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Abstract. We generalize and extend results obtained by Boneh and
Venkatesan in 1996 and by González Vasco and Shparlinski in 2000
on the hardness of computing bits of the Diffie-Hellman key, given the
public values. Specifically, while these results could only exclude (essen-
tially) error-free predictions, we here exclude any non-negligible advan-
tage, though for larger fractions of the bits. We can also demonstrate
a trade-off between the tolerated error rate and the number of unpre-
dictable bits.
Moreover, by changing computational model, we show that even a very
small proportion of the most significant bits of the Diffie–Hellman secret
key cannot be retrieved from the public information by means of a Las
Vegas type algorithm, unless the corresponding scheme is weak itself.

1 Introduction

So called “provable” security models, in which the robustness of a cryptographic
tool can be justified by means of a formal proof, are gaining more and more
attention. In such models, the security of a scheme or protocol is measured in
terms of the chances (non-negligible advantage over a random guess) a malicious
adversary has of retrieving information he is not supposed to have access to.
There are already several proposals for schemes that are robust in this sense,
some of them merely theoretical but others already deployed in practice. Much
research has been devoted to this topic, and there is indeed a large battery of
results for various schemes in different computational models (e.g. [2, 3, 9, 10]).

Since the early days of cryptography, one security property that has been
extensively studied is the security with respect to “approximate cracking”. Ro-
bustness in this sense is stated by proving that single bits in an encrypted mes-
sage are no easier to obtain than the whole message itself (or other information



close to the secret in some metric). General frameworks for such studies are for
example the hard-core bit problem, first formalized in [4], and the hidden number
problem, introduced by Boneh and Venkatesan [6, 7].

In addition, any security property can be studied in different computational
models, ranging from the classical Turing machine model, passive/active adver-
saries, restricted algebraic models, up to the more recent quantum and side-
channel attack models, the latter two being more “physical” in nature. Indeed,
models that might seem unrealistic today could become a reality in 20 years, a
time-span which may be required to cryptographically guard secrets in many ap-
plications. We therefore believe it is important to keep an open mind to various
models and investigate which implications they have.

In this paper we extend the area of application of algorithms for the hid-
den number problem, deriving new bit security properties of the Diffie–Hellman
key exchange scheme. Detailed surveys of bit security results for various cryp-
tographic schemes are given in [14]; several more recent results can be found
in [5–7, 15–17, 20, 22, 26, 27, 32, 34, 35].

We show that making some adjustments to the scheme proposed in [6] and
refined in [16], one can obtain bit security results for the Diffie-Hellman secret key
of the same strength as in [6, 16], but in a much more restricted computational
model of unreliable oracles, which represent adversaries that only retrieve correct
guesses for the target bits with a certain probability. We perform the study with
two types of unreliable oracles, roughly corresponding to the classical “Monte
Carlo” type algorithms, as well as the in cryptography less conventional “Las
Vegas” type of algorithm. In fact, we also obtain an improvement of the result
of [16] for “error-free” oracles, as we use the recent bound of exponential sums
over small subgroups from [8] instead of the bound from [21] that lead to the
result in [16]. Also, our Lemma 3 is based on a recent improvement [1] in lattice
reduction algorithms, whereas in [16] older results were applied.

2 Notation

As usual we assume that for a prime p the field Fp of p elements is represented
by the set {0, 1, . . . , p − 1}. Accordingly, sometimes, where obvious, we treat
elements of Fp as integer numbers in the above range. Also, for an integer s we
denote by bscp the remainder of s on division by p.

For a real η > 0 and t ∈ Fp we denote by MSBη,p(t) any integer which
satisfies the inequalities

p

2η
(MSBη,p(t)− 1) ≤ t <

p

2η
(MSBη,p(t)). (1)

Thus, roughly speaking, MSBη,p(t) is the integer defined by the η most signifi-
cant bits of t. However, this definition is more flexible and better suited to our
purposes. In particular note that η in the inequality (1) need not be an integer.



Throughout the paper log x denotes the binary logarithm of x ≥ 1. The
implied constants in the symbol “O” may occasionally, where obvious, depend
on a real parameter ε > 0 and are absolute otherwise.

We denote by IE[ξ] the expected value of a random variable ξ. Accordingly,
IEξ[g(ξ)] denotes the expected value of a random variable g(ξ), which, for a given
function g, only depends on the distribution of ξ. We make use of the following
variant of the Markov inequality: for positive c and a random variable ξ upper
bounded by M ,

Pr[ξ ≥ IEξ[ξ]/c] ≥ M−1(1− 1/c)IEξ[ξ]. (2)

3 Preparations

Reconstructing gab from “noisy” approximations of gab can be formulated as a
hidden number problem, [6, 7]. We review important ingredients for this problem.
In particular, we collect several useful results about the hidden number problem,
lattices and exponential sums and establish some links between these techniques.

3.1 Hidden Number Problem and Uniform Distribution mod p

One of many possible variations of the hidden number problem is:

Given a finite sequence T of elements of F∗p, recover α ∈ F∗p for which
for polynomially many known random t ∈ T we are given MSBη,p(αt)
for some η > 0.

The case of T = F∗p is exactly the one considered in [6, 7]. However, it has
been noticed for the first time in [16], and exploited in a series of works, see [11,
17, 26, 28, 29], that in fact for cryptographic applications one has to consider
more general sequences T . An important issue is the uniformity of distribution
of these sequences.

For a sequence of N points 0 ≤ ϑ1, . . . , ϑN < 1 define its discrepancy D by

D = sup
0≤γ<1

∣∣∣∣T (γ)
N

− γ

∣∣∣∣ ,
where T (γ) is the number of points of this sequence in the interval [0, γ].

We say that a finite sequence T of integers is ∆-homogeneously distributed
modulo a prime p if for any integer a with gcd(a, p) = 1, the discrepancy Da(T )
of the sequence of fractional parts {at/p}, t ∈ T , satisfies Da(T ) ≤ ∆. It has
been shown in Lemma 4 of [28] that the algorithm of [6] can be modified to work
for sequences that are ∆-homogeneously distributed modulo a prime p, provided
∆ is small enough.



3.2 Lattices

As in the pioneering papers [6, 7], our results rely on rounding techniques in
lattices. We briefly review a few results and definitions. For general references
on lattice theory and its important cryptographic applications, we refer to [18]
and also to the recent surveys [30, 31].

A basic lattice problem is the closest vector problem (CVP): given a basis
of a lattice L in Rs and a target u ∈ Rs, find a lattice vector v ∈ L which
minimizes the Euclidean norm ‖u−v‖ among all lattice vectors. A modification
where u = 0 is a zero vector (thus u ∈ L) is the shortest vector problem (SVP):
find a nonzero v ∈ L of smallest Euclidean norm ‖v‖ among all lattice vectors.

Here, as in [28], we use the best CVP approximation polynomial-time result
known, which follows from the recent shortest vector algorithm of [1] combined
with the reduction of [23] from approximating the CVP to approximating the
SVP, which leads to the following statement:

Lemma 1. For any constant γ > 0, there exists a randomized polynomial time
algorithm which, given a lattice L and a vector r ∈ Qs, finds a lattice vector v
satisfying with probability exponentially close to 1 the inequality

‖v − r‖ ≤ 2γs log log s/ log s min {‖z− r‖, z ∈ L} .

For integers t1, . . . , td selected in the interval [0, p−1], we denote by L (t1, . . . , td)
the full rank d + 1-dimensional lattice generated by the rows of the following
(d + 1)× (d + 1)-matrix 

p 0 . . . 0 0
0 p . . . 0 0
...

...
. . .

...
...

0 0 . . . p 0
t1 t2 . . . td 1/p

 . (3)

Our principal tool is an extension of Lemma 4 of [28], which in turn extends
the algorithm of [6]. The results below are analogues of Lemmas 6.2 and 6.3
of [35]. For applications to Diffie-Hellman we deal with sequences correspond-
ing to small finite subgroups of F∗p which satisfy the above requirement of ∆-
homogeneous distribution, so Lemma 4 of [28] can be applied directly to them.

Lemma 2. Assume that a real µ and an integer d satisfy

d(µ− log 5) ≥ 2 log p

and let α be a fixed integer in the interval [0, p− 1]. Assume that t1, . . . , td are
chosen uniformly and independently at random from a finite 2−µ-homogeneously
distributed integer sequence T modulo p. Then with probability P ≥ 1− 1/p for



any vector s = (s1, . . . , sd, 0) with(
d∑

i=1

(
bαticp − si

)2
)1/2

≤ p2−µ,

all vectors v = (v1, . . . , vd, vd+1) ∈ L (t1, . . . , td) satisfying(
d∑

i=1

(vi − si)
2

)1/2

≤ p2−µ,

are such that

vi ≡ βti (mod p), i = 1, . . . , d, vd+1 = β/p

with some β ≡ α (mod p).

Proof. We define the modular norm of an integer γ modulo p as

‖γ‖p = min
b∈Z

|γ − bp|.

For any γ such that γ 6≡ 0 (mod p) the probability P (γ) of

‖γt‖p > p2−µ+1

for an integer t chosen uniformly at random from the elements of a ∆-homo-
geneously distributed sequence modulo p is

P (γ) ≥ 1− 2−µ+2 −∆.

Thus for the 2−µ-homogeneously distributed sequence modulo p, T , we have

P (γ) ≥ 1− 5
2µ

.

Therefore, for any β 6≡ α (mod p),

Pr
[
∃i ∈ [1, d] | ‖βti − αti‖p ≥ p2−µ+1

]
= 1− (1− P (β − α))d ≥ 1−

(
5
2µ

)d

,

where the probability is taken over integers t1, . . . , td chosen uniformly and in-
dependently at random from the elements of T .

Since for β 6≡ α (mod p) there are only p− 1 possible values for the residue
of β modulo p, we obtain

Pr
[
∀β 6≡ α (mod p), ∃i ∈ [1, d] | ‖βti − αti‖p > p2−µ+1

]
≥ 1−(p−1)

(
5
2µ

)d

> 1−1/p,



because of the conditions of the theorem.

The rest of the proof is identical to the proof of Theorem 5 of [6], we outline
it for the sake of completeness.

Let us fix some integers t1, . . . , td with

min
β 6≡α (mod p)

max
i∈[1,d]

‖βti − αti‖p > p2−µ+1. (4)

Let v be a lattice point satisfying(
d∑

i=1

(vi − si)
2

)1/2

≤ p2−µ.

Clearly, since v ∈ L (t1, . . . , td), there are integers β, z1, . . . , zd such that

v = (βt1 − z1p, . . . , βtd − zdp, β/p).

If β ≡ α (mod p), then we are done, so suppose that β 6≡ α (mod p). In
this case, (

d∑
i=1

(vi − si)
2

)1/2

≥ min
i∈[1,d]

‖βti − si‖p

≥ min
i∈[1,d]

(
‖βti − αti‖p − ‖si − αti‖p

)
> p2−µ+1 − p2−µ = p2−µ

that contradicts our assumption. As we have seen, the condition (4) holds with
probability exceeding 1− 1/p and the result follows. ut

Lemma 3. Let 1 > τ > 0 be an arbitrary absolute constant and p be a prime.
Assume that a real η and an integer d satisfy

η ≥

⌈(
τ

log p log log log p

log log p

)1/2
⌉

and d = d5 log p/ηe .

Let T be a sequence of 2−η-homogeneously distributed integers modulo p. There
exists a probabilistic polynomial-time algorithm A such that for any fixed integer
α ∈ F∗p, given 2d integers

ti and si = MSBη,p (αti) , i = 1, . . . , d,

its output satisfies for sufficiently large p

Pr [A (m, t1, . . . , td; s1, . . . , sd) = α] ≥ 1− p−1,

with probability taken over all t1, . . . , td chosen uniformly and independently at
random from the elements of T and all coin tosses of the algorithm A.



Proof. We follow the same arguments as in the proof Theorem 1 of [6] which we
briefly outline here for the sake of completeness. We refer to the first d vectors
in the defining matrix of L (t1, . . . , td) as p-vectors.

Multiplying the last row vector (t1, . . . , td, 1/p) of the matrix (3) by α and
subtracting certain multiples of p-vectors, we obtain a lattice point

uα = (u1, . . . , ud, α/p) ∈ L (t1, . . . , td)

such that |ui − si| < p2−η, i = 1, . . . , d + 1. Therefore,

min

{
d+1∑
i=1

(zi − si)
2
, z = (z1, . . . , zd, zd+1)

}
≤

d+1∑
i=1

(ui − si)
2 ≤ (d + 1)p22−2η.

Let µ = η/2. One can verify that under the conditions of the theorem we
have,

0.1τ
(d + 1) log log(d + 1)

log(d + 1)
≤ µ− 1 and d(µ− log 5) ≥ 2 log p.

Now we use the algorithm of Lemma 1 with s = (s1, . . . , sd, 0) to find in
probabilistic polynomial time a lattice vector

v = (v1, . . . , vd, vd+1) ∈ L (t1, . . . , td)

such that(
d∑

i=1

(vi − si)
2

)1/2

≤ 20.1γ(d+1) log log(d+1)/ log(d+1)p(d + 1)1/22−η ≤ p2−µ−1,

provided that p is sufficiently large. We also have(
d∑

i=1

(ui − si)
2

)1/2

≤ pd1/22−η ≤ p2−µ−1.

Therefore, (
d∑

i=1

(ui − vi)
2

)1/2

≤ p2−µ.

Applying Lemma 2, we see that v = uα with probability at least 1 − 1/p,
and therefore, α can be recovered in polynomial time. ut

3.3 Distribution of Exponential Functions Modulo p

To apply the results above, we will need to establish approximate uniform distri-
bution of sequences of form ti = gui , i = 1, 2, . . .. A procedure to establish such



results in general is to bound certain exponential sums, related to the sequences
under consideration.

The following statement is a somewhat simplified version of Theorem 4 of [8]
and greatly improve several previously known bounds fron [21, 25], which have
been used in [16].

Lemma 4. For any ε > 0 there exists δ > 0 such that for any element g ∈ Fp

of multiplicative order T ≥ pε we have

max
gcd(c,p)=1

∣∣∣∣∣
T−1∑
x=0

exp (2πicgx/p)

∣∣∣∣∣ ≤ T 1−δ.

Using Lemma 4 and arguing as in [16], we derive the following statement.

Lemma 5. For any ε > 0 there exists δ > 0 such that for any element g ∈ Fp of
multiplicative order T ≥ pε the sequence gx, x = 1, . . . , T , is p−δ-homogeneously
distributed modulo p.

4 Bit Security of the Diffie–Hellman Scheme

Let us fix an element g ∈ F∗p of multiplicative order q, where q is prime. We
recall that classically, breaking the Diffie–Hellman scheme means the ability to
recover the value of the secret key gxy from publicly known values of gx and gy

(with unknown x and y, of course).

The attacker, however, may pursue a more modest goal of recovering only
partial information about the secret gxy. For instance, the Legendre symbol of
gxy is trivially deducible from that of gx, gy. If only part of gxy is used to derive
a key for a secret key cryptosystem, this may be harmful enough. The purpose
of the bit security results is to show that deriving such partial information is as
hard as finding the whole key, which is believed to be infeasible.

It has been shown in [6, 16] that recovering (without significant errors) about
log1/2 p most significant bits of gxy for every x and y is not possible unless the
whole scheme is insecure.

However, it is already dangerous enough if the attacker possesses a proba-
bilistic algorithm which recovers some bits of gxy only for some, not too small,
fraction of key exchanges. Here we obtain first results in this direction. We con-
sider two types of attacking algorithms:

– more traditional Monte Carlo type algorithms where our results are weaker
in terms of number of bits, but stronger in error-tolerance than those of [6,
16];



– more powerful Las Vegas type algorithms where, given such an algorithm,
our results are stronger than the case of deterministic algorithms obtained
in [6, 16]. Cryptographic security of other schemes in this model has been
studied in [27].

In fact, it is more convenient to treat a possible attacking algorithm as an
oracle which, given gx and gy returns, sometimes, some information about gxy.
Accordingly, our purpose is to show that having such an oracle one can recover
the secret key completely.

In the sequel, to demonstrate our arguments in the simplest situation we
restrict ourselves to the case of most practical interest, that is, g generating a
sub-group of prime order q.

4.1 Monte Carlo Type Attacks

Given positive η and γ, we define the oracle DHMC
η,γ as a “black box” which,

given gx, gy ∈ F∗p, outputs the value of MSBη,p (gxy), with probability γ, taken
over random pairs (x, y) ∈ Z2

q (and possible internal coin-flips), and outputs an
arbitrary value otherwise.

That is, DHMC
η,γ is a Monte Carlo type oracle which sometimes outputs some

useful information and otherwise returns a wrong answer following any distri-
bution. This is qualitatively thus the same type of oracles considered in [6, 16].

Theorem 1. For any ε > 0 such that the following statement holds. Let δ > 0
be an arbitrary positive number and let

η = dδ log pe .

For any element g ∈ F∗p of multiplicative order q ≥ pε, where q is prime,
there exists a probabilistic algorithm which, in time polynomial in log p and
(0.25γ)−(5δ−1+1) log γ−1, for any pair (a, b) ∈ Z2

q, given the values of ga, gb ∈ Fp,

makes the expected number of O
(
δ−1(0.25γ)−(5δ−1+1) log γ−1 log log p

)
calls to

the oracle DHMC
η,γ and computes gab correctly with probability 1 + O

(
log−1 p

)
.

Proof. Put d = d5 log p/ηe ≤ 5δ−1 + 1. Given gx, gy the oracle DHMC
η,γ returns

MSBη,p (gxy) with probability γ. We define an algorithm, O(gx, gy), which uses
DHMC

η,γ as a black box and retrieves gxy with non-neglible probability, ρ. We then
apply a result by Shoup, [33], to this O, and get an algorithm which retrieves
gxy almost surely. In the following we define and analyze O.

By randomizing the second component input to DHMC
η,γ , gy, we hope to hit a

set of “good” values of y, for which we have a sufficient advantage, taken over x
only. We then query by randomizing the gx-component, keeping y fixed.

Let γy be the average success probability of DHMC
η,γ (gx, gy), taken over random

x for a given y. Thus, IEy[γy] = γ. Let us define k = dlog(2/γ)e and say that y is



j-good if γy ∈ [2−j , 2−j+1), j = 1, 2, . . . , k, and let Sj = {y | y is j-good} (thus
we do not care about y for which γy < γ/2). By the Markov inequality, (2),

Pr
y

[γy ≥ γ/2] ≥ γ

2
. (5)

We claim that there must exist j as above for which Pry[y ∈ Sj ] ≥ 2j−2γ/k.
If this was not the case, by (5), we would get the following contradiction:

γ

2
≤

k∑
j=1

2−j+1 Pr
y

[y ∈ Sj ] <
k∑

j=1

2−j+1 2j−2γ

k
=

γ

2
.

Now, given ga, gb, the algorithm O starts by choosing a random v ∈ Zq. Next,
choose d independent random elements u1, . . . , ud ∈ Zq and query the oracle
DHMC

η,γ with ga+ui and (the fixed) gb+v. After that we apply the algorithm of
Lemma 3 to the obtained answers, and the value returned is finally output by
O. To analyze this, note that if y = v + b is j-good for some j, the oracle DHMC

η,γ

with probability 2−jd returns the correct values of

si = MSBη,p

(
g(a+ui)(b+v)

)
= MSBη,p(αti)

for every i = 1, . . . , d, where α = ga(b+v) and ti = gui(b+v). Since q is prime,
t1, . . . , td are distinct and applying Lemma 5 we see that the algorithm of
Lemma 3 then finds α (and thus also gab = αg−av) with probability 1− 1/p.

The above procedure performs as stated with probability at least 2−jd Prv[v+
b ∈ Sj ]. As we have seen, there must be a j for which Prv[v + b ∈ Sj ] ≥ 2j−2γ/k,
so O succeeds with probability at least

ρ = (1− p−1)
γ2−j(d−1)

4k
≥ (1− p−1)

γ2−k(d−1)

4k
≥ γ2−(log(2/γ)+1)(d−1)

8 log(2/γ)
=

γd2−2d−1

log(2/γ)
,

which is Ω
(
(0.25γ)5δ−1+1/ log γ−1

)
. The above algorithm satisfies the definition

of faulty Diffie-Hellman oracle given in [33]. Therefore, applying Corollary 1
of [33] (with ε = ρ and α = 1/ log p in the notations of [33]) we finish the proof.

ut

We remark that the proof of Theorem 1 only relies on the existence of a
“good” j, but we stress that it is also possible to efficiently find this j and a
corresponding v such that v + b is indeed j-good. To this end, choose a random
v, and query the oracle on inputs of the form gr, gb+v for random, independent
r. Since r, v, and gb are known, so is the corresponding Diffie-Hellman secret
g(b+v)r. This means that we for each r can check if the oracle is correct on this
input. Repeating this for polynomially many independent r, we get a sufficiently
good approximation of γv+b, on which we can base the decision on whether v+b
is “good” or not, see also the proof of Theorem 2.



Obviously, the algorithm of Theorem 1 remains polynomial time under the
condition δ−1 log γ−1 = O(log log p). For example, for any fixed δ > 0 (that is,
when η corresponds to Ω(log p) bits) the tolerated rate of correct oracle answers
can be as low as γ = Ω(log−A p) with some constant A > 0. On the other hand,
if the oracle is correct with a constant rate γ, then it is enough if it outputs
η = O(log p/ log log p) bits. This range can be compared to the original works
in [6, 16], which apply with only O(log1/2 p) bits from the oracle, but on the
other hand requires the rate of correct answers to be γ = 1 + o(1).

4.2 Las Vegas Type Attacks

We now turn to the more powerful type of oracles. Given positive η and A, we
define the oracle DHLV

η,A as a “black box” which, given gx, gy ∈ F∗p, outputs the
value of MSBη,p (gxy), with probability at least log−A p, (taken over random
pairs (x, y) ∈ Z2

q and possible internal coin-flips), and outputs an error audit
message, ⊥, otherwise.

That is, DHLV
η,A is a Las Vegas type oracle which outputs some useful (correct)

information non-negligibly often and never returns a wrong answer (but rather
gives no answer at all). Again, the case of A = 0 quantitatively corresponds to
the “error-free” oracle which has been considered in [6, 16].

Theorem 2. For any ε > 0 the following statement holds. Let

η =

⌈(
τ log p log log log p

log log p

)1/2
⌉

,

where τ > 0 is an arbitrary absolute constant. For any element g ∈ F∗p of multi-
plicative order q ≥ pε, where q is prime, there exists a probabilistic polynomial
time algorithm which for any pair (a, b) ∈ Z2

q, given the values of ga, gb ∈ Fp,
makes the expected number of O

(
(log p)max{1,A} log log p

)
calls to the oracle

DHLV
η,A and computes gab correctly with probability 1 + O

(
log−A p

)
.

Proof. The proof is similar to that of Theorem 1, though for simplicity, we use
a slightly rougher estimate. Let γ = log−A p and let γy be as in the notation of
the proof of Theorem 1.

To find v ∈ Zq with at least γv+b > γ/4 choose a random v ∈ Zq. We check
whether b = ±v (mod q), in which case we are done. Otherwise we choose
N =

⌈
20γ−1 log γ−1

⌉
independent, random elements u1, . . . , uN ∈ Zq and query

the oracle DHLV
η,A with ga+ui and gb+v. If the oracle returns K ≥ γN/2 queries

then γv+b > γ/4 with probability 1 + O (γ). Indeed, by the Chernoff bound, see
for example Section 9.3 of [24], we get that if γv+b < γ/4 then even after

M =
⌈

8
γv+b

log(2/γ)
⌉
≥ N



the oracle returns at most 2Mγv+b ≤ K queries with probability at least 1− γ.

By the Markov inequality (5), we see that after the expected number of 2γ−1

random choices of v we find v with γv+b ≥ γ/4 with probability 1 + O (γ).

For this v we re-use the first d = b5 log p/ηc replies of the oracle DHLV
η,A

which have been used for testing whether b+v is “good” (if K ≥ d) or get d−K
additional replies (if K < d, which will not happen for interesting γ). Thus we
get d values

si = MSBη,p

(
g(a+ui)(b+v)

)
= MSBη,p(αti)

where α = ga(b+v) and ti = gui(b+v), i = 1, . . . , d. Applying Lemma 5 we see
that the algorithm of Lemma 3 finds α with probability at least 1− 1/p. Finally
we compute gab = αg−av. ut

A recent paper by Hast [19] studies an oracle model which falls somewhere in
between Monte Carlo and Las Vegas oracles. Specifically, [19] considers oracles
which, for some ε, δ ∈ [0, 1], output ⊥ with probability 1− δ, and where non-⊥
answers are correct with advantage ε. Our Las Vegas oracles thus correspond to
ones with non-negligible δ and the extreme case of ε = 1. For the specific case of
Goldreich-Levin [13] based pseudo-random bit generator, Hast [19], shows that
for a given (non-negligible) success-rate, the existence of oracles with small δ
would indeed be more serious than existence of traditional oracles, (for which
δ = 1). Perhaps not surprisingly, Theorems 1 and 2 demonstrate this for the
case of the Diffie-Hellman scheme, by comparing the complexity of the respective
reductions.

5 Summary

We have extended existing hardness results on the Diffie-Hellman scheme to
tolerate higher error-rates in the predictions, by a trade-off on the number of
bits predicted. We also studied an alternative (and much stronger) computational
prediction-model whose realization, albeit less likely than more classical models,
would have more severe impact on the security of Diffie-Hellman. The idea to
consider Las Vegas type attacks in these setting appears to be new and definitely
deservers further studying.

We remark that the analysis using Las Vegas type predictors can be applied
to the study of RSA as well, for instance, when analyzing the use of RSA to
send reasonably short bit strings with random padding. (In particular, results
concerning ∆-homogeneous distribution generalize to composite moduli). Quali-
tatively, such results could of course also have been derived from the bit security
results in [20]. Nevertheless, the significantly tighter reductions possible from a
Las Vegas oracle show (as one would expect) that the existence of such an oracle
would indeed also be quantitatively more severe for the security of RSA.

Of course, the most intriguing open problem remains: show that even single,
individual bits of the Diffie-Hellman scheme are hard to approximate.
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27. M. Näslund, I. E. Shparlinski and W. Whyte, ‘On the bit security of NTRU’, Proc
of Public Key Cryptography - PKC 2003. Lect. Notes in Comp. Sci., Springer-
Verlag, Berlin, 2567, 2003, 62–70.

28. P. Q. Nguyen and I. E. Shparlinski, ‘The insecurity of the digital signature
algorithm with partially known nonces’, J. Cryptology, 15, 2002, 151–176.

29. P. Q. Nguyen and I. E. Shparlinski, ‘The insecurity of the elliptic curve digital
signature algorithm with partially known nonces’, Designs, Codes and Cryptog-
raphy, 30 (2003), 201–217.

30. P. Q. Nguyen and J. Stern, ‘Lattice reduction in cryptology: An update’, Proc.
of ANTS 2000. Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1838, 2000,
85–112.

31. P. Q. Nguyen and J. Stern, ‘The two faces of lattices in cryptology’, Proc. of
CalC 2001. Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2146 (2001),
146–180.

32. C. P. Schnorr, ‘Security of almost all discrete log bits’, Electronic Colloq. on
Comp. Compl., Univ. of Trier, TR98-033, 1998, 1–13.

33. V. Shoup, ‘Lower bounds for discrete logarithms and related problems’, Preprint,
available from http://www.shoup.net.

34. I. E. Shparlinski, ‘Security of most significant bits of gx2
’, Inform. Proc. Letters,

83, 2002, 109–113.
35. I. E. Shparlinski, Cryptographic applications of analytic number theory,

Birkhauser, 2003.


