X1/Z
2
1 and Y1/Z

3
1 respectively, we obtain the fol-

lowing point tripling formulæ in Jacobian coordinates. Given P = (X1, Y1, Z1),
we compute 3P = (X3, Y3, Z3) as

X3 = 8Y 2
1 (T −ME) + X1E

2

Y3 = Y1(4(ME − T )(2T −ME)− E3)
Z3 = Z1E,

(13)

where M = 3X2
1 + aZ4

1 , E = 12X1Y
2
1 −M2 and T = 8Y 4

1 .
The complexity of this new point tripling algorithm is equal to 6[s] + 10[m].

If one uses side-channel atomicity to resist simple SCA, then this is equivalent to
16[m]. We express TPLJ in terms of atomic blocks Table 11 of Appendix A. In
comparison, computing 3P using the doubling and addition algorithms from [5],
expressed as a repetition of atomic blocks, costs 10[m] + 16[m] = 26[m].

As we have seen in Section 3.2, operation count of Algorithm 3 can be reduced
by improving the computation of consecutive triplings; i.e., expressions of the
form 3wP . From (13), we remark that the computation of the intermediate value
M = 3X2

1 + aZ4
1 requires 1[m] + 3[s] (we omit the multiplication by 3). If we

need to compute 9P , we have to evaluate M ′ = 3X2
3 + aZ4

3 . Since Z3 = Z1E,
we have aZ4

3 = aZ4
1E4 (where E = 12X1Y

2
1 − M2), and aZ4

1 and E2 have
already been computed in the previous iteration. Hence, using these precomputed
subexpressions, we can compute M ′ = 3X2

3 + (aZ4
1 )(E2)2, with 1[m] + 2[s]. The

same technique can be applied to save one multiplication for each subsequent
tripling. Thus, we can compute 3wP with (15w + 1)[m], which is better than w
invocation of the tripling algorithm. The atomic blocks version of w-TPLJ is
given in Table 12 of Appendix A. Note that the idea of reusing aZ4 for multiple
doublings was first proposed by Cohen et al. in [7], where modified Jacobian
coordinates are proposed. It is possible that a similar approach for repeated
triplings can lead to further improvements.

From Table 2, DBLJ normally requires 4[m]+6[s], or equivalently 10 blocks
of computation if side-channel atomicity is used. However, in our scalar mul-
tiplication algorithm, we remark that we very often invoke w′-DBLJ right af-
ter a w-TPLJ (the only exceptions occur when u = 0, which correspond to a
series of consecutive {2, 3}-integers in the expansion of k having the same bi-
nary exponents). Using subexpressions computed for the last tripling, we can
save 1[s] for the first DBLJ . The next (w′ − 1)-DBLJ are then computed with
(4w′ − 4)[m] + (4w′ − 4)[s]. (The details of these algorithms are given in Ap-
pendix A.) We summarize the complexities of these curve operations in Table 4.

5 Comparisons

In this section, we compare our algorithms to the classic double-and-add, NAF
and 4-NAF methods, plus some other recently proposed algorithms. More pre-
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Table 4. Costs of tripling algorithms in Jacobian coordinates for curves defined over
fields of odd characteristic > 3

Curve operation Complexity # Registers

TPLJ 6[s] + 10[m] 8
w-TPLJ (4w + 2)[s] + (11w − 1)[m] 10
w-TPLJ /w′-DBLJ (11w + 4w′ − 1)[s] + (4w + 4w′ + 3)[m] 10

cisely, we consider the ternary/binary approach from [6] in even characteristic
and two algorithms from Izu et al., published in [17] and [19] for curves defined
over fields of odd characteristic. In the later case, we consider the protected ver-
sion of our algorithm, combined with Joye’s and Tymen’s randomization tech-
nique to counteract differential attacks [20].

If we assume that k is a randomly chosen n-bit integer, it is well known
that the double-and-add algorithm requires n doublings and n/2 additions on
average. Using the NAF representation, the average density of non-zero digits is
reduced to 1/3. More generally, for w-NAF methods, the average number of non-
zero digits is roughly equal to 1/(w+1). Unfortunately, it seems very difficult to
give such an estimate for the particular DBNS representation we are considering
in this paper. In [9], it is proved that the greedy algorithm (with unbounded
exponents) returns a DBNS expansion which satisfies the asymptotic bound of
O(n/ log n) additions, but this is probably not valid with the restriction that the
exponents form two decreasing sequences. The rigorous determination of this
complexity leads to tremendously difficult problems in transcendental number
theory and exponential Diophantine equations and is still an open problem.

Hence, in order to estimate the average number of {2, 3}-integers required
to represent k, and to precisely evaluate the complexity of our point multiplica-
tion algorithms, we have performed several numerical experiments, over 10000
randomly chosen 160-bit integers (163-bit integers for binary fields). Our results
are presented in the next two sections.

5.1 Binary Fields

The average number of curve operations are presented in Table 5 for 163-bit
numbers. The corresponding numbers of field operations are given in Table 6 for
different ratios [i]/[m], using the best complexities from Tables 1 and 3 in each
case.

In Table 6, we remark that our algorithm requires fewer inversions and multi-
plications than the other methods, and because we are working over binary fields,
squarings can be ignored. We can estimate the cost of each method, in terms
of the equivalent number of field multiplications, by multiplying the number of
inversions by the ratio [i]/[m]. By doing so, we obtain a speed-up of 21%, 13.5%
and 5.4% over the binary, NAF and ternary/binary approaches respectively for
[i]/[m] = 8; and 14.1%, 4.8% and 4.4% for [i]/[m] = 4.
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Table 5. Average number of curve operations using the binary, NAF, ternary/binary
and DB-chain approaches for n = 163 bits

Algorithm D DA T TA Q QA

binary 82 81 – – – –
NAF 109 54 – – – –
ternary/binary 38 37 55 – – –
DB-chain (Algo. 2) – 17 35 5 25 14

Table 6. Average number of field operations using the binary, NAF, ternary/binary
and DB-chain approaches for n = 163 bits, and [i]/[m] = 4, 8

Algorithm [i]/[m] = 4 [i]/[m] = 8
[i] [s] [m] [i] [s] [m]

binary 244 244 407 163 244 893
NAF 217 217 380 163 217 704
ternary/binary 222 222 353 130 333 795
DB-chain (Algo. 2) 215 240 327 117 405 798

5.2 Prime Fields

In this section, we report results for 160-bit integers. If the classic methods are
used in conjunction with side-channel atomicity (which implies [s] = [m]), the
average cost of the double-and-add method can be estimated to 159× 10 + 80×
11+41 = 2511[m]; similarly, the NAF and 4-NAF methods require 2214[m] and
1983[m] respectively. The results of our numerical experiments are presented in
Table 7.

Table 7. Average number of terms and the corresponding field complexity of our new
scalar multiplication algorithm obtained using 10000 randomly chosen 160-bit integers
and different largest binary and ternary exponents

bmax tmax m Field cost Complexity (#[m])

57 65 44.52 1[i] + 742.10[s] + 1226.92[m] 1999.02
76 53 38.40 1[i] + 740.59[s] + 1133.58[m] 1904.17
95 41 36.83 1[i] + 755.77[s] + 1077.48[m] 1863.25
103 36 38.55 1[i] + 772.42[s] + 1074.22[m] 1876.25

In Table 7, we give the average number m of {2, 3}-integers used to represent
a random 160-bit integer, and the average number of field operations performed
by Algorithm 3 for different values of bmax and tmax. (This cost includes the fixed
cost of Joye and Tymen’s randomization.) In order to compare our algorithm
with the side-channel resistant algorithms presented in [17, 19, 18], we also give
the uniform cost in terms of the number of field multiplications. Note that,
because we are using side-channel atomicity to prevent simple analysis, squarings
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cannot be optimized and must be computed using a general multiplier. We thus
assume [s] = [m] and [i] = 30[m].

In Table 8, we summarize the complexities of these recognized methods.
The figures for the algorithms from Izu, Möller and Takagi are taken from [17]
and [19] assuming Coron’s randomization technique which turns out to be more
efficient in their case. The cost of our algorithm is taken from the third row of
Table 7, with bmax = 95 and tmax = 41, which corresponds to the best non-trivial
approximation to 2160 and leads to the best complexity.

Table 8. Comparison of different scalar multiplication algorithms protected against
simple and differential analysis

Algorithm Complexity (#[m])

double-and-add 2511
NAF 2214
4-NAF 1983
Izu, Möller, Takagi 2002 [17] 2449
Izu, Takagi 2005 [19] 2629
Double-base chain (Algo. 3) 1863

We remark that our new algorithm outperforms all the previous recognized
methods. It represents a gain of 25.8% over the double-and-add, 15.8% over the
NAF, 6% over 4-NAF, 23.9% over [17] and 29.1% over [19].

6 Conclusions

In this paper, we have presented fast and secure scalar multiplication algorithms
which take advantage of the sparseness and the ternary nature of the double-
base number system. When Jacobian coordinates are used for curves defined over
fields of odd characteristic (greater than 3), new formulæ for TPLJ and w-TPLJ

have been proposed and expressed in atomic blocks to prevent simple analysis.
Differential attacks are prevented using Joye and Tymen randomization method,
but any countermeasure (allowing for mixed addition) can be integrated to our
point multiplication algorithm. When working over binary fields, improved algo-
rithms for point quadrupling and combined quadruple-and-add have been pre-
sented. Although many theoretical questions remain open about the double-base
number system, e.g. the exact determination of the average number of {2, 3}-
integer, or the number of DBNS representation with decreasing exponents of
a given integer, we have produced a modified greedy algorithm to convert the
multiplier k into the particular DBNS form required by our point multiplication
algorithm. However, we want to make clear the point that in most cases, this
conversion is not necessary. When k is randomly chosen, it suffices to generate
directly a random, convenient DBNS number (with decreasing exponents); and
when k is part of a secret key, the conversion process can be performed offline
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and even further optimized. We believe that the proposed point multiplication
algorithms are very competitive contenders for fast and secure ECC implemen-
tations.
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[11] K. Eisenträger, K. Lauter, and P. L. Montgomery. Fast elliptic curve arithmetic
and improved Weil pairing evaluation. In M. Joye, editor, Topics in Cryptology –
CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science, pages 343–354.
Springer-Verlag, 2003.



16 Vassil Dimitrov, Laurent Imbert, and Pradeep Kumar Mishra
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[14] D. Hankerson, J. Lòpez Hernandez, and A. Menezes. Software implementation of
elliptic curve cryptography over binary fields. In Ç. K. Koç and C. Paar, editors,
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A w-DBLJ and w-TPLJ Algorithms in Atomic Blocks

In this appendix, we give the algorithms for DBLJ (including the case when
a doubling is performed right after a tripling), w-DBLJ , TPLJ and w-TPLJ ,
expressed in atomic blocks.

Table 9. The DBLJ algorithm in atomic blocks. When DBLJ is called right after
w-TPLJ , the blocks ∆2, ∆3 and ∆4 can be replaced by the blocks ∆′

2 and ∆′
3 to save

one multiplication

DBLJ

Input: P = (X1, Y1, Z1)
Output: 2P = (X3, Y3, Z3)
Init: R1 = X1, R2 = Y1, R3 = Z1

∆1 R4 = R1 ×R1 (X2
1 ) ∆6 R2 = R2 ×R2 (Y 2

1 )
R5 = R4 + R4 (2X2

1 ) R2 = R2 + R2 (2Y 2
1 )

∗ ∗
R4 = R4 + R5 (3X2

1 ) ∗
∆2 R5 = R3 ×R3 (Z2

1 ) ∆7 R5 = R1 ×R2 (S)
R1 = R1 + R1 (2X1) ∗
∗ R5 = −R5 (−S)
∗ ∗

∆3 R5 = R5 ×R5 (Z4
1 ) ∆8 R1 = R4 ×R4 (M2)

∗ R1 = R1 + R5 (M2 − S)
∗ ∗
∗ R1 = R1 + R5 (X3)

∆4 R6 = a×R5 (aZ4
1 ) ∆9 R2 = R2 ×R2 (4Y 4

1 )
R4 = R4 + R6 (M) R7 = R2 + R2 (T )
∗ ∗
R5 = R2 + R2 (2Y1) R5 = R1 + R5 (X3 − S)

∆5 R3 = R3 ×R5 (Z3) ∆10 R4 = R4 ×R5 (M(X3 − S))
∗ R2 = R4 + R7 (−Y3)
∗ R2 = −R2 (Y3)
∗ ∗

∆′
2 R5 = R10 ×R10 ∆′

3 R5 = R5 ×R9

R1 = R1 + R1 R4 = R4 + R6

∗ ∗
∗ ∗



18 Vassil Dimitrov, Laurent Imbert, and Pradeep Kumar Mishra

Table 10. The w-DBLJ algorithm in atomic blocks. The 10 blocks (or 9 if executed
after w-TPLJ ) of DBLJ (Table 9) must be executed once, followed by the blocks ∆11

to ∆18 which have to be executed w − 1 times. After the execution of DBLJ , the
point of coordinates (Xt, Yt, Zt) correspond to the point 2P ; at the end of the w − 1
iterations, 2wP = (X3, Y3, Z3) = (Xt, Yt, Zt)

w-DBLJ

Input: P = (X1, Y1, Z1)
Output: 2wP = (X3, Y3, Z3)
Init: (Xt, Yt, Zt) is the result of DBLJ (P ), R6 = aZ4

1 , R7 = 8Y 4
1

∆11 R4 = R1 ×R1 (X2
t ) ∆15 R5 = R1 ×R2 (S)

R5 = R4 + R4 (2X2
t ) ∗

∗ R5 = −R5 (−S)
R4 = R4 + R5 (3X2

t ) ∗
∆12 R5 = R6 ×R7 (aZ4

t + 8Y 4
t ) ∆16 R1 = R4 ×R4 (M2)

R6 = R5 + R5 (aZ4
t ) R1 = R1 + R5 (M2 − S)

∗ ∗
R4 = R4 + R6 (M) R1 = R1 + R5 (Xt+1)

∆13 R3 = R2 ×R3 (YtZt) ∆17 R2 = R2 ×R2 (4Y 4
t )

R3 = R3 + R3 (Zt+1) R7 = R2 + R2 (T )
∗ ∗
R1 = R1 + R1 (2Xt) R5 = R1 + R5 (Xt+1 − S)

∆14 R2 = R2 ×R2 (Y 2
t ) ∆18 R4 = R4 ×R5 (M(Xt+1 − S))

R2 = R2 + R2 (2Y 2
t ) R2 = R4 + R7 (−Yt+1)

∗ R2 = −R2 (Yt+1)
∗ ∗
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Table 11. The TPLJ algorithm in atomic blocks

TPLJ

Input: P = (X1, Y1, Z1)
Output: 3P = (X3, Y3, Z3)
Init: R1 = X1, R2 = Y1, R3 = Z1

Γ1 R4 = R3 ×R3 (Z2
1 ) Γ9 R8 = R6 ×R7 (T )

∗ R7 = R7 + R7 (8Y 2
1 )

∗ ∗
∗ ∗

Γ2 R4 = R4 ×R4 (Z4
1 ) Γ10 R6 = R4 ×R5 (ME)

∗ ∗
∗ R6 = −R6 (−ME)
∗ R6 = R8 + R6 (T −ME)

Γ3 R5 = R1 ×R1 (X2
1 ) Γ11 R10 = R5 ×R5 (E2)

R6 = R5 + R5 (2X2
1 ) ∗

∗ ∗
R5 = R5 + R6 (3X2

1 ) ∗
Γ4 R9 = a×R4 (aZ4

1 ) Γ12 R1 = R1 ×R10 (X1E
2)

R4 = R5 + R9 (M) ∗
∗ ∗
∗ ∗

Γ5 R5 = R2 ×R2 (Y 2
1 ) Γ13 R5 = R10 ×R5 (E3)

R6 = R5 + R5 (2Y 2
1 ) R8 = R8 + R6 (2T −ME)

∗ R5 = −R5 (−E3)
R7 = R6 + R6 (4Y 2

1 ) ∗
Γ6 R5 = R1 ×R7 (4X1Y

2
1 ) Γ14 R4 = R6 ×R7 8Y 2

1 (T −ME)
R8 = R5 + R5 (8X1Y

2
1 ) R6 = R6 + R6 (2(T −ME))

∗ R6 = −R6 (2(ME − T ))
R5 = R5 + R8 (12X1Y

2
1 ) R1 = R1 + R4 (X3)

Γ7 R8 = R4 ×R4 (M2) Γ15 R6 = R6 ×R8 (2(ME − T )(2T −ME))
∗ R6 = R6 + R6 (4(ME − T )(2T −ME))
R8 = −R8 (−M2) ∗
R5 = R5 + R8 (E) R6 = R6 + R5 (4(ME − T )(2T −ME)− E3)

Γ8 R3 = R3 ×R5 (Z3) Γ16 R2 = R2 ×R6 (Y3)
∗ ∗
∗ ∗
∗ ∗
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Table 12. The w-TPLJ algorithm in atomic blocks. The 16 blocks of TPLJ must
be executed once, followed by the blocks Γ17 to Γ31 which have to be executed w − 1
times. After the execution of TPLJ , the point of coordinates (Xt, Yt, Zt) correspond
to the point 3P ; at the end of the w − 1 iterations, 3wP = (X3, Y3, Z3) = (Xt, Yt, Zt)

w-TPLJ

Input: P = (X1, Y1, Z1)
Output: 3wP = (X3, Y3, Z3)
Init: (Xt, Yt, Zt) is the result of TPLJ (P ), R9 = aZ4

1 , R10 = E2

Γ17 R4 = R9 ×R10 (aZ4
t E2) Γ25 R6 = R4 ×R5 (ME)

∗ ∗
∗ R6 = −R6 (−ME)
∗ R6 = R8 + R6 (T −ME)

Γ18 R5 = R1 ×R1 (X2
t ) Γ26 R10 = R5 ×R5 (E2)

R6 = R5 + R5 (2X2
t ) ∗

∗ ∗
R5 = R5 + R6 (3X2

t ) ∗
Γ19 R9 = R4 ×R10 (aZ4

t ) Γ27 R1 = R1 ×R10 (XtE
2)

R4 = R5 + R9 (M) ∗
∗ ∗
∗ ∗

Γ20 R5 = R2 ×R2 (Y 2
t ) Γ28 R5 = R10 ×R5 (E3)

R6 = R5 + R5 (2Y 2
t ) R8 = R8 + R6 (2T −ME)

∗ R5 = −R5 (−E3)
R7 = R6 + R6 (4Y 2

t ) ∗
Γ21 R5 = R1 ×R7 (4XtY

2
t ) Γ29 R4 = R6 ×R7 (8Y 2

t (T −ME))
R8 = R5 + R5 (8XtY

2
t ) R6 = R6 + R6 (2(T −ME))

∗ R6 = −R6 (2(ME − T ))
R5 = R5 + R8 (12XtY

2
t ) R1 = R1 + R4 (Xt+1)

Γ22 R8 = R4 ×R4 (M2) Γ30 R6 = R6 ×R8 (2(ME − T )(2T −ME))
∗ R6 = R6 + R6 (4(ME − T )(2T −ME))
R8 = −R8 (−M2) ∗
R5 = R5 + R8 (E) R6 = R6 + R5 (4(ME − T )(2T −ME)− E3)

Γ23 R3 = R3 ×R5 (Zt+1) Γ31 R2 = R2 ×R6 (Yt+1)
∗ ∗
∗ ∗
∗ ∗

Γ24 R8 = R6 ×R7 (T )
R7 = R7 + R7 (8Y 2

t )
∗
∗


