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Abstract. Strong notions of security for unconditionally secure digital
signature schemes (USDS) were recently proposed where security is de-
fined based on notions of security in computationally—secure digital sig-
natures. The traditional area of unconditionally secure authentication,
however, is that of “authentication codes” (A—codes). Relations between
primitives is central to cryptographic research. To this end, we develop
a novel “general group—based A—code” framework which includes known
types of group A—codes and their extensions, including the newly pro-
posed USDS, and also allows other models to be systematically described
and analysed. In particular, information theoretic analysis of these codes
can be applied to USDS, establishing fundamental bounds on USDS pa-
rameters.

A second contribution herein is a modular algebraic method of synthe-
sising group codes from simpler A—codes, such that security of the group
code follows directly from the component codes. We demonstrate our ap-
proach by constructing and analysing a USDS satisfying the ‘strongest
security notion’.

1 Introduction

Digital signatures are the basic authentication primitive in modern cryptography.
They are known to be equivalent to the existence of one—way functions, and thus
to rely on computational assumptions [12]. There are, however, settings where
reliance on computational assumptions is inappropriate (typically for small mu-
tually distrusting groups of entities that do not know each others computational
or technological advantages, e.g. advances in quantum computations, as is the
setting between nations). The alternative model for secure authentication, when
there is no assumption regarding adversaries computational power, has been
A—codes as suggested by Simmons [16]. This was indeed motivated by authenti-
cation procedures between the USA and USSR regarding treaty verification.

In recent years a number of unconditionally secure digital signature schemes,
both in interactive [2] and non-interactive settings, have been proposed. We con-
sider a non—interactive setting where a trusted Key Distribution Centres (KDC)
or trusted authority (TA) generates and distributes the key information of sys-
tem participants. The two main approaches satisfying these assumptions are due



to Johansson (J99) [11], who considered a variant of multireceiver authentication
codes with an untrusted sender and an arbiter, and called it Unconditionally Se-
cure Digital Signature (USDS), and Hanaoka, Shikata, Zheng, and Imai [7,15]
(referred to as HSZI00 and SHZI02, respectively) who recently proposed a range
of new security notions for USDS. In Eurocrypt 2002 [15], the authors formalised
their approach independent of the theory of A—codes, and proposed the ‘strongest
notion’ of security for USDS without reference to these codes. They constructed
a USDS that provided the ‘strongest security notion’.

To understand these proposals we develop a unified framework allowing eval-
uation of USDS schemes within the domain of A—codes. We view the work and
scenarios of HSZI00/SHZI02 as providing motivation for studying A—code gener-
alisations. One may mistake the use of new notions in HSZI00/SHZI02 to mean
extensions of this theory cannot capture the new settings (and that perhaps a
new type of theory, similar to that for conditionally secure signatures, is needed).
We believe our work puts things in order, in this respect.

A second contribution of this paper is proposing a modular algebraic method
for synthesising group A—codes. This is particularly important because construct-
ing A—codes for complex authentication scenarios can become a formidable task
and approaches that allow ‘re—use’ of proven secure schemes as building blocks
will provide an attractive option.

Review of A—codes

Unconditionally secure authentication codes were first constructed in [6] and
then modelled and analysed in [16]. The original A—codes were symmetric key
primitives for communication between two honest participants, secure against
spoofing attacks. Simmons derived the first information theoretic bound on im-
personation, bounds on higher order spoofing were later obtained [10,18].

Simmons [17] also considered A?-codes in which sender and receiver are
distrusted. The sender may deny a sent message, and a receiver may substitute
a received message or try to ascribe a message to the sender. A%2—codes are
asymmetric primitives in which the sending and receiving keys differ. Simmons
showed the need for a trusted arbiter, with the key information of the sender
and receiver, to resolve disputes. In A%—codes [1, 3] the trust in the arbiter is
reduced and the arbiter may attempt to construct fraudulent messages.

Group-based A—codes were introduced by [4] and extended by [5,11,13,14].
In multireceiver A—codes (M RA) [4] a sender constructs an authenticated mes-
sage that is verifiable by each member of a verifier group. The sender is trusted
but receivers may collude to construct a fraudulent message on behalf of the
sender. In (J99) [11] the senders are distrusted, and the resulting system was
called an Unconditionally Secure Digital Signature (USDS). In this model the
sender may deny his constructed message. We call this model an M RA%—code,
since the trust assumption is most similar to A%2—codes.



Requirements of a USDS:

In a USDS scheme signers and verifiers are distrusted. They may try to forge
signed messages, or repudiate their own signed messages. Let I/ denote a set of
distrusted participants. Any U; € U can sign a message that is verifiable by all
U; € U. An important property of standard digital signatures is that if U; obtains
a signed message from U; he can convince U, that the message is from Uj; this
is called transferability. We require the following properties to be satisfied.

Transferability: U; can convince any Uy € U, k # {i,j}, the message is from Uj.

Unforgeability: A colluding subset C' C U has a negligible probability of con-
structing a fraudulent message that is acceptable by a group member Uy, as
signed by U;, where:

(i) U; € C', and can deny the message, (non—repudiation).
(ii) U; ¢ C, and the message is not generated by U;.

These properties match the requirements of the first unconditionally secure
signature (interactive) protocol [2], and are closest to those achieved in compu-
tationally secure signature schemes. An important difference between computa-
tionally and unconditionally secure digital signatures is that in USDS verification
cannot be a public process, and so secret keys are needed, which, as noted in
[11,13,15], must be different for each group member.

Our Results:

We propose a common framework for modelling and analysing asymmetric group
A-codes and USDS schemes. We introduce authentication and verification or-
acles which adversaries interact with to obtain spoofing information. We also
introduce authentication scenarios and outline a general way of expressing se-
curity goals and adversary’s power. We give a generalised bound that applies
in such scenarios. Our work suggests numerous variations on defining security
goals of a group—based A—code and adversaries power. Critically, the framework
allows information theoretic security and efficiency evaluations for USDS.

We also propose a methodical approach to synthesising complex group—based
USDS systems with provable security, starting from simple component systems
with provable security. This approach is algebraic and while sometimes pro-
viding less efficient constructions it avoids some disadvantages of combinatorial
synthesis. Furthermore, security proofs follow from security of components.

The rest of the paper is organised as follows: In section 2 we recall parts of
A-code theory. In section 3 we propose our model of asymmetric group authen-
tication codes (USDS) and show how previous USDS models fit in this frame-
work. Section 4 contains the new design methodology with concrete construc-
tions, while section 5 sketches our general framework for group authentication.
Finally, section 6 contains our concluding comments.



2 Preliminaries

An authentication code may be represented as a 4-tuple, C = (S, M,¢&, f),
where S, M, £ are the sets of source states, messages and keys, respectively. The
function f : S x &€ - M takes a source state s, a key e and generates the corre-
sponding message m. The function f defines two algorithms; an authentication
algorithm used by the sender to generate an authenticated message, and a verifi-
cation algorithm used by the receiver to verify a received message. There is also a
key generation algorithm that generates key information for the system. We use
systematic Cartesian A—codes, wherein the messages are of the form (s, t), where
the tag t is used to authenticate the source state s. Such an authentication code
is represented as a 3—tuple C = (S, A, &) with t = e(s),e € £,s € S, and A being
the set of tags (or authenticators). A—codes are symmetric key systems and the
secret key is shared by sender and receiver, who are assumed to be trusted.

An attacker may inject a fraudulent message into the system (an imper-
sonation attack), or construct a fraudulent message m’' after observing a valid
message m (a substitution attack). In both cases the attacker succeeds if the
fraudulent message is accepted. The best success probability of the attacker in
the two attacks are denoted Py and Pg, respectively. A message m is valid for a
key e if m € M(e), where e is the key shared by the sender and receiver. Security
of an A—code is defined by the attackers best success probability in the attacks.

_ . . _ ' .
Pr= Trgeaﬁp(m is valid fore) Pg = mlerg‘l/fa\pim} p(m' is valid for e|m) .
An A-code has e—security if the success probability of any attack is at most e.
In A2-codes one considers signer’s denial attack and receiver’s impersonation
and substitution attacks. In A3-codes [1,3] fraud by the arbiter is treated also.
Authentication systems may provide security for more than one message. In
spoofing of order t, the attackers have access to up to ¢t authenticated messages.
Order 0 and 1 spoofing are impersonation and substitution, respectively. Codes
that provide security for +messages are denoted as tA4, tA? and tA3—codes.
Efficiency parameters of an A—code include participants key sizes, and the
length of the authenticator. Performance bounds provide fundamental limits on
these parameters for a given level of security, or alternatively bound the security
level for a given set of parameters. Two types of bounds are derived for A—codes:
information theoretic bounds on the success probability of attacks in terms of
information theoretic measures, and combinatorial bounds on the sizes of the
key spaces and authenticator in the system. Information theoretic bounds for
A-codes were given in [6,16] and later derived for other models [11].
Group-based A-codes (the subject of this work) were introduced in [4] and
developed by numerous authors [5,11,13,14]. Multireceiver A—codes (M RA-
codes) allow a single trusted sender to send a message to a group of receivers such
that each receiver can individually verify the message. A (e, w,n)-M RA—code
is an M RA—code for which the success probability of the best attack (imper-
sonation and substitution) for a colluding group of w verifiers is less than e.
Information theoretic bounds and constructions for such codes are given in [13].



2.1 Constructions:

Numerous constructions of A—codes have been proposed (for example [4, 13,14,
16]). We briefly recall constructions to be used in this paper.

Polynomial A—code [4] (Cy) Consider the A—code defined by the function
f(x) = a+ bz, where (a,b) € F2 is the key and the authenticator for the source
state s € Fy is given by f(s). This code satisfies P = Pg =1/q.

Polynomial (¢, w,n)—M RA—code [4] (C1) The sender has two polynomials
f(z) and g(z), both of degree at most w, with coefficients over F, the finite
field with ¢ elements. Each receiver U; is given (u;, f(u;), g(u;)), where u; € F, is
public and u; # u;,i # j. To authenticate a source state s, the sender constructs
the tag a(z) = f(x) + sg(x) and appends it to s. The receiver U; accepts a
message (s,a(z)) as authentic if f(u;) + sg(u;) = a(u;). The construction has
€ =1/q and is optimal with respect to tag length, and key sizes.

3 Asymmetric authentication in groups: USDS

We consider systems where no participant is trusted (except, possibly the ar-
biter), and where participants’ keys are only known to themselves, hence the
term asymmetric. We focus on single signer schemes.

3.1 A general framework for single signer group A—codes

There is a set U = {Uy,Uy,...,U,,Ua} of distrusted participants, each with
secret key information. The set U contains n verifiers, an arbiter Uy, and a
signer Up. A message signed by Uy is acceptable to all verifiers. We assume the
arbiter has the algorithm and key information of a verifier, so the arbiter’s key
information is the same as a verifier’s. Arbitration is performed by applying
the verification algorithm to a ‘suspect’ signed message and using the result to
resolve the dispute following arbitration rules.

Each user has a distinct identity encoded in the source state: for example the
source state can be the concatenation of the user’s identity and the information
signed. The signer wants to sign s € S so any verifier can verify the signature.

The adversary can corrupt a group C, of at most w verifiers, and possibly the
signer and/or the arbiter. This is the model in earlier group—based A—codes and
USDS. Including the arbiter assesses security under extreme attack conditions.
One assumes, however, the arbiter follows the correct arbitration rules.

We consider the following types of attacks.

1. Uy € C. A denial attack where Uy signs a message, then denies it. Colluders
succeed if, following arbitration, the message is deemed not from Up.
2. Up ¢ U. In this case the attack is one of the following types.
e spoofing attack: The collusion constructs a message valid for a verifier.
o framing attack: The colluders construct a message attributable to Uy and
acceptable to a verifier. We note the verifier, in this case, may be part
of the collusion.



In spoofing attacks colluders succeed if their fraudulent message is acceptable
to a target verifier. The message may or may not be valid for (constructible by)
Uo.

We remark that HSZIO0 introduced an attack against transferability, called
‘transfer with a trap’. We show in section 3.2 that this attack has less chance of
success than the above attacks and therefore need not be considered separately.

The above requirements are reminiscent of M RA—codes and thus we will use
the term M RA?-codes and M RA3-codes when the arbiter is, or is not, trusted.
With a trusted arbiter, a signer’s denial attack succeeds if the colluders construct
a message m where m ¢ M(er), er being the key, e4 the arbiter’s key distinct
from all e;, which denote the key of U;.

We use E;, Er,E4 and E¢ to denote sets of keys associated with verifier
U;, signer Uy, arbiter U4, and collusion E¢, respectively. The success in denial
attacks can be measured by the probability of a verifier U; accepting the message,
m € M(e;), but the arbiter not, i.e., m ¢ M(ea). In verifier’s spoofing attack
the message must be valid for a verifier U; and so m € M(e;), while in verifier’s
framing attack m € M(er) and m € M(e;) for some verifier Us.

Security of an M RA? code against the above attacks can be defined using
probabilities, P2 P;"S’tvl 2 and P;{g’tvl "2 Tn the first attack the collusion
includes the signer, in the last two it does not. Each probability is obtained as the
best success probability of colluders. The superscripts represent colluders ability
to collect information on uncorrupted verifiers’ keys by oracle interaction.

Colluders information

Colluders have their key information. In traditional A—codes colluders may also
have access to prior authenticated messages sent over the channel. We model
such observations by queries to oracles that implement users algorithms with
users key information. We consider two types of oracles.

Authentication oracles (A—oracles) implement the authentication algorithm
with the signer’s key. When presented with an Authentication query (A—query),
consisting of a source state s € S, the A—oracle generates the signed message
m = (s,t) (or just the signature t).

The impersonation and substitution attacks in traditional A—codes corre-
spond to the case that 0 and 1 A—queries are allowed, respectively.

Verification oracles (V—oracles) implement the verification oracle with a
particular verifier’s key (as in SHZI02). On input (s,t), the V—oracle generates
a TRUE/FALSE result. The queries to this oracle are called V-gqueries.

If the arbitration algorithm is different for the verifier’s algorithm, we also
need to consider an arbitration oracle.

In symmetric A—codes, A—oracles and V—oracles have the same information;
i.e. they implement the same algorithm with the same keys but in asymmetric
systems, the oracles have different keys.

A V—query against a verifier U; gives information about the verification key of
U;. If verifiers use the same verification algorithm with different keys chosen using



the same algorithm (for example random selection with uniform distribution),
then the average information from a query will be the same for the two queried
verifiers.

Attacks will be against a target verifier. The V—queries against this verifier
will intuitively be expected to be more ‘useful’ than a query against a non-—
targeted verifier. Thus we define Type Vi—queries (Vz—queries)] as being
made to a non-targeted (targeted) verifier.

Security Evaluation:

Let ec = {e; : j € C'} be the colluders key set. Pp/*"*"2, P;;lfg’tvl 2 and P;“I;tvl tve
denote success probabilities given t4 A—queries, ty, Vi—queries to each non—
targeted verifier and ty, Va—queries. Let Q(ta,tv,, tv,) and R(ta, tv,,ty,) denote
the sequence of queries and responses, respectively and let (Q, R)(ta,tv;,tv,)
denote the pair of queries and responses.

Pz)vl tvy =max max enclar}f(m is valid for U;, invalid for Uglec, (@, R)(tvy,tv,))
LT meM(en)
Q(tvy stvy)
P;{q,tvl vy _ max  max P(m is valid for Ujlec, (Q, R)(ta,tv,,tv;))
U;¢éC Q(tA,t{q tvy)
P;{}’tvl 2 —max  max  P(m is valid for Uglec, (Q, R)(ta, tvy,tv,))

ccu ec,m
U; Q(tAitVI 7tV2)

We say a system is (e, w,n,ta,ty,,ty,)—secure if the success chance of the
best attack when t4 queries of type A, ty, queries of type Vi and ty, queries of
type V5 are allowed, is at most e.

Adaptive and non—adaptive queries

In the model we allow the queries to be asked in an arbitrary order. The
success probability considers all possible interactions involving ¢t A—queries, ty,
Vi—queries and ty, Vo—queries and is maximised as the attacker’s best strategy.

M RA3—codes are similarly defined but the arbiter may in the collusion. In our
model we assume the arbiter has the key information of a verifier. This means
security of an M RA3—code against a collusion containing U4 and w verifiers can
be achieved by a (e,w + 1,n)-M RA?code. Generally, success probability of the
collusion attacks involving a dishonest arbiter must be considered.

A—queries and V—queries

Although distinguishing among the query type is important for efficiency
of constructions, we can guarantee some security against V—queries even if we
only consider A—queries. The following Lemma shows protection against V;—
queries can be obtained by constructing codes providing protection against larger
collusions.



Lemma 1. An (e,w,n,t,0,0)-M RA? provides e-security against collusions of
size w — v, assuming colluders can have t A—queries and any number of V-
queries against v verifiers.

This result follows since the information gained by Vi—queries to U; at most
equals the key held by U;, which would be yielded up were U; in the collusion.

Va—queries provide information on the target verifier’s key. For secure codes,
one expects to obtain less information from queries resulting in FALSE compared
to those giving TRUE. This is since the probability of the former type of queries
is expected to be higher than that of the latter.

3.2 Security notions in HSZI00 and SHZI02

One main aim of developing our framework is to unify USDS, including SHZI02.
We address this here. HSZI00 correctly recognised the inadequacy of M RA and
DM RA-codes as USDS and argued that multireceiver A-codes make sense only
in a broadcast environment [7, p.132] and [8, p.69].

The term ‘multireceiver’ in the A—code context refers to the property: any
receiver who receives the authenticated message can verify it. This is exactly as
required in signature schemes. Multireceiver schemes do not ‘require’ that the
signed message be received simultaneously by all group members. Rather they
guarantee that if any group member receives the signed message then they can
verify it. However, as noted earlier, M RA-systems assume a trusted sender and
so do not provide security against attacks by collusions including a distrusted
signer. The model proposed in section 3.1 assumes the signer is distrusted.

The following Lemma shows we need not consider ‘transfer with a trap’ (so
named by HSZI00) attack. In a ‘transfer with a trap’ colluders construct a forged
message that is acceptable to U; and not U; or Uy, and so when U; presents the
message to Uy, U; is trapped. Here the colluders may include the signer.

Lemma 2. The success probability in ‘transfer with a trap’ is at most equal to
Ptv1 vy ptastvytvy
ma*x{ D »* RS }

Proof. If the signer is part of the collusion the attack succeeds if (4) the message
satisfies the requirement for a successful denial attack, and (%) is furthermore
unacceptable to some receiver Uj. If the signer is not part of the collusion the
attack succeeds if (4) the message satisfies the requirement for a successful spoof-
ing attack, and () is not acceptable to both the receiver U; and the arbiter Ua.
Success in transfer with a trap requires two conditions to be satisfied and thus
has less chance of success than plain denial or spoofing attacks, respectively.

SHZI02 introduced a wide range of new security notions closely following
computational models. They considered the ‘strongest security notion’ for their
proposed construction. In our model of asymmetric group A—codes, we consider
the most powerful collusion, with the most useful information, using their best
strategy, with success defined by success against a single verifier. The most pow-
erful collusion includes the signer and the arbiter, with their key information



and access to oracle queries, and the attack goal is constructing ‘a message’ ac-
ceptable to ‘a verifier’ (in SHZI02 notation, existential forgery and existential
acceptance). This is the same as the ‘strongest security notion’ in SHZI02.

Other types of forgeries in SHZI02 are Total break and selective forgery which
are harder to achieve and, while expressible in our framework, are of less interest.
Similarly, colluders information can be restricted to key information only (Key-
only attacks); i.e. disallow queries. As mentioned earlier, we consider all valid
query sequences (§3.1), so adaptive queries need not be considered.

SHZI02 define other security goals (Total and selective acceptance), both
harder to achieve than the existential acceptance considered in our model and
used in the ‘strongest security notion’.

SHZI02 [15] note “the strongest signature scheme is one secure against ex-
istential acceptance forgery under adaptive chosen message attack and adaptive
chosen signature attacks”, and use this model for their constructions. The se-
curity model of M RA3-codes, matches this definition. In section 5 we give a
language to express a wide range of security models in authentication scenarios.
The value of particular scenarios depends on practical applications.

Information theoretic bounds

Establishing the relationship between USDS in HSZI00 and SHZI02 models
and multireceiver codes allows us to derive information theoretic bounds for
USDS. We give bounds for the attacks defined in section 3.1. Since the arbiter is
treated as having a verifier’s information, the bounds for arbiter inclusive attacks
are the same as the bounds for a collusion of size w + 1. These bounds consider
A-—queries only and so the query set is Q(t4), with (Q, R)(t4) the message and
response set. We use M' = M\Q(t4) to denote the rest of the message space
and E¢ for the keyspace of colluders.

Pp > 9—I(M;E;,Ea|Ec) PI%?S > 9—I(M';Ei|Ec,(Q,R)(ta))

Pla, > 9-TOM'FrIFo (@A) (1))

The bounds when V—queries are considered remains an open problem.

(e,w,n,ta,tv,,tv,)-secure

/

(e, w,n,ta)-MRA «— (e,w,n, tA)fMRA2 <~ (e, w,n, tA)*MRAS
(e,w,n,ta,ty)-secure

Fig. 1. The relationship between different types of security notions for authentication
codes. We use A — B to imply that a code of type A satisfies the security requirements
of a code of type B. All codes, except for (e,w,n,ta)-MRA, are types of USDS.
The (e, w,n,ta,tv) code satisfies the strongest security notions of SHZI02 with t4 A-
queries, tv Vi queries and tyv — 1 V5 queries. We note the two rightmost USDS are
essentially the same and the distinction lies in seperating V7, and Va—queries.



4 Constructions

In constructing group A—codes the challenge is to have secure and efficient con-
structions. Optimal constructions meet minimum requirements for keys and have
the shortest signature length, but are rare and inflexible. e—security gives guaran-
teed security without the highest efficiency, but with the advantage of providing
flexibility and a wide range of constructions.

Proof of security for systems with complex security goals is generally difficult.
We give two algebraic methods of constructing group—based A—codes from sim-
pler A—codes. The constructions use polynomial codes where signature generation
and verification can be expressed by evaluation of multivariate polynomials over
a finite field F, with ¢ elements. We assume all polynomials are in Fy[zy, - - z,],
the ring of polynomials over the finite field F,;. Constructions Cp and C; are
polynomial codes. Polynomial codes are generally efficient and often optimal.

A polynomial code can be expressed in terms of polynomials generated by
the trusted authority (TA) during the Key generation (KeyGen) phase. The
signer receives a signing polynomial A(x, z) for generating signatures. Each re-
ceiver U; gets a verification polynomial and some identification information wu;.
The identifier may be public (private) if the sender is trusted (distrusted).
Signature generation (SigGen): The signature of a source s is a(z) =
A(s, z). We assume authentication codes without secrecy so the signed message
is (s, a(2)).

Signature verification (SigVer): A receiver U; accepts a signed message iff
(2)]ze=u; = Vi(@)|2=s-

4.1 A systematic approach to constructing group A—codes

We use multiple instances of a component code, combined using powers of a
single variable, or using distinct variables for each instance. We consider two
synthesis algorithms, Xy and Y.

Synthesis algorithm: 3

KeyGen: The TA generates k + 1 instances of the component authentication
code. For each instance j, a component signing key A;(z,z) and component
verification keys, Vj;(z) for each verifier i are generated, such that Vj;(z) =
Aj(z,u;) where u; € Fy is U;’s identifier. The TA gives Uy the polynomial



SigGen: The signature of a source state s is a(z,y) = B(s, 2,y).
SigVer: A receiver U; accepts a signed message iff a (2, y)|.=u; y=u; = Wi(2)]o=s-

Discussion and example for 3

Y1 can be used to construct codes that provide protection for multiple re-
ceivers, construct asymmetric codes from symmetric codes, and construct dy-
namic sender codes from single sender codes.

We shall consider synthesis of an M RA—code from a two party A—code. The
approach also be used to construct HSZI00 (dynamic sender) from a (e, w,n,t4)—
secure code providing protection against collusions of size w and t A—queries.

Let the component code be Cg, where the signer has A(z) = a + bz and
V(z) = A(z). Using X we obtain an authentication code as follows.

KeyGen: The TA generates k+ 1 instances of the code Cy, specified by A;(x) =
a; + xb;,0 < j < k. The TA gives Uy the polynomial

k
Zaj-l-bx
7=0

and each verifier U; an identifier u; and verification polynomial

k
E (a; + b;x) u,’.
Jj=0

SigGen: The signature for a source state s is a(y) = B(s,y).
SigVer: User U; accepts (s, a(y)) iff a|y—u; = Wi(2)|o=s-

The above construction is the same as the (e = 1/q,k,n)-secure M RA-
code of [4]. This follows since the signature generation function can be written
as Bi(z,y) = X2 a;97 + 23, bjy’ = fy) + g(y). If w; is only known to the
receiver, we have an (e, k,n)-M RA%—code, with € = 1/(q — k), since the signer
cannot deny a signature.

Synthesis algorithm: X,

KeyGen: The TA generates k + 1 instances of the component authentication
code. For instance j, a signing key A;(z,z) and verification keys, Vi;(z) =
Aj(z,u;), for each verifier ¢, are generated. The TA gives Uy the polynomial

k
B(z,z,Y) ZA]

and each verifier U; an identifier u;, randomly generated vector v; € ]F’qchl also
written as vi = (vi0, Vi1, - .-, Vi), and a verification polynomial

k
Z Vij(2)vij -

Jj=0



SigGen: The signature of a source state s is a(z,Y) = B(s,z,Y).
SigVer: A receiver U; accepts a signed message iff a,—y; v=v;) = Wi(z)|s=s-

Discussion and example for X5

This algorithm allows one to construct asymmetric codes from symmetric ones,
multireceiver codes from single receiver codes, or dynamic codes from single
sender codes. Again we consider constructing an M RA—code from a two party
A—code. As before we use Cqg as the component code.

KeyGen: The TA randomly generates k + 1 instances of the code Cgq, specified
by the polynomial A;(x) = a; +xb;,0 < j < k. The TA gives Uy the polynomial

k
B(z,Y) =) A;j(@)Y;

J=0

and each U; an identifier u; € IF;, a randomly generated vector v; € IF’;“, and
a polynomial

k
Wi(z) =) Vij(@)v; -
=0
SigGen: The signature for a source state s is a(Y) = B(s,Y).
SigVer: User U; accepts (s,a(Y)) iff a(Y)|y=v, = Wi(s).

Theorem 1. The above construction is an (e,w,n)-M RA—code. The authenti-
cator and key sizes for signer and user are k+1,2(k+ 1) and k + 3 respectively.
In this case e = 1/q.

Intuitively this result follows since each copy of the two party code provides
security for a single colluder and for each colluder one copy of the code is added.
Compared to Cq, obtained using Yy, this construction has a larger key size for
verifiers but the same signer key size and the same signature length.

Y5 construction can also be used to provide protection against V—queries.
This property will be used in synthesising SHZI02 (§4.3). To show this property
we re—visit the construction above and show it can be seen as an (¢,0,n,1,ty, =
k+1,ty, = k)-secure code. That is, a code where signer is distrusted but verifiers
are trusted. This is dual to traditional M RA—codes where the signer is trusted
and verifiers collude. The most powerful attack is the signer’s denial attack
against a verifier. The signer does not know the identity vector v; and has
to construct a pair (s,a’(Y)) such that (i) o'(v;) = W;(s') and (i) a(v;) #
B(s,Y). He can have k Vo—queries. The V; queries give information about the key
information of other verifiers only. The signer attempts to construct a message
(s,a'(Y)) such that (i) o/ (vj) = W;(s') and (ii) a(v;) # B(s,Y).

Each Va—query gives a tag o;Y,0 < ¢ < k — 1 such that a;(v;) # W;(s'), i.e.
a source state, tag pair unacceptable to U;. The adversary can choose k a; so
a;(vj) = a;(v;) if and only if ¢ = [, so each tag tests a different value against



W;(s'). Each of the tags used reduces the possible values of W;(s') by 1. Thus
the probability of the adversary choosing a tag acceptable to U; is e = 1/(g— k).

This shows one may apply X» to Cg to obtain either a (e, k,n, 1,0, 0)—secure
ora (6,0,n,1,k+1, k)-secure code. Indeed, though we shall not give details here,
the X5 synthesis gives an (e, k1,n, 1, ks + 1, k2)—secure code, where ki + ko = k.

4.2 Construction of USDS

¥y can be applied to the A?-code and A3-codes in [9] to construct M RA?
and M RA%—codes from C;. We omit the details and instead show how to use
a synthesis approach similar to X; on source states rather than on identities
to synthesise M RA? and M RA®—codes that protect against higher number of
queries. That is we show how to construct a (e, w, n,t4,0,0)—secure code from a
(e,w,n,1,0,0)-secure code. A similar argument applies to M RA3-codes when
the arbiter has the key information of a verifier.

Theorem 2. The construction Cy is an (e, w,n)—secure M RA?—code if u; are
known only to U;. We have e = w/(q — w).

We call this construction C2%. The security proof uses the knowledge that the
strongest collusion consists of the signer and w verifiers whose aim is to construct
an authenticator a(z) (a polynomial of degree w) such that a(u;) = f(u;) +
sg(uj;) for some j. The result follows since while colluders know f(z) and g(z)
they cannot determine the identity u; of U;. The construction guarantees e
security if for given security € and w we have ¢ > w(1 + 1/¢). To construct an
(€,w,n,ta)-secure M RA%—code we use t4 + 1 copies of C2 and apply a modified
version of X;. (Similarly for M RA3 from C3.)

KeyGen: The TA generates t + 1 independent C%, f;(x) + zg;(z), and gives Uy

t t w 1
B(z,y,2) = Y (fel@) + zgu(@)y* = DD > anizatzly* .
k=0 k=0 i=0 j=0

The TA gives verifier U; a private u; € F, and B(u;,y,2). The arbiter has the
key information of a verifier, that is B(uq,y, 2) where u, is the arbiters identifier.
SigGen: The signature of a source state s € Fy is a(z, 2) = B(z, s, 2).

SigVer: User U; accepts the message as authentic iff a|y—y; = B(u4,y, 2)|y=s, V2.

The key sizes for the signer and each verifier are 2(¢ + 1)(w + 1) and 2t +
3, respectively. The tag length is 2(w + 1). As before appropriate choices of
parameters can provide e—security for any chosen e.

Theorem 3. The above construction is a M RA3—codes that protects against t
A—queries with e = w/(q — w).

This code is similar to a generalised C; construction given in [13, §5.1] as an
M RA—code protecting against multiple A—queries.



4.3 TUSDS constructions: The SHZI02 model

SHZI02 gave a construction that satisfies their proposed ‘strongest security no-
tion’. We construct a code with the same security level using the synthesis
methodology above. The main advantage of this description is that the secu-
rity proof can be straightforwardly derived from that of the underlying codes.

The SHZI02 model uses the same setting as M RA®-codes. For an attack
against Uj, by a collusion of w out of n verifiers, the adversary may have (¢)
t A—queries, (i7) t' Vi queries from each verifier other than Uj;, and (i4i) ¢/ — 1
Va—queries rejected by Uj.

The synthesis has two steps: (i) constructing an (e, 0,2, t,0,0)-secure code,
and (ii) constructing a code with (e, w,n,t,¢,t' — 1)—security.

We start from Cp: a component code that is (€,0,2, 1,0, 0)-secure. The key is
a pair of random numbers (a,b) € F> shared by the signer and verifier. Using the
synthesis akin to X7, described in the previous section, we take ¢+ 1 copies, thus
A;(z) = a; + bz, we obtain an (¢, 0, 2,t,0, 0)-secure code, where the polynomial
held by the signer and by each verifier (noting they are still all trusted), is

t

B(z,y) =Y Ai(x)y' = f(y) +z9(y)

=0

where f(y) = X2%_g asy’ and g(y) = XL biv'

The signature for a source state s is a(z) = B(z, s), and a message is accepted
if a(z) = B(zx,s). Let this (e,0,2,t,0,0)-secure code be the component code,
and apply Xs to t' + w + 1 copies B;(x,y),0 < i <t +w. The TA gives U

wt’
C(mayaY) = Z Bj(may)Y]'
j=0

and verifier U; a randomly chosen identity v; € F*+* +1 and verifying polynomial

w+t’
Wz(xay) = C(xayavi) = Z Bj(may)vij -
=0

SigGen: The signature for a source state s is a(z,Y) = B(z,s,Y).
SigVer: User U; accepts (s, a(z,Y)) iff a(z,Y)|y=v; = Wi(z,y)|y=s, Vz.
We may write the complete key of the signer as

’

wHt

1
Clay,Y) =3 D D AuYsy'a" .

i=0 j=0 k=0

This s the construction of SHZI02, satisfying the ‘strong security notion’
and constructed using X and X,. We used X to synthesise a t—message system
from a 1-message code. We used X5 to synthesise an asymmetric system secure



against collusions of up to size w, and t' V—queries. Collusions may include the
signer, or arbiter in our model, and the arbiter has a verifier’s key.

SHZI02 note this code meets the 1/g bound on security, although it is not
known to be optimal. Rather than starting with Cg we could omit the X step
and use an optimal (¢, 0,2,¢,0,0)-secure code, with signer polynomial B(z) =
Z;%:o Ayt [9]. We omit details but synthesising this code using X as above
gives a (1/(g—t'),w,n,t,t',t' — 1)-secure code. The authenticator, signer’s and
verifier’s keys sizes are, (w+t' +1), (t+1)(w+t'+1) and (w+¢' +1)+ (¢t +1),
respectively, half those of the SHZI02 as formulated above. While information
theoretic and combinatorial bounds are not yet known for these codes, it seems
unlikely the construction of SHZI02, as developed above, is optimal.

5 Generalised authentication codes

A general setting for Generalised A-codes (GA-codes) consists of a set U of
participants, each with some secret key information, such that any group member
may sign a message and verify signed messages. To emphasise the new aspects
of GA-codes, we assume there is one signer, the approach can be extended to
dynamic signer systems. The set I/ contains n verifiers, an arbiter Ug, and the
signer Uy. Let Ex denote the set of all possible keys values held by a set X of
participants. We use M(E) to denote the set of messages valid under all the
keys in E. An adversary corrupts some subset of participants that will form a
colluding set. We assume these sets are staticly determined.

We consider codes without secrecy, where the authenticated message for a
source state s can be written in the form (s,t), where t is a tag or authenticator.

Generalised oracles: We generalise the oracles of section 3.1 by defining gen-
eralised A—oracles and generalised V —oracles that can generate and verify, re-
spectively, messages of defined type.

Message type: We say a message m is of type 7 = (€j,,...,€;;5€j5,,...,€j,), if
m € {M(es,) N...N Mf(e;,) P\ {Mlej,) N...NMlej, )} (1)

where M(e) C M(e). In other words m is valid for (e;,,...,e;) and not valid
for (ej,,...,ej,). This captures exclusions of already ‘used’ queries from the
message space. A message type is NULL if the types message space is empty.
A gA-oracle takes a source state and type 7, and generates an authenticated
message (source state followed by the signature) of type 7, or outputs NULL, if
it is not possible to generate such a message. A gV —-oracle takes a message m and
a type 7 and produces a TRUE result if m is of type 7, and FALSE otherwise.
Since the status of a message with respect to the arbiter is also relevant,
one may have messages known to be acceptable or unacceptable to the arbiter
by considering inclusion in M(e4). If the arbitration algorithm differs from the
verification algorithm, arbiter queries need to be considered separately.



Collusion structure: The collusion structure is written as a pair (C, ¢ ), where
C is a colluding set and ¢ determines the oracle queries accessible to C. The
set ¢ contains a list of message types ¢;, multiplicities ¢; and a flag p; that
determines if the query is made to the gA—oracle or to the gV—oracle. For each
i, £; messages of type ¢; may be queried to an oracle of type p;. Let R(¢;) be
the set of input and response pairs associated with the ¢; queries.

A (e,w,n,ta,ty)-threshold collusion structure is a collusion structure in
which a colluding set contains at most w verifiers and has access to up to t4
A—queries, up to ty — 1 Va—queries (from the targeted verifier) and up to ty Vi—
queries (from each other verifier). A collusion set may also include the signer,
and/or the arbiter.

The Goal of an attack is specified by the type of message to be constructed
by the colluders.
An Authentication Scenario ¢(C) is defined by a set of participants, a col-
lusion structure, and the protection the system can provide against colluder’s
attacks. Performance of an authentication scenario against a colluding set C' with
goal type v is measured by P(v|®¢), the highest success chance of a collusion
with message set &¢. The success probability of such an attack is defined as
P(y;80) = max Jnax | max P(m is of type 7|R(¢c), ec)
where P(m(y)|R(¢c),ec) is the probability of generating the message m of
type «v given queries with responses, R(¢¢c) € R(P¢), specified by the collusion
structure ¢¢c, and key information ec € Ex. We note that for g A—queries only
the space R reduces to the message space M(P¢), as below.

Information theoretic bounds

The attack probability bounds for A, A%, A>, MRA, MRA?,tA® and tMRA?
codes, at least may be concisely represented using authentication scenarios;

P(vy; ®¢) > o—I(M(E,);Ey|M(®c),Ec)

6 Concluding remarks

We proposed an extension of traditional A—codes and showed the resulting frame-
work encompesses the recently proposed USDS schemes, and all the previously
known ones, hence unifying all models and constructions in the area. Introducing
the notion of V—queries suggests an interesting model for attacker’s strategy in
A—codes not previously considered. This is hence a rich area for research.

We also developed an algebraic method for synthesizing group A—codes from
simpler component codes, which removes the shortcoming of previous synthesis
constructions. We gave two general methods, called X7 and Y, and gave an
example construction using each.

We believe our work fills a gap in understanding USDS and provides a unified
framework for USDS and their future extensions.
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