
Algebraic Attacks over GF (2k), Application to
HFE Challenge 2 and Sflash-v2

Nicolas T. Courtois

Axalto Cryptography Research & Advanced Security,
36-38 rue de la Princesse, BP 45, 78430 Louveciennes Cedex, France

http://www.nicolascourtois.net

courtois@minrank.org

Abstract. The problem MQ of solving a system of multivariate quadratic
equations over a finite field is relevant to the security of AES and for
several public key cryptosystems. For example Sflash, the fastest known
signature scheme (cf. [1]), is based on MQ equations over GF (27), and
Patarin’s 500 $ HFE Challenge 2 is over GF (24). Similarly, the fastest
alleged algebraic attack on AES due to Courtois, Pieprzyk, Murphy and
Robshaw uses a MQ system over GF (28).
At present very little is known about practical solvability of such systems
of equations over GF (2k). The XL algorithm for Eurocrypt 2000 was
initially studied over GF (p), and only recently in two papers presented
at CT-RSA’02 and ICISC’02 the behaviour of XL is studied for systems
of equations over GF (2). In this paper we show (as expected) that XL
over GF (2k), k > 1 (never studied so far) does not always work very
well. The reason is the existence of additional roots to the system in
the extension field, which is closely related to the remark made by Moh,
claiming that the XSL attack on AES cannot work. However, we explain
that, the specific set of equations proposed by Murphy and Robshaw
already contains a structure that removes the problem. From this, we
deduce a method to modify XL so that it works much better over GF (2k).
In addition we show how to break the signature scheme Sflash-v2 recently
selected by the European consortium Nessie, by three different methods
derived from XL. Our fastest attack is in 258. All the three attacks apply
also to HFE Challenge 2, and our best attack is in 263.

Key Words: Multivariate quadratic equations, MQ problem, overdefined
systems of multivariate equations, XL algorithm, Gröbner bases, algebraic
attacks on AES, XSL, Murphy-Robshaw equations on AES.

1 Introduction

In the perpetual search for hard problems on which to base cryptographic
security, there is a growing interest in so called “multivariate problems”.
These problems are usually NP-hard. In terms of scalability of the sys-
tems, the best problems are those for which all known attacks are ex-
ponential: it is then sufficient to increase slightly the parameter sizes, to

2 Nicolas T. Courtois — PKC 2004, c©IACR —

keep up with progress in the attacks, or with an increase in the speed of
computers. One of such problems is the problem MQ, of solving a system
of multivariate quadratic equations over a small finite field. Several pub-
lic key cryptosystems based on MQ have been proposed, for example the
HFE family [30, 9]. In this paper we study generic attacks that solve the
underlying MQ problem independently of the existence of the trapdoor.
They apply also to random quadratic equations.

At Crypto’99, Shamir and Kipnis present a surprising method called
relinearization for solving overdefined systems of multivariate quadratic
equations. They point out that, if such a system of equations is overde-
fined (much more equations than needed), then it can be solved much
faster than expected. Subsequently, at Eurocrypt 2000 [32], Courtois,
Klimov, Patarin and Shamir, present a new algorithm called XL, (and
also FXL) that can be seen as an improved version of relinearization.

From [32] and still at present, very little is known about the exact
complexity and behaviour of XL. Initially in [32] it was studied mainly
over GF (p). Recently a lot of interest emerged in solving MQ systems over
GF (2) and GF (2k), due to the Courtois-Pieprzyk method to attack AES
by such means [15, 26]. At CT-RSA 2002 Courtois and Patarin study the
XL algorithm over GF (2) and show it works much better than expected
from [32] or from the naive criticism of it published on the internet [24].
At ICISC 2002, Courtois studies the extension of XL to equations of
degree higher than 2, and again demonstrates that it works very well,
allowing to cryptanalyse the stream cipher Toyocrypt, see [7]. The object
of this paper is to study rather MQ over fields of the form GF (2k), k > 1.
Such equations appear for example in the signature schemes Flash, Sflash
and Sflash-v2 published at CT-RSA 2002, out of which Sflash-v2 has
been selected by Nessie (in company of ECDSA and RSA-PSS). Also, in
the fastest known alleged attack on AES due to Courtois-Pieprzyk and
Murphy-Robshaw [15, 26], the equations are quadratic over GF (28).

2 Notation and Conventions Used in this Paper

The MQ Problem

In this paper we consider the problem of solving a system of m multi-
variate quadratic equations with n variables over a finite field GF (q). We
use very similar notations than in [32] and [14]. The input variables are
denoted by xi and belong to GF (q) with q = 2k. The equations are de-
noted by li and are quadratic (which means they can also include linear
and constant terms). Our system to solve will be:

Algebraic Attacks over GF (2k), HFE Challenge 2 and Sflash-v2 3

A :

l1(x1, . . . xn) = 0

...
lm(x1, . . . xn) = 0

Given m,n, q we call MQ the problem of finding one (not necessarily
all) solutions to such a system chosen at random. Typically in crypto-
graphic applications, k can be between 4 and 8 and m,n can between 26
and 1600 (for AES, see [15, 26]). The MQ problem is NP-hard, see [20].

Remark: In XL description in [32, 14] the powers of variables are
taken in GF (q), i.e. reduced modulo q to the range 1, . . . , q − 1, because
of the equation xq

i = xi of the finite field GF (q). Thus if q = 2 there
would be no powers of xi bigger than 1. For us it makes no difference,
as in all cases studied in this paper, we have q ≥ 16 and we will never
generate or manipulate equations of degree equal or bigger than q − 1.

Instances of MQ that Will Be Used in This Paper

If m > n the system is said to be overdefined. Similarly as in [32, 14], we
will see that for a fixed n, the bigger is m, the more easy becomes the MQ
problem. If m < n the system is said to be underdefined, and efficient
algorithms for the underdefined MQ has been studied in [5]. In general,
following [32, 14], we expect that the hardest case of MQ is when m ≈ n.

In practice, if we have a system with n > m, as in the Sflash public
key [12], we will start by fixing some variables to arbitrary values, get a
system with m ≥ n, and the try to solve it. (When over GF (2k), it is
unclear if one can take advantage from the initial n > m, cf. [5].)

For all our MQ systems we will always insure/assume that the sys-
tem has one and unique solution, we refer to Section 4.1 or to the end
of Section 5.1 to see why it is very important. To have one unique solution
happens frequently in cryptographic applications of MQ, and it is also the
average number of solutions of a random MQ with m = n. Moreover, in
practice, for systems that have several solutions, we can always reduce to
a system having one solution, by guessing a few variables.

Manipulating the Equations

Because the right hand of all our equations is always 0, it is very useful to
identify a multivariate polynomial and an equation that says it is equal to
0. Thus the equation li(x1, . . . xn) = 0 can be simply called the equation
li, and the equation x1 · l2(x1, . . . xn) = 0 can be called simply x1l2.

We say that the equations of the form
∏k

j=1 xij · li = 0, with all the
ij being pairwise different, are of type xkl, and we call xkl the set of all

4 Nicolas T. Courtois — PKC 2004, c©IACR —

these equations. For example the initial equations A are of type l. We
observe that each solution x that satisfies all the equations li, also does
satisfy all the equations of type xkl, for any k ≥ 0. Similarly we denote
by xk the set of all terms of degree exactly K,

∏K
j=1 xij . By extension we

define x0 = {1}, the constant monomial.
Let D ∈ IN. We consider all the polynomials

∏
j xij · li of total degree

≤ D. Let ID be the set of equations they span. ID is the linear space
generated by all the xkl, 0 ≤ k ≤ D − 2. We have ID ⊂ I, I being the
ideal spanned by the li We call T the set of monomials, including the
constant monomial, that appear in all the equations of ID, T =

⋃D
i=0 xi.

3 The Basic Principle of XL

Let D be the parameter of XL algorithm. Following [32, 14]:
Definition 3.0.1 (The XL algorithm). Execute the following steps:

1. Multiply: Generate all the products
∏k

j=1 xij ·li ∈ ID with k ≤ D−2.
2. Linearize: Consider each monomial in the xi of degree ≤ D as a new

variable and perform Gaussian elimination on the equations obtained
in 1. The ordering on the monomials must be such that all the terms
containing one variable (say x1) are eliminated last.

3. Find x1: Assume that step 2 yields at least one univariate equation
in the powers of x1. Solve this equation over the finite fields (e.g., with
Berlekamp’s algorithm). There may be several roots.

4. Recover the other variables: For each root x1 substitute it to the
expanded equations and, directly from the Gaussian reduction done
in step 3, find the values of all the other monomials, in particular for
all the other variables xi.

4 The Necessary Condition for XL to Work

We will always assume q = 2k, k > 1. We also always assume D < q − 1,
because we will have q ≥ 16 and and D will remain quite small (XL is
exponential in D). The XL algorithm consists of multiplying the initial m
equations li by all possible monomials of degree up to D− 2, so that the
total degree of resulting equations is D. With the notations introduced
above, this set of equations is called ID. Let R be the number of equations
generated in ID and T be the number of all monomials. When D < q− 1
we have:

T = |T | =
D∑

i=0

|xi| =
D∑

λ=0

(
n + λ− 1

λ

)
=

(
n + D

D

)

R = |ID| = m

(
D−2∑
λ=0

(
n + λ− 1

λ

))
= m

(
n + D − 2

D − 2

)

Algebraic Attacks over GF (2k), HFE Challenge 2 and Sflash-v2 5

It is likely that not all of these equations are linearly independent,
and we denote by Free the exact dimension of ID. We have Free ≤ R.
We also have necessarily Free ≤ T .

The basic principle of XL is the following: one monomial in T can be
generated in many different ways when different equations are multiplied
by different monomials. Therefore T grows slower than R and for some
D we will have R ≥ T . Then we expect that Free ≈ T , as obviously
it cannot be bigger than T . In [32], when Free ≥ T − D, it is possible
to obtain one equation with only one variable x1, and XL will succeed.
(However in [14] two improved versions of XL are introduced: XL’ and
XL2, that will work when Free < T − T ′, for some T ′ that may be
substantially bigger then D.)

Simplified Analysis of XL from [32]

In Section 6 of [32], R is evaluated as R = m · nD−2

(D−2)! and T is evaluated

as nD

D! . The authors state that “if most of the equations are linearly inde-
pendent” then XL will succeed as long as R ≥ T , which gives that:
m ≥ n2

D(D−1) , and thus they obtain the (approximative) bound D ≥ n√
m

.

4.1 General Theory and Moh’s Comments on XL

In [24], Moh states that “From the theory of Hilbert-Serre, we may deduce
that the XL program will work for many interesting cases for D large
enough”. According to [23], in XL we always have Free ≤ T − α. and
when D is sufficiently big, we have Free = T −α. Here α is the number of
solutions to the system, including not only the solutions when xi ∈ Gf(q),
but also when the xi lie in an algebraic extension of the field GF (q), or
projective solutions (points at infinity). Thus, on the one side, under
our condition that our system has one and unique solution, and if there
is no projective solutions or in an extension field, XL should work and
for D large enough we should have Free = T − 1. On the other side,
this condition is necessary, and when the system has several solutions,
Free = T − 1 is never achieved and the basic XL cannot work. Thus,
in Section 4 of [24], Moh shows an interesting example on which the XL
always fails. However:
– For XL over GF (2), it is shown in [14] that this kind of counter-

example cannot occur, because of the added equations x2
i = xi that

make that the system has no points at infinity, and the additional
solutions in the algebraic closure of GF (2) are excluded.

– In this paper we work over GF (2k), k 6= 1 and we will face this prob-
lem. In Section 6 we will see that XL will not work well when m = n,

6 Nicolas T. Courtois — PKC 2004, c©IACR —

then in Section 7 we will present a new version of XL, called XLF, that
will work even in this case. (In addition, we will see that in practice,
if 2k is not too big, and only then, two other already known versions
of XL can also circumvent this problem.)

5 Important Remarks About XL Algorithm over GF (2k)

Let Free be the dimension of ID, i.e. the maximum number of equations
that are linearly independent. Very little is known about the value of
Free for D ≥ 3. In the paper that describes XL, the authors demonstrate
that XL works with a series of computer simulations over GF (127) (and
some more are given in the extended version of the paper [32]). In [14, 7]
the authors study the XL algorithm over GF (2). They do many computer
simulations and are able to predict the exact value Free obtained in these
simulations. In this paper we will do the same for XL over GF (2k), k > 1.

5.1 The Behaviour of XL - Upper Bounds
In general it is not always possible to have Free = R. In many cases the
equations generated by XL are not all linearly independent. One reason
for this is that Free cannot exceed T , as the equations lie in a linear
space spanned by all the T monomials. We have therefore always

Free ≤ min(T,R)
Moreover, it is possible to see that if the system is not contradictory,

and has one solution, then:
Free ≤ min(T − 1, R)

This can be shown by contradiction: if Free = T then by elimina-
tion of T − 1 non-constant monomials, some liner combination of the
given equations will be 1, and if there is a solution to these equations, by
substituting it, we get 0 = 1.

5.2 The Behaviour of XL - Interesting Cases
As we will see in the present paper, the behaviour of XL over GF (2k),
when k is not too small, (e.g. k = 7) is very similar to the general be-
haviour of XL over a big field GF (p) studied in details (with many com-
puter simulations) in [32]:
– XL works very well for (even slightly) overdefined systems of equa-

tions, i.e. when m exceeds n by even a small value, cf. Appendix A.
– However when m ≈ n, and as long as the XL parameter D is smaller

than the cardinal of the field, it is possible to see that XL does not
work very well for systems of quadratic equations over GF (2k).
A different behaviour is observed for XL over a very small finite field

(such as GF (2) or GF (3)): XL works much better and there is no “prob-
lem” at all when m ≈ n. Detailed explanation and many computer sim-
ulations for this case are given in [14] and in the appendix of [7].

Algebraic Attacks over GF (2k), HFE Challenge 2 and Sflash-v2 7

6 Our Computer Simulations on XL

In all our simulations we pick a random system of linearly independent
quadratic (non-homogenous) equations yi = fi(x1, . . . , xn) and pick a
random input x = (x1, . . . , xn). Then we modify the constants in the
system in order to have a system that has a solution (and gives 0 in x).
The system solve is then of the form li(x0, . . . , xn−1) = 0, for i = 1, . . . m.

In Appendix A we show that for overdefined systems of equations over
GF (2k), i.e. when m > n + ε, XL works very well. Below we study the
hard case, when m ≈ n.

6.1 Simulations on XL over GF (2k) when m = n

Table 1. XL over GF (27) for m = n

n

m

D

R

T

Free
Free
T−D

Success

2 2 2

2 2 2

2 3 4

2 6 12

6 10 15

2 6 11

0.50 0.86 1.00

OK

3 3 3 3 3

3 3 3 3 3

2 4 6 7 8

3 30 105 168 252

10 35 84 120 165

3 27 76 112 157

0.38 0.87 0.97 0.99 1.00

OK

4 4 4 4 4

4 4 4 4 4

4 5 10 15 16

60 140 1980 2860 12240

70 126 1001 1365 4845

54 110 985 1349 4829

0.82 0.91 0.99 0.99 1.00

OK

Legend:
n number of variables.
m number of equations.
D we generate equations of total degree ≤ D in the xi.
R number of equations generated (independent or not).
T number of monomials of degree ≤ D.

Free number of linearly independent equations among the R equations.
� Note: XL will work when Free ≥ T −D.

It is very interesting to observe the column in bold characters: though
already for D = 5 XL gives R > T and therefore it could work, it will not
work until we have D = 16. The difference is quite big: the complexity of
the attack grows exponentially in D.

We see that for m = n and over GF (27) the XL algorithm works
very poorly. In [32], for simulations over GF (127), it appears that the
minimum degree is D = 2n. We observe the same here. The reason for
this is, following [32], that for m = n the system has many solutions not
only in the base field, but also in the algebraic closure.

It is interesting to see that basic XL over GF (27) becomes impractical
already for m = n = 5: in this case, doing XL with D = 25 = 32 would
give a complexity of about 249, more than exhaustive search in 27·5 = 235.
Later we will improve XL to handle such systems much faster.

8 Nicolas T. Courtois — PKC 2004, c©IACR —

6.2 Simulations on XL over GF (2k) when m = n + ε
We will see that, similarly as in [32], the behaviour of XL will dramatically
improve when m becomes slightly bigger than n. We do not longer need
D = 2n and XL works about as soon as R becomes larger than T .

Table 2. XL over GF (27) for m = n + ε (notations as for Table 1)

n

m

D

R

T

Free
Free
T−D

Success

4 4 4 4 4 4

4 4 5 5 6 6

15 16 4 5 3 4

2860 12240 75 175 30 90

1365 4845 70 126 35 70

1349 4829 65 125 30 69

0.99 1.00 0.98 1.03 0.94 1.05

OK OK OK

5 5 5 5

6 6 7 7

4 5 3 4

126 336 42 147

126 252 56 126

111 246 42 125

0.91 1.00 0.79 1.02

OK OK

7 XLF - New Version of XL for m ≈ n and GF (2k)

In Section 6.1 we saw that XL does not work very well when m = n
and over a large field GF (2k). From the analysis done in [32], we expect
that this is due to existence of many additional solutions to our system of
equations that lie in an extension field. In this section we introduce a new
version of XL, called XLF, designed specifically to handle this problem
over fields GF (2k). XL stands for multiply (X) and linearize (L), the new
method is called XLF, which stands for multiply (X) and linearize (L) and
apply Frobenius mappings (F). The basic idea of XLF is borrowed from
the Murphy-Robshaw representation of AES [26]. Each variable x that
appears in the system of equations will be duplicated k times, instead of
xi, we will have k variables denoted by (xi), (x2

i), (x
4
i), . . . , (x

2k−1
i). Each

equation 0 =
∑

ij αijxixj will be also duplicated k times: we will write:
0 =

∑
ij α2

ij(x
2
i)(x

2
j) etc. After doing XL expansion we get k times as

many equations of degree D and k times as many variables as in the
regular XL execution. Then we add some new equations that relate the
new variables to each other. For example, we add k ·n quadratic equations
as follows: for each i we have (x2) = (x) · (x) up to (x) = (x2k−1

) · (x2k−1
).

If D ≥ 4 we have also kn equations of type (x4) = (x) · (x) · (x) · (x)
etc. Since the equations we added are only equalities between monomials,
we may as well identify these monomials, which is equivalent to counting
less monomials. In the extended version of this paper we give a precise
list of all the monomials that are identified, and formulas to compute the
resulting reduced number of monomials T .

7.1 Comparing XLF and XL
It is easy to see that by this simple trick, all the solutions with xi /∈
GF (2k) will be removed, because they cannot satisfy the added equations.

Algebraic Attacks over GF (2k), HFE Challenge 2 and Sflash-v2 9

We conjecture that XLF will work as long as R becomes somewhat bigger
than T in the ordinary XL, (for example twice as big). This belief is
motivated by the paper [14] where it is shown that the equations of the
field GF (2) make XL always work as long as R > 1.1T .

XLF is expected to work where the original XL fails, as for m ≈ n XL
does not work well when R > T , as shown in Section 6. XLF uses k times
as many equations, and k times as many monomials as XL. We expect
therefore that the complexity of XLF will be only about kω bigger than
the expected complexity of XL (if the XL itself does not work). Indeed,
our simulations (Table 3) show that XLF works very well when XL fails,
i.e. even when m = n.

Table 3. XLF algorithm over GF (27) for m = n (notations as for Table 1).

n

m

D

R

T

Free
Free
T−D

Success

2 2 2

2 2 2

2 3 4

14 42 84

22 50 64

14 42 61

0.70 0.89 1.02

OK

3 3 3 3 3

3 3 3 3 3

2 3 4 5 6

21 84 210 420 735

43 113 176 323 449

21 84 168 315 445

0.51 0.76 0.98 0.99 1.00

OK

n

m

D

R

T

Free
Free
T−D

Success

4 4 4 4 4

4 4 4 4 4

4 5 6 7 8

420 980 1960 3528 5880

386 778 1226 2066 2976

350 742 1218 2058 2970

0.92 0.96 0.999 0.999 1.00

OK

5 5 5 5 5 5

5 5 5 5 5 5

3 4 5 6 7 8

210 735 1960 4410 8820 16710

346 736 1618 2843 5153 8128

210 630 1505 2800 5110 8120

0.61 0.86 0.93 0.99 0.99 1.00

OK

We see that XLF behaves much better than XL for solving systems
of equations over GF (2k) with m = n. For example, with XL, we need
D = 25 = 32 to solve a system of 5 equations with 5 unknowns, while with
XLF D = 8 is enough. This is an important improvement, because the
complexity of both XL and XLF is very much the same with an important
factor that is exponential in D.

7.2 Relation with Algebraic Attacks on AES

The idea of XLF algorithm introduced in this paper is closely related
to the question of feasibility of an algebraic attack on AES [15]. In the
Murphy-Robshaw representation of AES, see [26] for details, the equa-
tions are written over GF(256), and have the same structure as in XLF:
for each variable (x) there is a variable that is always equal to (x2), and
for each equation, the square of it also present in the system.

10 Nicolas T. Courtois — PKC 2004, c©IACR —

These equations may be combined with the Courtois-Pieprzyk XSL
attack on AES, (XSL is different from XL and beyond the scope of this
paper). From the values of R and T obtained in XSL it seems that, if
sufficiently many equations are linearly independent, AES 128 bits would
be broken in about 2100, see [15, 26]. However, on a web page entitled
“AES is not broken” [25], T.T.Moh unwillingly acknowledges that the
XL algorithm will work, but objects for XSL and AES as follows: “ new
considerations of the XL method to the smallest field GF (2) with the
well-known trick of adding the equations x2

i + xi = 0 to make the the
component at infinity empty to satisfy the requirement of our Proposition
2” (...) “Note that this trick can not be used for the AES situation, since
the corresponding equations would be x256

i +xi = 0, the degrees 256 would
be too high for practical purpose.”

This is very interesting, because as far as we know, it is the only
somewhat mathematically founded argument that have been put forward
so far, suggesting that the Courtois-Pieprzyk-Murphy-Robshaw attack in
2100 might not work on AES. Yet as we have seen above, this argument
is void: the structure of equations makes that each of the variables must
lie in GF (256). This excludes additional roots in extension fields that
would make the attack fail. Moreover, it is also easy to see that with
such equations there will be no points at infinity: if we homogenise the
equations (x2

i) = (xi) ∗ (xi) with a new variable (a), we get (a) ∗ (x2
i) =

(xi)∗ (xi), and then if a = 0, all the xi will be 0, which is a contradiction.
Consequences for AES: Results on XL certainly not prove that

the XSL attack on AES works. Yet the Moh argument saying it shouldn’t
work does not apply at all to this specific Courtois-Pieprzyk-Murphy-
Robshaw system of equations. More generally, this paper shows that it is
in general risky, and difficult to predict whether an algebraic attack will
or will not work. We have seen that for (somewhat) deeply mathematical
reasons XL does not work very well for Sflash. Yet, as we will see later, a
subtle and finally quite minor modification of XL, such as XLF or XL’,
is enough to make it work and break Sflash.

8 New Attacks on Sflash

In this section we present three new methods that allow to break Sflash in
less than the Nessie security requirement of 280 Triple-DES computations.

8.1 Applying XLF to Sflash
In Sflash we have n = 37 and m = 26. Equations are quadratic over
GF (27). We fix 11 arbitrary variables to 0 and still expect to have on
average one solution. Then we apply XLF, the new version of XL. For D =

Algebraic Attacks over GF (2k), HFE Challenge 2 and Sflash-v2 11

7 we have R = 7 ·4417686 and T ≈ 7 ·4272048. Though XL does certainly
fail here, we expect that XLF may work. For D = 7 the complexity would
be about Tω ≈ 267. Even if we were too optimistic, and XLF works only
for D = 10, then we still have an attack in Tω ≈ 283 CPU clocks which
is less than 280 triple-DES computations required by Nessie.

8.2 Another Attack on Sflash Using XL’ Method from [14]
In this section we present yet another and even simpler method to break
Sflash. Instead of XL, we apply the XL’ algorithm from [14]. With classical
XL, for D = 7 we have R = 4417686 and T = 4272048, however in
practice, and Free does not take the value ≥ T −D for a very long time.
This makes XL fail so far. Still, as shown by all simulations of Section 6.1,
Free remains very close to T −D, and from this we expect that the XL’
version of XL described in [14] will work. We have n = 26 and m = 26.
We count all the monomials contain only the first 5 variables: let T ′ be
their number, we have T ′ =

(5+D
D

)
= 792. It seems very likely that the

rank, usually close to T − D, will be at least T − T ′ + 5. Then we are
able to eliminate all the monomials that contain any of the remaining
n− 5 = 26− 5 = 21 variables, and get a system of 5 equations of degree
D = 7 with 5 variables, with T ′ = 792 monomials. Such a system can
be solved by exhaustive search in about 27·5 · 792 · 5 ≈ 247. The total
complexity of the attack will be

(
247 + Tω

)
≈ 258 CPU clocks.

8.3 Another Attack on Sflash with Modified FXL
In this attack we will use the idea of FXL from [32]: guess values of few
variables in Sflash, solve the system by XL, and then solve the system by
XL. FXL leads very quickly to an overdefined system of equations and
from [32] and following our experiments done in Section 6.2, we expect
that after fixing a few variables XL will work.

Moreover, we will be able to do only once most of the Gaussian re-
duction that in FXL is done each time, which will give better results over
basic FXL from [32]. We proceed as follows:
1. We start with MQ with m = n = 26 and over GF (27).
2. We fix f = 4 variables (this is the optimal choice we have found).
3. We have 22 variables said of “type a” and f = 4 variables “of type b”.
4. We multiply all the equations by all the products of degree up to

D = 6 of the variables of “type a”.
5. The number of equations is R = 26

(22+D−2
D−2

)
= 388700.

6. In these equations we will eliminate all monomials of degree exactly
D = 6 in the variables of “type a”. Their number is exactly T ′ =(22+D−1

D

)
= 296010. They do not depend on the variables of “type b”,

and can be eliminated once for all.

12 Nicolas T. Courtois — PKC 2004, c©IACR —

7. Thus we get R − T ′ = 92690 equations that are of degree D − 1 = 5
in the variables of “type a”.

8. If we fix a random value for the four variables of “type b”, then we
get a system of R − T ′ = 92690 equations with T ′′ =

(22+5
5

)
= 80730

monomials that is sufficiently defined, as 9269 > 80730.
9. We expect that if the guess for the four variables of “type b” is correct,

then the system has a solution and the rank of this system is at most
80730− 1. However if the guess is wrong, we expect the system to be
contradictory and the rank to be 80730.

10. We expect that on average exactly one guess will be correct.
11. The complexity to find the right values for the four variables of “type

b” with Strassen’s version of the Gaussian reduction is about:
27·4 · 7/64 · (80730)log2(7) ≈ 271.

Remark: It is possible to see that the matrices generated in our
attacks are somewhat sparse and that they can probably still be (slightly)
improved by using sparse linear algebra.

9 Application of Our Attacks to HFE Challenge 2

The HFE Challenge 2 was published by Patarin in the extended version
of [30], with a price of 500 $. In the extended version of this paper we
apply exactly “as they are” our 3 attacks from Section 8 Results are given
in Table 4 and our best attack on HFE Challenge 2 gives 263.

10 Conclusion and Perspectives

The problem MQ of solving a set of multivariate quadratic equations
over a finite field arises in cryptography (allowing to propose new cryp-
tographic primitives), but also in cryptanalysis (for example for AES). In
this paper we have studied the XL algorithm over GF (2k). We show that
it works very well for overdefined equations and fails when m ≈ n. Then
we present XLF, a modified version of XL that works also in this case.

Using XLF, and also with two other versions of XL known as XL’
and FXL, we present three new attacks on Sflash, a signature scheme
accepted by the European Nessie consortium. All these three new attacks
are faster than 280, and the fastest requires about 258 CPU clocks. They
also apply to Patarin’s 500 $ HFE Challenge 2, and the best gives 263.

In our results, one can notice that XLF is not the best method to
break Sflash and HFE Challenge 2. This is because 2k is still not too big.
It is possible to see that, when 2k is very big, XLF, introduced in this
paper, will be the only method known to solve efficiently systems of
quadratic equations over GF (2k) and with m = n. To summarize:

Algebraic Attacks over GF (2k), HFE Challenge 2 and Sflash-v2 13

Table 4. Summary of the results of this paper.

XL from [32] XLF - new XL’ from [14] improved FXL

Sflash-v2 2282 267 258 271

Sflash-v3 [13], m=56 2458 2110 2102 2100

HFE Challenge 2 2122 276 270 263

General MQ, m≈n, k big fails works fails fails

In Appendix A of this paper we show that, as in [14], we succeed to
predict perfectly the behaviour of XL for D < 6, and this is sufficient to
cryptanalyse current versions of Sflash and HFE Challenge 2. In general,
the asymptotic behaviour of XL can be studied by the theory of Gröbner
bases, see [17, 18, 16, 2]. We conjecture that complexity of solving MQ
systems over a finite field with m ≈ n must grow exponentially with
n, and even for equations over GF (2), the easiest case, it can be shown
that applying Buchberger algorithm to ideals generated in XL has single
exponential worst case complexity, see [16] or [2].

Consequences for Sflash and HFE. We did not exhibit any struc-
tural weakness of these schemes. We simply showed that the proposed
parameter sizes are insufficient for the hardness of the generic one-way
problem. These schemes will resist all the attacks described in the present
paper if we increase parameters m and n. Thus in Table 4 above we see
that the latest updated version Sflash-v3 from [13] remains very secure.

Potential consequences for other algebraic attacks such as
XSL attack on AES. We showed that for systems of low degree equa-
tions over fields GF (2k), it is not hard to avoid additional solutions in the
algebraic extension or at infinity, that would make algebraic attacks fail.
The Frobenius-based transformation method (with adding new variables
and new equations), inspired by [26] and developed in this paper, may be
of independent interest: it can potentially be applied to various systems
of equations solved by various methods. For example equations can be
derived from a block cipher, to be later solved by XSL-type method [15].
This simple trick (not needed in [15] nor in [26]) can transform an attack
that does not work, into an attack that does work, while increasing the
size of equations only k times.

Note: The extended version of this paper is available from the author.

References

1. Mehdi-Laurent Akkar, Nicolas Courtois, Louis Goubin, Romain Duteuil: A Fast
and Secure Implementation of Slash, PKC 2003, LNCS 2567, Springer, pp. 267-278.

2. B. Barkee, D. C. Can, J. Ecks, T. Moriarty, R. F. Ree: Why You Cannot Even Hope
to use Gröbner Bases in Public Key Cryptography: An Open Letter to a Scientist

14 Nicolas T. Courtois — PKC 2004, c©IACR —

Who Failed and a Challenge to Those Who Have Not Yet Failed, in Journal of
Symbolic Computation 18, 1994, S. 497-501

3. Don Coppersmith, Shmuel Winograd: “Matrix multiplication via arithmetic pro-
gressions”; J. Symbolic Computation (1990), 9, pp. 251-280.

4. Nicolas Courtois, Magnus Daum and Patrick Felke: On the Security of HFE, HFEv-
and Quartz, PKC 2003, LNCS 2567, Springer, pp. 337-350.

5. Nicolas Courtois, Louis Goubin, Willi Meier, Jean-Daniel Tacier: Solving Under-
defined Systems of Multivariate Quadratic Equations, PKC 2002, LNCS 2274,
Springer, pp. 211-227.

6. Nicolas Courtois: The security of Hidden Field Equations (HFE); Cryptographers’
Track Rsa Conference 2001, LNCS 2020, Springer, pp. 266-281.

7. Nicolas Courtois: Higher Order Correlation Attacks, XL algorithm and Cryptanal-
ysis of Toyocrypt, ICISC 2002, LNCS 2587, pp. 182-199, Springer. An updated
version (2002) is available at http://eprint.iacr.org/2002/087/.

8. Jacques Patarin, Nicolas Courtois, Louis Goubin: C*-+ and HM - Variations
around two schemes of T. Matsumoto and H. Imai; Asiacrypt’98, Springer.

9. Jacques Patarin, Louis Goubin, Nicolas Courtois: Quartz, 128-bit long digital sig-
natures; Cryptographers’ Track Rsa Conference 2001, LNCS 2020, pp.282-297,
Springer. See [10] for the updated Quartz specification.

10. Jacques Patarin, Louis Goubin, Nicolas Courtois: Quartz, 128-bit long dig-
ital signatures; An updated version of Quartz specification. available at
http://www.cryptosystem.net/quartz/

11. Jacques Patarin, Louis Goubin, Nicolas Courtois: Flash, a fast multivariate sig-
nature algorithm; Cryptographers’ Track Rsa Conference 2001, LNCS 2020, pp.
298-307, Springer.

12. Nicolas Courtois, Louis Goubin and Jacques Patarin: Second up-
dated version of Sflash specification (Sflash-v2). Available at
http://www.cryptosystem.net/sflash/

13. Nicolas Courtois, Louis Goubin and Jacques Patarin: SFLASHv3, a fast asym-
metric signature scheme. New, third version of Sflash specification (Sflash-v3),
proposed after this paper was written. Available on eprint.iacr.org/2003/211/.

14. Nicolas Courtois and Jacques Patarin, About the XL Algorithm over GF (2), Cryp-
tographers’ Track RSA 2003, LNCS 2612, pages 141-157, Springer 2003.

15. Nicolas Courtois and Josef Pieprzyk, Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations, Asiacrypt 2002, LNCS 2501, pp.267-287,
Springer, a preprint with a different version of the attack is available at
http://eprint.iacr.org/2002/044/.

16. Magnus Daum: Das Kryptosystem HFE und quadratische Gleichungssysteme über
endlichen Körpern, Diplomarbeit, Universität Dortmund, 2001. Available from
daum@itsc.ruhr-uni-bochum.de

17. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases
(F4), Journal of Pure and Applied Algebra 139 (1999) pp. 61-88. See
www.elsevier.com/locate/jpaa

18. Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases with-
out reduction to zero (F5), Workshop on Applications of Commutative Algebra,
Catania, Italy, 3-6 April 2002, ACM Press.

19. Jean-Charles Faugère: Report on a successful attack of HFE Challege 1 with
Gröbner bases algorithm F5/2, announcement that appeared in sci.crypt news-
group on the internet in April 19th 2002.

Algebraic Attacks over GF (2k), HFE Challenge 2 and Sflash-v2 15

20. Michael Garey, David Johnson: Computers and Intractability, a guide to the theory
of NP-completeness, Freeman, see in particular p. 251.

21. Henri Gilbert, Marine Minier: Cryptanalysis of SFLASH. Eurocrypt 2002, LNCS
2232, Springer, pp. 288-298, 2002.

22. Antoine Joux, Jean-Charles Faugère: Algebraic Cryptanalysis of Hidden Field
Equation (HFE) Cryptosystems Using Gröbner Bases, Crypto 2003, LNCS 2729,
pp. 44-60, Springer.

23. Mireille Martin-Deschamps, private communication, University of Versailles.
24. T.T. Moh: On The Method of XL and Its Inefficiency Against TTM, invited talk

at the American Mathematical Society regional meeting at the University of Notre
Dame, April 8, 2000. available at http://eprint.iacr.org/2001/047/.

25. T.T. Moh: On The Courtois-Pieprzyk’s Attack on Rijndael, September 18 2002,
available at http://www.usdsi.com/aes.html.

26. S. Murphy, M. Robshaw: Essential Algebraic Structure within the AES, Crypto
2002, LNCS 2442, Springer.

27. NESSIE Portfolio of recommended cryptographic primitives, available at
www.cosic.esat.kuleuven.ac.be/nessie/deliverables/decision-final.pdf

28. NESSIE Security Report, revised final version 2.0, available at
https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/D20-v2.pdf

29. Jacques Patarin: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88; Crypto’95, Springer, LNCS 963, pp. 248-261, 1995.

30. Jacques Patarin: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of Asymm. Algorithms, Eurocrypt’96, Springer, pp. 33-48.

31. Adi Shamir, Aviad Kipnis: Cryptanalysis of the HFE Public Key Cryptosystem;
In Advances in Cryptology, Proceedings of Crypto’99, Springer, LNCS.

32. Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov, Efficient Al-
gorithms for solving Overdefined Systems of Multivariate Polynomial Equations,
Eurocrypt’2000, LNCS 1807, Springer, pp. 392-407.

A More Computer Simulations - Predicting the
Behaviour of XL

In this section we will show that XL works very well for even slightly
overdefined systems of equations over GF (2k), i.e. when m exceeds n by
even a small value. Moreover, we will show, as in [14], how to predict the
behaviour of XL, and this prediction will in many cases remain valid also
when m = n. (the case m ≈ n is studied in section 6).

As before, in these simulations we pick a random system of linearly
independent quadratic (non-homogenous) equations yi = fi(x1, . . . , xn)
and pick a random input x = (x1, . . . , xn). Then we modify the constants
in the system to have a system that has (at least) one solution x.

A.1 The Behaviour of XL over GF (2k) for D = 3
We have always Free ≤ min(T − 1, R). We have done various computer
simulations with D = 3 and in our simulations, for D = 3, we have always
Free = min(T − 1, R) or Free = min(T − 1, R)− 1.

In the following table we fix n and try XL on a random system of m
linearly independent equations with growing m and with a fixed D.

16 Nicolas T. Courtois — PKC 2004, c©IACR —

Table 5. XL over GF (27) for D = 3 (notations as for Table 1)

n

m

D

R

T

Free

Expected
Free
T−D

Success

10 10 10 10 10

10 15 20 25 26

3 3 3 3 3

110 165 220 275 286

286 286 286 286 286

110 165 220 275 285

110 165 220 275 285

0.39 0.58 0.77 0.96 1.00

OK

20 20 20 20 20

20 40 60 80 85

3 3 3 3 3

420 840 1260 1680 1785

1771 1771 1771 1771 1771

420 840 1260 1680 1770

420 840 1260 1680 1770

0.24 0.48 0.71 0.95 1.00

OK

A.2 The Behaviour of XL over GF (2k) for D = 4.

When D = 4 we do not have Free = min(T,R) anymore.

Table 6. XL over GF (27) for D = 4 (notations as for Table 1)

n

m

D

R

T

Free

Expected
Free
T−D

Success

5 5 5 5

5 6 7 8

4 4 4 4

105 126 147 168

126 126 126 126

95 111 125 125

95 111 125 125

0.76 0.91 1.02 1.02

OK

10 10 10 10

10 15 17 18

4 4 4 4

660 990 1122 1188

1001 1001 1001 1001

615 885 986 1000

615 885 986 1000

0.62 0.89 0.99 1.00

OK

We see that for D = 4 most of the equations are linearly independent.
We observed that we have always:

For D = 4, Free = min

(
T − 1, R−

(
m

2

))
.

The fact that Free = R −
(m

2

)
when R −

(m
2

)
≤ T , means that, in

all cases, there are
(m

2

)
linear dependencies between the equations in R.

As in [14], we are able to explain the origin (and the exact number) of
these linear dependencies: Let li be the equations names (not expanded,
just written as “li”), and let [li] denote the expanded expression of these
equations as quadratic polynomials. Then we have:

li[lj] = [li]lj
For each i 6= j, the above equation defines a linear dependency be-

tween the equations of XL. This explains the
(m

2

)
dependencies.

Example: For example if l1 = x1x3 + x4 and l5 = x2x1 + x4x7

then the notation l1[l5] = [l1]l5 denotes the following linear dependency
between the lixjxk:

l1x2x1 + l1x4x7 = l5x1x3 + l5x4.

Algebraic Attacks over GF (2k), HFE Challenge 2 and Sflash-v2 17

A.3 The Behaviour of XL over GF (2k) for D = 5.

Following the method from [14] and used in the previous chapter, we will
try to predict the exact number of linearly independent equations that will
be obtained for D = 5. First of all, we have the

(m
2

)
linear dependencies

of type li[lj] = [li]lj that are the same that existed for D = 4. In addition
we have dependencies like:

li[lj]xk = [li]ljxk

It gives n ·
(m

2

)
dependencies. By inspection we check that for D = 5

we are unable to generate any more dependencies. From the above, we
expect that:

For D = 5, Free = min

(
T − 1, R− (n + 1)

(
m

2

))
.

Is that all the linear dependencies ? Apparently yes.
Table 7. XL over GF (27) for D = 5 (notations as for Table 1)

n

m

D

R

T

Free

Expected
Free
T−D

Success

5 5 5

5 6 7

5 5 5

280 336 392

252 252 252

220 246 250

220 246 250

0.88 0.98 1.00

OK

10 10 10

10 15 16

5 5 5

2860 4290 4576

3003 3003 3003

2365 3002 3002

2365 3002 3002

0.79 0.99 1.00

OK

All our simulations confirm the above formula.

A.4 The Behaviour of XL over GF (2k) when D ≥ 6, . . .

As in [14], it is possible to continue and give formulas for Free when
D = 6 etc. These formulas are expected to predict the behaviour of XL
for any D for overdefined systems with m > n + ε. The results given
here are very similar than for fields GF (2) in [14], except that in [14] the
formulas work also when m = n, which is the hard case here.

The exact formula for all D is unknown. This formula is probably not
very simple, due to entanglement of linear dependencies: so far we only
subtracted linear dependencies, yet for a larger D dependencies among
these dependencies will appear, etc. Apparently for XL over GF (2) the
exact number of linearly independent equations can be computed from the
work of Jean-Charles-Faugère [17, 18], extending the so called Buchberger
criteria, however we do not know if the problem is solved for XL over
GF (2k), k > 1.

